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1. Introduction

Hematopoiesis is the blood cell formation that occurs mainly in the bone marrow. Although intensively studied for several
decades, many open questions remain unanswered, due not only to the complexity of this process, but also to the fact that
many elements remain impossible to measure experimentally. To contribute to the understanding of this cell development,
some mathematical models have been used: stochastic, discrete or deterministic. The first deterministic models for instance
have been initiated in the late 50’s by Lajtha [1], followed by Burns and Tannock [2]. And lately more complex systems have
been tackled using differential equations or structured partial differential equation describing normal hematopoiesis like
[3-6] or blood cell diseases like cyclical neutropenia [7-10], thrombocytopenia [11,12], or chronic myelogenous leukemia
[13-17]. However all these models, to the best of our knowledge were quite uneasy to use in biological laboratories. It
was legitimate then to arise the following question. Is it possible to choose an other method to describe these processes,
a method that could be complementary to what has been done, easy to use for biologists and giving results that could
allow to estimate some parameters, predict the dynamics of the population, and simulate a blood disease? A multi-agent
model appeared then naturally a good solution to this problem. However, it appeared to us that no multi-agent model
seems to have been studied so far for this kind of problem at the cell population dynamics scale. We propose here then
to introduce such an approach of the problem and we try to show why it could come out to be quite useful to describe
hematopoiesis from a cell population point focusing mainly here to the cell communication process. Before this, in the next
section we shall briefly explain the biological background. Then, in Section 3 we shall introduce the concept of our multi-
agent model and show the simulations that could illustrate (Section 4) different cases of self-renewal properties and cell
differentiation.
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Fig. 1. Scheme of the myeloid lineage formation (red blood cells, platelets and neutrophil cells). A stem cell can divide into either two other stem cells to
renew the initial density in case of blood renewal, or one stem cell and one of the three cell types detailed above.
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Fig. 2. Scheme of stem cell division. A stem cell can divide into either two other stem cells to renew the initial density in case of blood renewal, or one
stem cell and one of the three cell types detailed above. Note that our software is not restricted to this case.

2. Biological background

With an important daily production (the adult body produces each second approximately 2 millions of erythrocytes, 2
millions of thrombocytes and 700,000 of granulocytes), the human bone marrow is quite an active factory where cells can
divide, replicate themselves, differentiate or die. Moreover, if one adds the fact that their lifetime is really different from
a lineage to another (120 days for erythrocytes, about 7 to 10 for thrombocytes, and 6 to 14 h only for granulocytes (the
shortest lifetime of these cell types)) and each lineage is stimulated by different growth factors acting on different stages
of the cell maturity, then one has a good idea of how complex this process is and how difficult to model it can become. So,
before introducing our multi-agent model, let us briefly recall the main features of the hematopoiesis mechanism. As shown
in Fig. 1, three main branches arise from the stem cell compartment giving birth to three blood cell types: the red ones (or
erythrocytes), the white ones (or the neutrophils here) and the platelets (for a better understanding of the paper, we suggest
the reader to download the online version where figures are in color). It is important to note that we take only the myeloid
branch into account, and leave the lymphoid branch on a side for the moment. This branch will be considered later in a
future work. Each myeloid subbranch proceeds through different stages: starting in the stem cell compartment, then going
to the progenitor one, and ending up to the more mature one before being released into the blood stream. It is commonly
believed now that stem cells can self-renew that is give birth either to two identical daughter cells [18] or give an other
stem cell and a differentiated cell like shown in Fig. 2. Furthermore, the daily generation of 200 x 10° red blood cells as well
as stress erythropoiesis [ 19] suggested that self- renewal ability would also appear in the progenitor compartment [19,20]
and probably in other progenitor cell lines (this latter assumption has not been proven yet and remains an open question).
Thus, we shall take this property into account in our multi-agent approach.
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Fig. 3. Example of what could be considered by the software. The yellow disks represent stem cell, red and blue cells direct offspring of the yellow cells,
and light colors their secondary offspring. Yellow (stem) cells are attached to the wall on the left, and all the other cells are pushed away to the right by
division, and released in the blood systems. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

3. The multi-agent model

In order to help the reader to understand the mathematical model behind the software and for clarity, we have put the
mathematical details in the Appendix. It is also important to keep in mind that many changes can be done when choosing
the parameters of the model. For instance, it is possible to give the self-renewal ability to all the cells as well as none of them,
or to change their lifetime, their size, or their density. As shown in Fig. 3 the blood cells are considered as small disks that
move away to the right as pushed by the ones dividing. More mature cells on the right are then released in the blood stream.
A more detailed vision of what the user can see on a computer screen is presented in Fig. 4. One can see on this example that
a window is opened where it is possible to choose the different lineages defined by letters (A0, B1,B2, ..., C1,C2, ... etc.)
corresponding to the cell types and the different maturity levels. Each cell family can have the same color or not, depending
on what one wants to observe. Some obstacles can be added to represent the bone marrow porous structure in a better
way (even if it is still a basic obstacle here and on the way to be improved). Cell size, density, lifetime and the number of
offspring (up to four, knowing that two is usually way enough for a realistic cell division) can be modified easily. All the
details are explained in the manual. In Fig. 4 for instance, which could correspond to the myeloid branch described in Fig. 1,
we simulated the following scheme:

A0 - A0+ B1+4E1+4F1, B1 — B2 + B2 — B3 4 B3 — B4 + B4,
E1— C1+ D1,

Cl1->C24+C2—>C34+C3—>C4+0C4,

D1 — D2 4 D2 — D3 4 D3 — D4 + D4,

F1 —- F2+F2 — F3+F3 — F4+F4.

In other words, yellow cells (A0 here) are considered as stem cells. They are attached to the left boundary. They are self-
renewable, and produce three other cell types, B1, E1, F1. The first step A0 — A0+ B1+E1+F1 corresponds to a simplified
description of the scheme A0 — A0+B1, A0 — AO0+E1, AO — A0O+F1, A0 — A0+AO0. Here, a stem cell gives four daughter
cells at once instead of dividing four times giving only two daughter cells each time. We understand that it is not biologically
realistic to consider such a behavior, but it gives an equivalent qualitative behavior with a simple computing process behind.
However, we believe that it could be quite interesting and useful to introduce stochasticity at the stem division level: a stem
cell could give then an offspring of a different type with a certain probability. This has not been coded yet but will be a part
of our future work. This example is quite simple but has already given good results. It is indeed possible to add some mutant
cells (not shown in the figure), with different properties (a faster proliferating rate, an ability to self-renew wherever it is
located, etc.). These “bad” cells could represent leukemic cells developing in the bone marrow in the context of a chronic
or acute myeloid leukemia. Description of this phenomenon and simulations with our multi-agent software can be found
in[21].

Our objective in the next section is not to go further in leukemia simulations and the impact of malignant cells in the
bone marrow as presented in [21], but rather the effects of a possible cell “communication” that could occur thanks to some
molecule exchanges between cells. We propose here to give a good insight of this new application as well as some possible
biological interpretations of the results that we believe are going to be quite useful for the biologists: such as the role of
the cell cycle duration (fixed or not), the cell size, and molecule exchange parameters between a cell and its neighbors. We
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Fig. 4. Example of normal hematopoiesis modeling. Yellow (stem) cells also called AO can give birth to an other yellow stem cell, or one of the 3 cells (B1,
E1, F1), being the origin of the 3 branches (red cells (red), white cells (blue) and platelets (green), respectively). E1 cells can give two sub-branches (which
can be possible in the myeloid branch, when white cells split into neutrophil, basophil, and the eosinophil branches). These cells differentiate, die or leave
the bone marrow with a certain rate. It is possible in this figure to see that the most mature cells (light colors) are on the right side of the screen. They
correspond to the cells leaving the bone marrow as expected. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

shall see, that it is possible to obtain a cell population behavior close to what is observed in the case of acute myelogenous
leukemia without introducing any malignant cells.

4. Cell communication
4.1. Hypotheses behind the software

It is well known now that hematopoiesis is ruled by a complex system of external and internal feedbacks most of the
time by hormone stimulations [22]. It is also believed that blood cells in the bone marrow produce some bio-chemical
molecules called growth factors that can influence their dynamics and more specifically the differentiation choices for
undifferentiated cells. Moreover, it is commonly and adopted idea now that lineage specification which is the process of
controlling differentiation of the different lineages is regulated by a system of interacting transcription factors. For instance,
in primary erythroblasts, the concentrations of ERK and FAS molecules determine the passage to self-renewal, differentiation
or apoptosis process of these cells through an activation cascade and cell to cell molecular exchanges [23]. But the way this
system is ruled remains not completely elucidated. Some attempts to mathematically describe this process have been done
by Roeder et al. in [24] for two transcription factors. Furthermore, Huang et al. [25] managed to create a model able to capture
some fundamental features of binary cell fate decisions “uniting the concepts of stochastic (selective) and deterministic
(instructive) regulation”. Our approach here follows this stream of trying to simulate the lineage specification not only
between two sub-populations, but also in the frame of as many populations as decided by the user of our software. Our
objective for now is not to proceed to a complex analysis as shown in [24,25] but to be able to observe some simulations
that could give some biologically realistic results - in a qualitative way for the moment, since we are still in the process of
gathering experimental data from different laboratories — with our simple multi-agent model. Then, to investigate which
parameters could get involved at a population level first and not at a molecular level. For the moment, let us keep in mind
as said by Glauche et al. in [26] that lineage specification is “a competition process between different interacting lineages
propensities”.

In order to introduce the problem as clearly as possible, let us consider then the simplest scheme,

A— A+ B, A—A+C.

It is possible to complicate this process, but we refer the user to the manual for more complex cases. Here, we specify
which A-cells choose the first path, that is the B-type, and which ones the second, that is the C-type. Three cell types are
considered here then: undifferentiated white cells and differentiated red or blue cells (see Fig. 5). Each cell is characterized
by two parameters, f and g such that the ith cell is associated with the functions f;(t) and g;(t), this could refer for instance
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Fig. 5. Illustration of the cell communication modeling. Each cell “i” (i = 1 to 5 here) at a time t is characterized by two parameters, f;(t) and g;(t). Under
specific conditions the neighboring cells can influence the undifferentiated (white) ones. And the influence of the neighbors depends on the numbers of
each cell type around. Here, there are more blue than red cells surrounding the white cell, and thus, this latter will differentiate into a blue one. After a
certain time, the software stops the simulation, it does not count the number of cells inside the domain. But only cell types (f and g) leaving it, then it
plots their distribution in the f-g plane. The functions P and Q are defined below in this section, and a is a constant parameter set up by the user. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

to the amount of two types of molecules as said before. Let us assume that when a new cell appears, it is undifferentiated
i.e. white, and we put for it f = fy, g = go, that is the initial amount of molecules in a cell. Time evolution of the functions f;
and g; for an undifferentiated cell is given by the equations

i _ ok f a8 _ o
E—a(ﬁ 1), dt—a(Gz g), (1)

where a is a constant, and the F;, G;'s satisfy either

Fi:Zf}'/N» Gi:Zgj/N»

J# J#
and the sum is taken over the N closest neighbors (which is defined in the computer code) or

F; = maxf;, G; = maxg;,
=7 5 = A

alsoin the neighborhood of the ith cell. Eq. (1) has the following biological meaning: each cell sends out or loses the molecules
f and g with the rate proportional to their concentration. It also receives the ones coming from the neighboring cells with
the rate proportional to their concentrations inside the neighboring cells. A white cell remains undifferentiated while

26 +g7() <o,

where o is a given parameter, set up by the user. In other words, when the concentrations of f and g become sufficiently
high, the cell chooses its type. If f is greater than g at this moment, then it becomes red, otherwise blue (with the color code
chosen here).
Once the differentiation occurs and the cell chooses its type, further evolution of f and g becomes different. For red cells
dfi

1 —PUig). & =g = constant,

for blue cells

dg:
d;gtl =Q(fi. &), fi=f" = constant,

where f* and g are the values of f and g at the moment of the cell differentiation. After differentiation, the value of f in
red cells increases, the value of g remains constant; for blue cells g increases, f remains constant which gives the specific
shape of the f-g plot with a blank square left in the upper left part for each simulations as shown in Fig. 6. Three main
cell population dynamics properties can be described with this single plot: cell generations, differentiation ability and cell
maturity. If one observes the plot of Fig. 6, cell generations are described by the “circular stripes” where cells agglomerate
and the number of “stripes” appearing in the simulations depends on the ratio of the proliferation time between the stem
cells and its first daughters, as explained in the next section. Cell differentiation corresponds to the choice of the “blue or
red” compartment. That is the cells have clearly decided their type. On the other hand, when a cell remains in the positive
part of the disk of radius o it means that when leaving the bone marrow, it is still undifferentiated. Then, the more dense
this part is, the more undifferentiated a cell population is which could correspond to a pathological case like acute leukemia.
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Fig. 6. Cell position in the f-g plane. A white cell remains undifferentiated while fl.2 (t) + gi2 (t) < o (inside the disk), where o is a given parameter
and though the quantity of molecules varies depending on the neighbor cells. f and g vary all the time. However, if the concentrations of f and g
become sufficiently high (greater than o), the cell chooses its type. If f is greater than g at this moment, then it becomes red, otherwise blue (with
the color code chosen here). Once the differentiation occurs and the cell chooses its type, further evolution of f and g becomes different. For red cells
dfi/dt = P(f;, &), & = g = constant, for blue cells dg;/dt = Q(f;, &), fi = f;* = constant. After differentiation, the value of f in red cells increases, the
value of g remains constant; for blue cells g increases, f remains constant which gives the specific shape of the f — g. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Biologically speaking, this color coding mechanism would mean that the cell produces bio-chemical substances according
to its type only after having reached a certain threshold. We consider quadratic functions P and Q :

P(f,g) = ai + aof + asf> + asfg +asg,  Q(f,g) = by + byg + bsg? + bafg + bsf,

where g; and b;, i = 1...5 are some constants defined by the users. This functions are chosen to be quadratic functions
arbitrarily for the sake of simplicity. But, it can be changed anytime by the user. In the next section, we give the results of
several simulations showing different kinds of blood cell population behaviors. These behaviors depend on the different
parameters chosen in our software set ups, and they could explain the situations in which cell differentiation, self-renewal
property, or disease-like patterns occur.

4.2. Illustrations of cell communications

We want to describe in this part three main aspects involved in the cell dynamics during hematopoiesis: the influence of
differentiation, the cell generations and cell maturity. These three aspects obviously linked in the sense that if cells “decide”
to differentiate or to self-renew the maturity of the offspring will not be the same. This would imply different cell generation
profiles and could correspond to either normal hematopoiesis, or a response of the bone marrow due to a severe anemia for
instance. Let us have a good insight first of how the software interface carries out the computations on the screen. As said in
the previous sections, stem cells (undifferentiated) are attached to the left boundary of our domain. These cells produce other
undifferentiated white cells with initial values f = fy, g = go. When the whole domain is filled with undifferentiated cells,
the simulation is stopped. Then, each cell is being prescribed one of the two types, red or blue (with some given values f and
g) in a random way. And the simulation starts again. New formed undifferentiated cells now surrounded by differentiated
cells are committed to choose their type under the mathematical laws explained in the previous section. This is how, one can
observe that after a certain time, some regions filled by red and blue cells begin to appear showing some layered structures
that can move, appear or disappear depending on the parameters chosen. Indeed, since the initial distribution is random,
two different simulations with the same values of parameters can give different results. In some cases, only one of two cell
types remains, and another disappears completely (not shown here).

What is the role of each parameters and functions involved here? We briefly summarize them in the following. As said
before, each cell is characterized by two functions f; and g; that determine its type and its color. We denote by 7; the moment
of time when the ith cell leaves the computational domain (that is the bone marrow for us). Then the software plots the
point (fi(t;), gi(7;)) in the (f, g)-plane. If this is done for each cell that leaves the domain, then one can characterize the cell
population profiles that reach the blood stream. Let us give some examples representing the main features of our individual
based modeling of cell differentiation. In Fig. 7, it is possible to see the explanations of all the parameters involved in our
simulations. We grouped them into three windows. In window 1, it is possible to modify the choice of the lineage, the
proliferation time (exact or not), the area of the domain and the initial amount f; and g, of molecules given to a new born
cell. In window 2, changes can be done for the g; and b; parameters,i = 1. .. 5, the choice of the influence of the neighboring
cells (mean or max) and the parameter o. In window 3, the content of each cell leaving the bone marrow is plotted on the
f-g plane. In the example of Fig. 7 no self-renewal has been suggested (except for the stem cells A0 with a proliferating
time shorter than the other cells). Thus, almost no undifferentiated cells are plot in window 3. Moreover, the “clustering”
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Fig. 8. In this simulation, the only change from Fig. 7 occurs in window 1 and more precisely in the +/— time column. That is the proliferation time is not
exact but distributed. In the plot on the f-g plane one can observe then a less structured differentiated cell distribution.

waves appearing in window 3 suggest the existence of three main cell generations corresponding to the “maturity” level of
cell cohorts. This can be seen on the bone marrow simulations with three different levels of color tones (light red or blue,
medium and dark). And as explained in the previous section it corresponds to the ratio between the cell proliferation time
of stem cells and its direct cell daughters’ one, this can be seen in the Window 1, (1.2), first column. In Fig. 7 for instance,
the proliferation time for stem cells is set up to be 10 and the daughters’ one is 40, the ratio is then 4, which gives then 4
“stripes”. On the other hand if we change the +/— time column in window 1 as shown in Fig. 8, in other words, if we set a
random choice in the proliferation time interval then one can see that the cell count on the plot of the f-g plane is not as
well separated as in Fig. 7. That is, the three cohorts are not as clear as previously due to the fact that the proliferation time
is distributed while it is exact in Fig. 7, window 1, (1.2), second column.

4.2.1. Influence of the cell lineage and proliferation time

Now, let us change the cell lineage in comparison with Fig. 7. That is, we assume that C2, E2 and F2 cells do not
differentiate anymore. Then cell generations are more distinct as seen in Fig. 9 depending on their maturity level. This
could correspond to a simplified version of a non pathological case of hematopoiesis, even if a small amount of immature
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Fig. 9. In this simulation, the only changes from Fig. 7 occur in window 1 where the cell lineages have been modified (no offspring for C2, E2 and F2 cell
generations. In the plot on the f-g plane one can observe then a well defined structure of all the cell generations depending on their maturity level as well
as their differentiation profile. This could correspond to an non pathological case.
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Fig. 10. Changes in cell proliferation time in comparison with Fig. 9 give a simulation where almost no cells are undifferentiated and cell generations are
well separated.

