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1. Introduction 
The objective of this chapter is to give an insight of the mathematical modelling of 
hematopoiesis using multi-agent systems. Several questions may arise then: what is 
hematopoiesis and why is it interesting to study this problem from a mathematical point of 
view? Has the multi-agent system approach been the only attempt done until now? What 
does it bring more than other techniques? What were the results obtained? What is there left 
to do? 
We hope that the following will give the reader all the answers to these questions. And even 
more, we would be delighted if after reading it, you would like to know more on this subject 
and try to work on it to contribute to the understanding of this complex field. 
Let us start with the biological background in order to get a clear idea of the problem behind 
the model. 

1.1 Hematopoiesis: what is it? 
Hematopoiesis (from the ancient Greek meaning to make ( ) blood ( )) is the 
scientific name used to describe the blood cell formation.  

1.2 Where does it occur?  
It appears in the yolk sac or blood islands during early embryogenesis. Then, with the 
development of the individual, it reaches the spleen, liver and lymph nodes to eventually 
settle down in the medulla, also known as bone marrow once this latter has been completely 
formed. This process takes place in the femur, tibia or any other long bones for children to 
finally moves to the pelvis, cranium, vertebrae and sternum in the adult bodies. 

1.3 How does it work? 
There are two main branches in hematopoiesis: myeloid and lymphoid (see Fig. 1). These 
two branches originate from the same cell type: the hematopoietic stem cells (HSC). The 
lymphoid branch gives birth to the T and B cells, antibodies and memory cells. Maturation, 
activation and some of proliferation of these latter are developed mostly into secondary 
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lymphoid organs such as the spleen, thymus and lymph nodes. This is the reason why we 
shall not be focused on this branch. We might mention it from time to time though during 
this chapter when we would like to describe hematopoiesis in its whole. 
Consequently, our main attention will be given to the myeloid branch. Three blood cell 
types arise from this branch through three cell lineages: red blood cells (erythrocytes), white 
blood cells and platelets (megakaryocytes) (see Fig. 1). Their daily production is fairly high: 
each second for instance, the body produces 2 millions of erythrocytes, also 2 millions of 
platelets and 700,000 granulocytes. Their lifetime differs from one type to another (120 days 
for erythrocytes, about 7 to 10 for the thrombocytes, and 6 to 14 hours only for the 
granulocytes (the shortest lifetime of these cell types). 
 

 
Fig. 1. Illustration of hematopoiesis: all blood cells originate from the stem cell compartment 
on the left and are released in the blood stream on the right. The lymphoid branch, on top, 
releases T and B-lymphocytes. The myeloid branch consists of the red lineage (bottom), 
white lineage in blue and platelets in green.  

1.4 The myeloid branch: an insight 
Let us have a closer look at the myeloid branch. But before doing this, it seems important to 
remind that all cells in each lineage originate from the HSC. These particular cells are able to 
self-renew. Their lifetime and number are still unknown, even if some attempts were done 
to predict their number in the body (Dingli et al., 2007a, b). Besides self-renewing, each stem 
cell can differentiate to a more mature cell, also called progenitor cells or it can die by 
apoptosis (natural cell death). HSC when differentiating give birth to early progenitor cells, 
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too immature to belong to the myeloid or lymphoid branch. It might indeed be possible for 
them to move from one lineage to another one with no major difficulty. It is also possible for 
progenitor cells to self-renew under specific circumstances such as anemia, blood 
transfusion or any case of strong stress related to a loss of blood (see section 3.1.3). In normal 
cases progenitor cells are more incline to differentiate or die. It is only after few divisions 
that a cell reaches one of the three specific lineages and should not change its fate. These 
lineages are: 
-the red blood cell lineage: progenitors are called CFU-B and CFU-E (where CFU stands for 
Colony Forming Units), their maturation evolves  through different stages of precursor cells 
called erythroblast to finally become reticulocytes and eventually reach the blood stream 
under the form of erythrocytes, ready to transport oxygen. 
-the megakaryocytic lineage: progenitors are called CFU-Me, and after having differentiated 
into megakaryoblasts, they become mature megakaryocytes. These cell types are really large 
(about 40 to 100 µm when the other blood cell sizes range between 1.5 to 24 µm). The 
megakaryocytes then split into hundreds of parts and give birth to platelets ready to reach 
the blood stream. 
It is interesting to note that in the early stage of development, the young erythrocytes and 
megakaryocytes have a common root, the bipotential primitive megakaryocyte-erythroid 
precursor (MEP), located right after the stem cell compartment and right before the CFU-B 
and CFU-Me branches. 
-the white blood cell lineage: the progenitors are located into three subgroups, CFU-GM 
(that gives also two other subgroups the CFU-M and CFU-G), CFU-Ma and CFU-Eo, who, 
after several differentiations and having proceeded through different stages (the "blast" 
precursors ones), respectively give birth to four white cell types: the macrophages, 
neutrophils, basophils and eosinophils, all of them ready to protect our body. 

1.5 How do these processes regulate? 
This is one of the key and challenging questions of this chapter. It is well known now that 
each lineage has at least one hormone regulating each lineage production. Indeed, several 
regulation factors are involved in the blood system to keep it in homeostasis. These controls 
are quite complex and many molecules and kinetic cascades are required. In this paragraph 
we describe only the main stimulating factor corresponding to each lineage. We refer the 
reader to more biologically detailed publications to get a better idea of all the chemical 
reactions and feedbacks implicated. 
For the red blood cell lineage, this stimulating hormone is called erythropoietin (EPO). 
When produced in high quantity by the kidneys, it prevents the erythrocyte population 
from being lost by apoptosis. A large quantity of progenitor and precursor cells can then 
differentiate and a large quantity of erythrocytes would rapidly reach the blood stream. This 
happens in cases of important blood loss, anemia or any other stress erythropoiesis.  
For platelets, the regulating factor is called thrombopoietin (TPO) and seems to target the 
differentiation of megakaryocytic.  It is produced in the liver.  
For the white cell population, the hormone is called granulocyte colony-stimulating factor 
(G-CSF). This molecule seems to stimulate survival, proliferation and maturation of the 
white cell progenitors and precursors. It is mainly produced by endothelium and 
macrophages and is overproduced in case of pathologies like neutropenia. See Fig. 2 for an 
overview of these different stimulating factors in the myeloid branch. 
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Fig. 2. Illustration of the differentiation pathways in the myeloid giving a representation of 
control of the platelet (in green), red blood cell (in red) and granulocyte or monocyte (G/M) 
(including neutrophils, basophils and eosinophils) production (in blue). The control loops, 
respectively mediated by thrombopoietin (TPO), erythropoietin (EPO) and the granulocyte 
colony stimulating factors (G-CSF) are indicated. 

2. Objective of the chapter: what is the problem about?  
Even if the regulating hormones presented in the previous paragraph are widely 
investigated in the biologist community, several questions and important issues remain 
open: how, for instance does thrombopoietin exactly act on the megakaryocytic lineage? 
Does it act on the apoptosis rate also, like EPO on erythrocytes or does it act only on the 
differentiation rate? What about G-CSF? Moreover, is spatial distribution of the cell in the 
bone marrow important or not in homeostasis? Do cells communicate between each other? 
If yes, how do they proceed? How do some diseases spread in the blood system, while some 
others do not? Is it possible for anyone to develop leukemia without knowing it, and to 
recover without any cure? How do stem cells and progenitor cells choose their lineage? Is 
this due to the environment of the cell, that is some external information or does it come 
from some stochasticity, some random noise inside the cell itself that leads its decision to 
prefer one lineage rather than another one?  
Some of these questions have been tackled for almost 50 years now from a mathematical 
point of view, with different models and techniques. Some researchers used non linear 
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partial differential equations with delay or not, some studied several systems of ordinary 
differential equations, linear or not, stochastic differential equations, etc. However, among 
all the existing models, and to the best of our knowledge, very few attempts were made to 
take the bone marrow structure and cell interaction into account.  
The objective of this chapter is to try to answer some of the previous questions by the use of 
multi-agent systems and taking the bone marrow structure and space competition between 
cells into consideration. Before this, it seems necessary to justify the reason why the 
approach of the problem with the use of multi-agent system would be a good technique in 
comparison with other models. This is the reason why, in the next section we set up the state 
of the art, reminding some of the previous models and results obtained in the past decades. 
Then, we introduce different multi-agent approaches used to model hematopoiesis. In 
section 4, we give some of our contributions to this field and eventually conclude with what 
we believe was successful, what needs to be improved and the work planned for future 
investigations. 

3. State of the art: different approach to model hematopoiesis 
3.1 Deterministic models:  
3.1.1 The first models 
Deterministic models are considered to be the first models describing cell cycle. In 1959, Lajtah 
et al. were the first to introduce a cell cycle model with a resting phase. