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Analysis of mathematical model of leukemia
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Abstract. In this paper, a model describing the dynamic of chronic myeloid leukemia is
studied. By analyzing the corresponding characteristic equations, the local stability of trivial
and nontrivial equilibria are discussed. By establishing appropriate Lyapunov functions, we
prove the global stability of the positive constant equilibrium solutions.

1. Introduction

Several recent mathematical models have been developed to study the dynamics of chronic myeloid
leukemia (CML) under IMATINIB treatment, see ([2, 3, 5, 6]). In all of these studies, the authors
conclude that IMATINIB does not completely eliminate leukemic cells, and propose that IMATINIB
therapy should be combined with an additional form of treatment.

In [5], the authors analyze a four-compartment differential equation model based on the known
biology of the hematopoietic system to investigate the dynamics of CML with IMATINIB treatment. In
their model, Michor et al. [5] study the interaction between leukemic cells and IMATINIB, they assume
that these cells differentiate through four stages of their life cycle, beginning with leukemia stem cells.
IMATINIB reduces the rate at which leukemic cells pass from one stage to the next, causing a rapid
drop in the leukemia population. Based on their assumptions and analysis, they propose that leukemia
inevitably persists, because IMATINIB hinders the differentiation of differentiated leukemic cells, but
does not affect the leukemia stem cells. In particular, Michor et al. [5] hypothesizes that there is always
a steadily growing population of leukemia stem cells despite IMATINIB treatment. As a result, based
on their model, the leukemia population under IMATINIB eventually relapses, regardless of whether the
model considers IMATINIB resistance mutations.

In [2], the authors incorporate the anti-leukemia immune response in CML patients on IMATINIB
therapy to the model proposed in [5] by adding interactions with anti-leukemia T-cells. They formulate
their mathematical model as a system of delay differential equations, and prove that the immune
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response may play a critical role in determining the length of time that CML patients under IMATINIB
treatment remain in remission.

In [6], Roeder et al. develop a similar model of CML and IMATINIB. However, they subdivide the
leukemia stem cells into two compartments: proliferating and quiescent cells. Proliferating leukemia
stem cells are affected by IMATINIB, while quiescent leukemia stem cells are not affected. Due to this
additional assumption, the leukemia population under IMATINIB does not relapse without the effects of
IMATINIB resistance mutations. Instead, under IMATINIB treatment, the leukemia stem cell population
restabilizes at lower equilibrium level and does not continue growing as in the Michor model.

Both [5] and [6] propose that IMATINIB does not eliminate the leukemia stem cell population.
Consequently, the papers conclude that IMATINIB therapy should be combined with an additional
treatment that either directly impacts leukemia stem cells or causes leukemia stem cells to become
vulnerable to IMATINIB.

As an alternative approach, Komorova and Wodarz develop a model that focuses on the drug
resistance of leukemia cells [3]. In their model, they implicitly assume that IMATINIB affects all
leukemia cells including stem cells and that inevitable relapse is a result of acquired IMATINIB
resistance mutations. Komorova and Wodarz consider the possibility of treating patients with multiple
drugs to reduce the probability of any leukemic cell eventually acquiring resistance-mutations to all
drugs. They determine that a treatment strategy consisting of three leukemia-targeted drugs of different
specificity might have a strong chance of eliminating the disease.

The four approaches discussed above present a variety of hypotheses for the dynamics of IMATINIB
treatment on leukemic cells. These papers also propose potential treatment strategies to enhance the
effectiveness of IMATINIB. However, the difficulty with these treatments is that it is unclear what kind
of drug could be used to target leukemia stem cells or what alternative drugs could be used in addition
to IMATINIB for a multiple-drug strategy.

In this work, we consider the following more general mathematical model which is an extension of a
model proposed in [5]. In our model, we assume that normal (resp. leukemic) cells differentiate through
two stages of their life cycle, beginning with leukemic stem cells which produce produce progenitors.

The mathematical form of the system we shall investigate satisfies

ẋ0 = (� − ax − �0x0 − �(x1 + y1 + z1))x0,

ẋ1 = axx0 − d1x1,

ẏ0 = (� − ay − �0y0 − �(x1 + �[y1 + z1]))y0 − ry0,

ẏ1 = ayy0 − d2y1,

ż0 = (� − az − �0z0 − �(x1 + �[y1 + z1]))z0 + ry0,

ż1 = azz0 − d3z1,

(1)

with the following initial conditions

x0(0) = x0
0 ≥ 0, y0(0) = y0

0 ≥ 0, z0(0) = z0
0 ≥ 0,

x1(0) = x0
1 ≥ 0, y1(0) = y0

1 ≥ 0, z1(0) = z0
1 ≥ 0. (2)

The population of interest is divided into three compartments coming from dictated by the
epidemiological stages; normal cells, sensitive leukemic cells and resistant leukemic cells. We assume
that normal (resp. leukemic) cells differentiate through two stages of their life cycle, beginning with
leukemic stem cells which produce. Tables 1 and 2 list the definitions and symbols (populations and
parameters) used in our model. This paper is organized as follows. In the next section, we state and
prove general criterion for the existence positive solutions of system (1). In Sect. 3, we will study the
global dynamics of (1) by constructing a suitable Lyapunov function and using LaSalle’s invariance
principle rather than by using the theory of competitive systems, as has been done in [6]. This will
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Table 1. Symbols and definitions of populations.

symbol definition
x0 normal stem cells
x1 normal progenitor cells
y0 leukemic sensitive stem cells
y1 leukemic sensitive progenitor cells
z0 leukemic resistant stem cells
z1 leukemic resistant progenitor cells

Table 2. Symbols and definitions of parameters.

parameter explanation
�0 death rate of the normal stem cells
�0 death rate of leukemic stem cells
� division rate of normal stem cells
� division rate leukemic stem cells
� competitive parameter of the stem and progenitor cells
ax production rate of the normal stem cells
ay produce rate of the leukemic stem cells
d1 death rates of the normal progenitors cells
d2 death rates of the leukemic progenitors cells

d3(r) death rates of the normal leukemic progenitors cells
r resistant parameter
� 0 < � < 1

enable us to obtain the global asymptotic stability of the equilibrium point under some hypotheses and
by a simpler method. This will enable us to obtain the global asymptotic stability of the equilibrium
point under some hypotheses and by a simpler method. In Sect. 4, we use numerical simulations of our
model to discuss biological significance of our results and indicate possible extensions to the study of
more comprehensive models. The model (1) becomes as follow



ẋ0 = (� − ax − �0x0 − �(x1 + y1 + z1))x0,

ẋ1 = axx0 − d1x1,

ẏ0 = (� − ay − �0y0 − �(x1 + �y1 + �z1))y0 − ry0,

ẏ1 = ayy0 − d2y1,

ż0 = (� − ay − �0z0 − �(x1 + �y1 + �z1))z0 + ry0,

ż1 = ayz0 − d3(r)z1,

(3)

with the following initial conditions

x0(0) = x0
0 ≥ 0, y0(0) = y0

0 ≥ 0, z0(0) = z0
0 ≥ 0,

x1(0) = x0
1 ≥ 0, y1(0) = y0

1 ≥ 0, z1(0) = z0
1 ≥ 0.

(4)

Throughout this paper, we assume that conditions

ax < ay , (5)

ay + r < �, (6)

ax < � < �, (7)
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Figure 1. A state diagram for the model (3).

0 < �0 < �0, (8)

and

d3(r) ≤ d2 < d1, where d3 is decreasing on r with d3(0) = d2 (9)

hold in order that the state variables x0, x1, y0, y1, z0, z1 have a biological meanings. The compartmental
diagram of the system (3) appears in Fig. 1.

2. Global Wel-Posedness

First we show that solutions of system (3) are positive and bounded.

Proposition 2.1: The system (3) with initial conditions (4) has unique bounded solution in R6
+ defined

for all t ≥ 0.

Proof: Let F : R6 → R
6 be given by F

((
x0

x1

)
,

(
y0

y1

)
,

(
z0

z1

))
=

((
F1

F2

)
,

(
F3

F4

)
,

(
F5

F6

))
where 



F1 = (� − ax − �0x0 − �(x1 + y1 + z1))x0,

F2 = axx0 − d1x1,

F3 = (� − ay − �0y0 − �(x1 + �[y1 + z1]))y0 − ry0,

F4 = ayy0 − d2y1,

F5 = (� − ay − �0z0 − �(x1 + �[y1 + z1]))z0 + ry0,

F6 = ayz0 − d3(r)z1.
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Observe that F is Lipschitz continuous on bounded sets of R6. Furthermore, for t ≥ 0 and((
x0(t)
x1(t)

)
,

(
y0(t)
y1(t)

)
,

(
z0(t)
z1(t)

))
∈ R6 it follows that F1 ≥ 0 for x0 = 0, F2 ≥ 0 for x1 = 0, F3 ≥ 0

for y0 = 0, F4 ≥ 0 for y1 = 0, F5 ≥ 0 for z0 = 0 and F6 ≥ 0 for z1 = 0. Thus there exists a unique
nonnegative solution to (3) in R6

+ for t ≥ 0.
From the six equations of (3) we get N = x0 + x1 + y0 + y1 + z0 + z1,

Ṅ ≤ (� + 1)x0 − x0 − d1x1 + (� + 1)y0 − y0 − d2y1 + (� + 1)z0 − z0 − d3(r)z1

≤ (� + 1)Mx0 + (� + 1)(My0 + Mz0 ) − �N ,

where Mx0 = max
(
x0

0 , �−ax

�0

)
, My0 = max

(
y0

0 , �−ay−r

�0

)
, Mz0 = max

(
z0

0,
�−ay+

√
(�−ay )2+4r�0My0

2�0

)
and

� = min(1, d3(r)) = d3(r). Hence we obtain the boundedness

0 ≤ N (t) ≤ �

(� + 1)Mx0 + (� + 1)(My0 + Mz0 )
+ N (0)e−�t .

It follows that N (t) ≤ max
(

�
(�+1)Mx0 +(�+1)(My0 +Mz0 ) , N (0)

)
, whenever

((
x0

0

x0
1

)
,

(
y0

0

y0
1

)
,

(
z0

0

z0
1

))
∈ R6

+

and t ≥ 0, this implies boundedness of solutions.
Thus the existence of a unique global nonnegative bounded solution is proved. �

3. Case r = 0

In this section, we consider the case where the resistant parameter r = 0 with z0 = z1 = 0.
We obtain the following system



ẋ0 = (� − ax − �0x0 − �(x1 + y1))x0,

ẋ1 = axx0 − d1x1,

ẏ0 = (� − ay − �0y0 − �(x1 + �y1))y0,

ẏ1 = ayy0 − d2y1.

(10)

3.1 Steady states analysis

Proposition 3.1: Let � ≥ 0 and assume that the conditions (5)–(9) are satisfied. Then the system (10)

has three trivial equilibrium, E0 =
((

0
0

)
,

(
0
0

))
which symbolizes extinction of a population cells,

E1 =
((

�1
ax

d1
�1

)
,

(
0
0

))
namely the disease free equilibrium, and E2 =

((
0
0

)
,

(
�2

ay

d2
�2

))
which we call

the healthy free equilibrium.

In addition, for d1 > � ax

�0

(
�−ax

�−ay
− 1

)
and d2 > � ay

�0

�−ay

�−ax
− �, system (10) admits another nontrivial

equilibrium E3 =
((

�3
ax

d1
�3

)
,

(
�3

ay

d2
�3

))
which we call the endemic equilibrium. The expression of �i

and �i are given in Table 3.

Remark 3.2: For � <
�−ay

�−ax
< 1, d2 = � ay

�0

(
�−ay

�−ax
− �

)
and d1 = � ax

�0

(
�−ax

�−ay
− 1

)
we have an infinity of

equilibria of the form E3.
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Table 3. Equilibrium formulation.

equilibrium name expression

E1 =
((

�1
ax

d1
�1

)
,

(
0
0

))
disease free equilibrium �1 = (� − ax)d1

�0d1 + �ax

E2 =
((

0
0

)
,

(
�2

ay

d2
�2

))
healthy free equilibrium �2 = (� − ay)d2

�0d2 + ��ay

E3 =
((

�3
ax

d1
�3

)
,

(
�3

ay

d2
�3

))
endemic equilibrium �3 =

�1 − �ayd1

(�0d1+�ax )d2
�2

1 − �ax�ay

(�0d2+��ay )(�0d1+�ax )

�3 =
�2 − �axd2

(�0d2+��ay )d1
�1

1 − �ax�ay

(�0d2+��ay )(�0d1+�ax )

3.2 Stability analysis and bifurcation

Let q = �−ay

�−ax
, q1 = 4�0

�0+4�0
, q2 = �0+4�2�0

4��0
, d∗

1 = �ax

�0

(
1−q

q

)
, d•

1 = 1

4

�ax

�0
, d∗

2 = �ay

�0
(q − �)

and d•
2 = 1

4�

�ay

�0
.

3.2.1 Local asymptotic stability

To analyze the stability of these steady states we compute their linearizations.

At the point Ei =
((

�i
ax

d1
�i

)
,

(
�i

ay

d2
�i

))
, we obtain the linearization

A =




�1 −��i 0 −��i

ax −d1 0 0

0 −��i �2 −���i

0 0 ay −d2


 (11)

where

�1 = � − ax − �

(
ax

d1
�i + ay

d2
�i

)
− 2�0�i , and

�2 = � − ay − �

(
ax

d1
�i + �

ay

d2
�i

)
− 2�0�i .

Theorem 3.3: Let � ≥ 0, and assume that the conditions (5)–(9) are satisfied. Then

1. E0 is unstable.
2. If q < 1 and d1 < d∗

1 , then E1 is locally asymptotically stable. If either q > 1 or d1 > d∗
1 , then

E1 is unstable.
3. If q > �, d2 < d∗

2 , then E2 is locally asymptotically stable. If either q < � or d2 > d∗
2 , then E2

is unstable.
4. If d1 > d∗

1 and d2 > d∗
2 , then E3 is locally asymptotically stable.

Proof: From the linearization (11), we obtain

1. At point E0, the values � − ax > 0, −d1, � − ay > 0 and −d2 are the eigenvalues of A. We
conclude that the trivial equilibrium E0 is unstable.
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2. At point E1 we get �1 = −�0�1 and �2 = � − ay − � ax

d1
�1. The eigenvalues of A are �2, −d2 and

the roots of the characteristic polynomial of the minor matrix of A given by

P (u) = (�1 − u)(−d1 − u) + �ax�1 = 0.

This equation is equivalent to

P (u) = u2 + e1u + e2 = 0,

where e1 = d1 − �1 and e2 = −d1�1 + �ax�1.
Since e1 > 0 and e2 > 0, the Ruth-Hurwitz criterion implies that all roots of P have negative
real parts. Hence eigenvalues of A have negative real parts if �2 < 0, which shows that the
equilibrium E1 is locally asymptotically stable if q < 1 and d1 < d∗

1 .
3. At point E2 we have �1 = � − ax − � ay

d2
�2 and �2 = −�0�2. The eigenvalues of A are �1, −d1

and the roots of the characteristic polynomial of the minor matrix of A given by

P (u) = (�2 − u)(−d2 − u) + ��ay�2 = 0.

This equation is equivalent to

P (u) = u2 + e1u + e2,

where e1 = d2 − �2 and e2 = −d2�2 + ��ay�2.
Since e1 > 0 and e2 > 0, the Ruth-Hurwitz criterion implies that all roots of P have negative
real parts. Hence eigenvalues of A have negative real parts if �1 < 0, which shows that the
equilibrium E2 is locally asymptotically stable if q > �, d2 < d∗

2 .
4. At point E3 we have �1 = −�0�3 and �2 = −�0�3. The eigenvalues of A are the roots of the

characteristic polynomial of the minor matrix of A given by

P (u) = [(�1 − u)(−d1 − u) + �ax�3][(�2 − u)(−d2 − u) + ��ay�3] − axay�
2�3�3 = 0.

This equation is equivalent to

u4 + e1u3 + e2u2 + e3u + e4 = 0,

where
e1 = d1 + �0�3 + d2 + �0�3 > 0,
e2 = (�0d1 + �ax)�3 + (�0d2 + ��ay)�3 + (d1 + �0�3)(d2 + �0�3) > 0,
e3 = (d1 + �0�3)(�0d2 + ��ay)�3 + (d2 + �0�3)(�0d1 + �ax)�3 > 0 and
e4 = [(�0d1 + �ax)(�0d2 + ��ay) − axay�2]�3�3 > 0 since d2 > d∗

2 . Moreover, e1e2e3 > e2
3 +

e2
1e4, for the Routh-Hurwitz criterion, it follows that all roots of A have negative real parts if

d2 > d∗
2 , which shows that the equilibrium E3 is locally asymptotically stable if d1 > d∗

1 and
d2 > d∗

2 . �

In summary we have

Table 4. Summary of the model with r = 0.

Case 1: q ≤ � Case 1: � < q < 1 Case 3: 1 ≤ q

region stability region stability region stability
I E1 is L.A.S. I E1 is L.A.S. I disappear

E2 is unstable E2 is unstable
II disappear II E1 is unstable II E1 is unstable

E2 is L.A.S. E2 is L.A.S.
III E1 is unstable III E1 is unstable III E1 is unstable

E2 is unstable E2 is unstable E2 is unstable
E3 is L.A.S. E3 is L.A.S. E3 is L.A.S.

IV disappear IV E1 is L.A.S. IV disappear
E2 is L.A.S.
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Figure 2. Bifurcation diagram for the model when � < q < 1. In region I, the disease free equilibrium E1 is locally
asymptotically stable, in region II, the healthy free equilibrium E2 is locally asymptotically stable, in region III, the
endemic equilibrium E3 is locally asymptotically stable and region IV represents the local asymptotic stability of
disease free equilibrium E1 and healthy free equilibrium E2.

Figure 3. Bifurcation diagram for the model when q ≤ �. The regions II and IV disappear.

where
I: d1 < d∗

1 and d2 > d∗
2 ,

II: d1 > d∗
1 and d2 < d∗

2 ,
III: d1 > d∗

1 and d2 > d∗
2 , and

IV: d1 < d∗
1 and d2 < d∗

2 .

Figures 2, 3, 4, 5 and 6 show the bifurcation diagram for this model.
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Figure 4. Bifurcation diagram for the model when q > 1. The regions I and IV disappear.

Figure 5. Bifurcation diagram for the DFE.

3.2.2 Concept of R0

The disease free equilibrium (DFE) for this nondimensionalized general model of chronic myeloid
leukemia may be used to find the basic reproduction number R0, which indicates the average number
of new infections. The basic epidemiological reproductive number is given by

R0 = �
(�−ax )�ax

�0d1+�ax
+ ay

· (12)

However, this nondimensional number is not enough to characterize the dynamics of model (4), (10).

01005-p.9
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Figure 6. Bifurcation diagram for the HFE.

3.2.3 Analysis at R0 = 1

To analyze the local stability in critical cases, we use the center manifold theory, as described in Castillo-
Chavez and Song (Theorem 4.1) [1]. Center manifold theory has been used to decide the local stability
of a nonhyperbolic equilibrium (linearization matrix has at least one eigenvalue with zero real part).
This theory can not only determine the local stability of the nonhyperbolic equilibrium but also settles
the question of the existence of another equilibrium (bifurcated from the nonhyperbolic equilibrium).

To apply this method, the system (10) becomes

ẋ = f (x, �) =




ẋ0(t) = (� − ax − �0x0 − �(x1 + y1))x0 := f1,

ẋ1(t) = axx0 − d1x1 := f2,

ẏ0(t) = (� − ay − �0y0 − �(x1 + �y1))y0 := f3,

ẏ1(t) = ayy0 − d2y1 := f4,

(13)

where x =
((

x0

x1

)
,

(
y0

y1

))
, f = (f1, f2, f3, f4) and � = � − ay .

At R0 = 1, we obtain � = � − ay = (�−ax )�ax

�0d1+�ax
. From the linearization matrix of system (13) around the

disease free equilibrium E1 when R0 = 1, we can show that zero is a simple eigenvalue and all other
eigenvalues have negative real parts. A right eigenvector w corresponding to the zero eigenvalue is

w =
((

− �ayd1

(�0d1+�ax )d2

− �ayax

(�0d1+�ax )d2

)
,

(
1
ay

d2

))
, and the left eigenvector satisfying v.w = 1 is v =

((
0
0

)
,

(
1
0

))
.

For system (13) the second partial derivatives of f3 are given by

�2f3

�y2
0

= −2�0,
�2f3

�y0�x1
= −�,

�2f3

�y0�y1
= −��,

�2f3

�y0�z1
= −��, and

�2f3

���y0
= 1.

01005-p.10
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Figure 7. Bifurcation diagram for the model.

Figure 8. Bifurcation diagram for the model when q < q1 (Resp. q > q2). In region I, the disease free equilibrium
E1 is globally asymptotically stable, in region III, the endemic equilibrium E3 is globally asymptotically stable
(Resp. In region II, the healthy free equilibrium E2 is globally asymptotically stable, in region III, the endemic
equilibrium E3 is globally asymptotically stable).

It follows that

a = −2v3w3(�w2 + �0w3 + ��w4)

= −2

(
�

ay

d2

(
� − �ax

�0d1 + �ax

)
+ �0

)

01005-p.11
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and

b = v3w3 = 1 > 0.

Thus, from Theorem 4.1, item (iv) in Castillo-Chavez and Song [1], we have the following result.

Theorem 3.4: Let d ′
2 = �ay

�0

(
�ax

�0d1+�ax
− �

)
and d ′

1 = �ax

�0

(
1−�
�

)
.

1. If d ′
2 < d2 < d∗

2 , the unique endemic equilibrium disappears wheneverR0 > 1 and is close to 1.
2. If d2 > d∗

2 > d ′
2, the unique endemic equilibrium is locally asymptotically stable whenever

R0 > 1 and is close to 1.
3. If d2 < d ′

2 and d1 < d ′
1, the unique endemic equilibrium disappears whenever R0 > 1 and is

close to 1.

3.2.4 Global stability

Let T =
((

x0 − �i

x1 − ax

d1
�i

)
,

(
y0 − �i

y1 − ay

d2
�i

))
and A =




�0 0 0 �
2

0 �d1
ax

�
2 0

0 �
2 �0 0

�
2 0 0 ��d2

ay


.

Next, we study the global stability of the steady states. The proof relies on the construction of a global
Lyapunov functions.

Theorem 3.5:

1. If q < q1, d•
1 < d1 ≤ d∗

1 and d2 > d•
2 , then E1 is globally asymptotically stable inR4

+/ {0} × R3
+.

2. If q > q2, d1 > d•
1 and d•

2 < d2 ≤ d∗
2 , then E2 is globally asymptotically stable in R4

+/R2
+ ×

{0} × R+.
3. If d1 > max

(
d∗

1 , d•
1

)
and d2 > max

(
d∗

2 , d•
2

)
, then E3 is globally asymptotically stable in

R
4
+/ {0} × R3

+
⋃
R

2
+ × {0} × R+.

Proof:

1. Let us consider the Lyapunov function

V1 =
(

x0 − �1 − �1 ln
x0

�1

)
+ �

2ax

(
x1 − ax

d1
�1

)2

+ y0 + ��

2ay

y2
1 ·

It is easily seen that V1 ≥ 0 and V1 = 0 if and only if x0 = �1, x1 = ax

d1
�1 and y0 = y1 = 0.

Calculating the time derivative of V1 along the positive solutions of model (10), we obtain

V̇1 = −�0(x0 − �1)2 − �(x0 − �1)y1− �d1

ax

(
x1− ax

d1
�1

)2

+
(

� − ay − �
ax

d1
�1

)
y0 − �0y2

0 − �

(
x1 − ax

d1
�1

)
+ y0− ��d2

ay

y2
1

= −T AT ′+
(

� − ay − �
ax

d1
�1

)
y0.

01005-p.12
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The matrix A is positive definite if d1 >
1

4

�ax

�0
and d2 >

1

4�

�ay

�0
. It follows from q < 1 and

d1 ≤ d∗
1 that V̇1 ≤ 0 for all x0, x1, y0, y1 and V̇1 = 0, when x0 = �1, x1 = ax

d1
�1 and y0 = y1 = 0.

Hence La Salle’s theorem [4] implies convergence of the solutions to this equilibrium, for all
initial values not in the set {0} × R3

+. This shows that the disease free equilibrium E1 is globally
asymptotically stable in R4

+/ {0} × R3
+. If the initial data starts from {0} × R3

+, then the solution
obviously converges to the equilibria E0 or E2.

2. Let us consider the Lyapunov function

V2 = x0 + �

2ax

x2
1 +

(
y0 − �2 − �2 ln

y0

�2

)
+ ��

2ay

(
y1 − ay

d2
�2

)2

.

It is easily seen that V2 ≥ 0 and V2 = 0 if and only if x0 = x1 = 0, y0 = �2 and y1 = ay

d2
�2.

Calculating the time derivative of V2 along the positive solutions of model (10), we obtain

V̇2 =
(

� − ax − �
ay

d3
�2

)
x0 − �0x2

0 − �x0

(
y1 − ay

d2
�2

)
− �d1

ax

x2
1

−�0(y0 − �2)2 − �x1(y0 − �2) − ��d2

ay

y2
1

= −T AT ′ +
(

� − ax − �
ay

d2
�2

)
x0.

The matrix A is positive definite if d1 >
1

4

�ax

�0
and d2 >

1

4�

�ay

�0
. It follows from q > � and

d2 ≤ d∗
2 that V̇2 ≤ 0 for all x0, x1, y0, y1 and V̇2 = 0, when x0 = x1 = 0, y0 = �2 and y1 =

ay

d2
�2, hence La Salle’s theorem [4] implies convergence of the solutions to this equilibrium,

for all initial values not in the set R2
+ × {0} × R+. This shows that the disease equilibrium

E2 is globally asymptotically stable in R4
+/R2

+ × {0} × R+. If the initial data starts from
R

2
+ × {0} × R+, then the solution obviously converges to the equilibria E0 or E1.

3. Let us consider the Lyapunov function

V3 =
(

x0 − �3 − �3 ln
x0

�3

)
+ �

2ax

(
x1 − ax

d1
�3

)2

+
(

y0 − �3 − �3 ln
y0

�3

)
+ ��

2ay

(
y1 − ay

d2
�3

)2

·

It is easily seen that V3 ≥ 0 and V3 = 0 if and only if x0 = �3, x1 = ax

d1
�3, y0 = �3 and y1 = ay

d2
�3.

Calculating the time derivative of V3 along the positive solutions of model (10), we obtain

V̇3 = −�0(x0 − �3)2 − �(x0 − �3)

(
y1 − ay

d2
�3

)
− �d1

ax

(
x1 − ax

d1
�3

)2

− �0(y0 − �3)2

−�

(
x1 − ax

d1
�3

)
(y0 − �3) − ��d2

ay

(
y1 − ay

d2
�3

)2

= −T AT ′.

01005-p.13
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The matrix A is positive definite if d1 >
1

4

�ax

�0
and d2 >

1

4�

�ay

�0
. It follows from d1 > d∗

1

and d2 > max(d∗
2 , d◦

2 ) that V̇3 ≤ 0 for all x0, x1, y0, y1 and V̇3 = 0 for x0 = �3, x1 = ax

d1
�3,

y0 = �3 and y1 = ay

d2
�3. Hence La Salle’s theorem [4] implies convergence of the solutions to this

equilibrium, for all initial values not in the set {0} × R3
+

⋃
R

2
+ × {0} × R+. This shows that the

endemic equilibrium E3 is globally asymptotically stable in R4
+/ {0} × R3

+
⋃
R

2
+ × {0} × R+.

If the initial data starts from {0} × R3
+

⋃
R

2
+ × {0} × R+, then the solution obviously converges

to the equilibria E0, E1 or E2. �
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