cells can be found in the blood system. This “problem” can be improved if we change the cell proliferation time (window
1, column “time of proliferation” (1.2) in Fig. 7) see Fig. 10. It is possible then to see that almost all cells leaving the bone
marrow are differentiated, the colonies are well defined and mature enough. This last simulation allows us to believe that
the proliferation time plays a non negligible role in the blood cell formation process. This is consistent with the mathematical
studies cited in the introduction. This effect can be enhanced if we change also the stem cell compartment proliferation time
(15 for stem cells, instead of 10) (see Fig. 11). This can be explained as follows. In normal hematopoiesis, a cell having more
time to mature - or in other words to build its material — will leave the bone marrow in better conditions than a group of cells
having less time to mature. For instance, in case of severe anemia, cell proliferation is accelerated (due to the combination
of self-renewal process of progenitors), apoptosis rate decreased by the stimulating hormones (like erythropoietin (EPO)
for the erythrocyte lineage). The system needs to produce more cells than usual in a very short time. Then cells have a
shorter time to mature, and more immature cells are released then in the blood stream. Giving a distributed time for the
cell proliferation duration instead of a clearly defined time exhibits the same behavior with more blurry zones. On the other
hand, cell differentiation seems more important that is the clusters of cells in the edge of the f and g zones are much more
populated than the center of positive quadrant (see Fig. 12).
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Fig. 11. Changes in stem cell proliferation time in comparison with Fig. 10 give no undifferentiated cells at all leaving the bone marrow, which can be
considered as an ideal case of normal hematopoiesis.
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Fig. 12. Changes in stem cell proliferation time distribution in comparison with Fig. 10 gives the same behavior but cells are more spread out giving blurry
zones when all the generation limits were obvious in Fig. 10.

4.2.2. Influence of the cell size

Up to this point, all the cells have been considered with the same size which may not be realistic since it is commonly
known now that cell size decreases throughout the differentiation processes. Thus, it appeared natural to us to take this
phenomenon into account. If we come back to the simulation of Fig. 7 and change the cell radius of the second generations
(see window 1, (1.3)). Then, as shown in Fig. 13, the cell dynamics is quite different, cell generations are separated, no
undifferentiated leave the bone marrow, and cell differentiation is really clear. This can be explained by the fact that because
of their smaller size, more mature cells stay longer in the bone marrow than the ones in Fig. 7. Thus they mature by gaining
more differentiation components (f or g and the colonies become more distinct).

4.2.3. Influence of the cell communication parameters combined with self-renewal process

Let us consider now that cell lineage has the ability to self-renew. This process can occur under an important cell loss
or a severe anemia [27]. As the amount of cells in the blood stream drops dangerously, hematopoiesis in the bone marrow
is strongly stimulated. This stimulation is mainly brought by erythropoietin but also by glucocorticoids at the origin of the
self-renewal process of progenitor cells [28,29]. Then, what can be expected is an increase of undifferentiated cells since cells
are encouraged to proliferate as fast as they can to provide an important population in the blood stream in a very short time.
Thus, in our software, this could be simulated by the combination at the same time of the self- renewal of one lineage (this
could be erythrocytes here), and some changes in cell communication parameters (corresponding to window 3 in Fig. 7).
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Fig. 13. Changes in cell radius in order to get smaller size as maturity increases gives clear and definite compartment of cell generations in comparison
with Fig. 7.
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Fig. 14. Adding self-renewal ability (C2 lineage is able to give two C2-type cells) leads to a nice illustration of what could occur in case of severe bleeding
or anemia, and action of the glucocorticoids on cell differentiation.

That is, a cell would communicate more to help the differentiation and cell production to increase. This process is shown in
Fig. 14.

5. Conclusion

In this paper we have tried to show the different abilities of our multi-agent software in the domain of cell
communication. We managed to explain with a simple model how cell lineage specification is possible to appear between
different branches depending on a limited number of parameters: cell proliferation time, cell size and ability for a cell to
self-renew or not. Of course, we are perfectly aware that our approach here is very simple and we are convinced that the
biological mechanism behind is way more complicated and the role of each parameter being well understood now in our
model will help us a lot. However, the first results that we are able to come up with are quite interesting and they can bring
a step forward to our collaboration with experimental biologists. Our next objectives are first to compare our results with
experimental data. It is indeed possible with our software not only to plot each cell leaving the bone marrow as shown
throughout the paper, but also to get a time series of the evolution of a cell lineage so that a qualitative behavior can be
observed and a quantitative result can be analyzed. This has been presented in [21]. Our second objective is to work on
the next version of the multi-agent software to try to get a little closer to reality by introducing stochastic decisions in the
stem cell differentiation process as well as in some lineage levels and some realistic experimental data. We believe that
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our software could appear to be a good tool for biologists in their laboratory to get a good insight of how a cell population
could behave under administration of some drugs, some malignant cells or other important stress. They could compare it
then with in vivo experiments, and some parameter estimations could come out of their analysis, which for the moment is
a challenge for everyone.

Appendix. The model behind the software

Each cell is considered as a disk in the plane. Cells of different types are shown with different colors (Fig. 3). A cell behavior
is characterized by its interactions with other cells, its proliferation, differentiation and apoptosis properties. All this is
explained below.

1. Mechanical interaction. Interaction of two neighboring cells is determined by the interaction potential. The sum of
forces acting on each cell from other cells determines the cell motion according to Newton’s law with a possible damping
because of the friction with other cells. Thus, we use an approach similar to molecular dynamics simulations even though
the potential is different. We have

1
X,{/—EX;-F EZfU =0,
i#j

where x; is the coordinate of the center of the ith cell, m is its mass, € is the damping coefficient, f; is the force acting between
the cells i and j. We put

fi = —o(xi — xi0),

where the function ¢(r, t) equals zero for r > r; 4 rj and it goes to infinity as r decreases. Here r; and r; are the radii of
the cells i and j, respectively (which can depend on time). Thus, two cells push each other when the distance between their
centers is less than the sum of their radii.

2. Chemical interaction. Cells can produce bio-chemical compounds called growth factors. They can influence behavior of
other cells: apoptosis [22] and possibly differentiation though this still unclear from the biological point of view. We shall
carry out cell modeling taking chemical interactions into account. These interactions are discussed below.

3. Cell properties. There can be different cell types in the model. For each type, the user prescribes its behavior, namely,
its lifetime and the type of its offspring in the case of proliferation or differentiation. Let us denote for instance the cell types
by A, B, C here. For each of them a specific lifetime Ty, T, Tc is, respectively, prescribed. Actually, it is interesting to note
that each lifetime is not prescribed exactly but with a random interval around its average value. For example, for cells of the
type Aitis [Ty — 4, Ts + 4] With an equal probability inside this interval. When the lifetime of a given cell is over, three
possibilities are offered to it:

1. it dies, that is the corresponding circle is removed from the computational domain (gradually in time, as shown in Fig. 3
(‘apoptosis’ arrow)),

2. it differentiates, that is the cell type is changed to another one without changing cell position (it is represented here by
a color change)

3. it proliferates, that is the cell is replaced by two other cells. The types of new cells are prescribed by the user. The mother
cell grows before dividing, the area of the corresponding circle equals the sum of areas of new circles after the division
(this is shown in Fig. 3 (‘stem cell about to divide’ arrow)).

Because the aim of our software was initially to simulate hematopoietic cells in the bone marrow, the example we
introduce below corresponds to blood cell proliferation. It is given in the table of Fig. 4. The user of the software can feel free
to change these conditions depending on what is investigated.

The software allows the introduction up to four daughter cells after one division, for example,

A— A+B+C+D, @)

where A could represent the stem cell, B, C, D the three different lineages (erythrocytes, leukocytes and platelets). Though
the cases with three or four cells are not realistic from a biological point of view, it can be convenient for the modeling. We
are currently working on a new version of the software where stochasticity occur at the first division of a stem cell. There
would be a different probability for this cell to give birth to two stem cells, or either one stem cell and in particular, the last
example can be considered as an approximation of the scheme

A—>A+B, A— C+D. (3)

The scheme (3) implies the introduction of probabilities for each of the two divisions,A —- A+ Band A — C + D. However,
in this work we do not introduce stochastic cell division (it will be considered in the subsequent work).
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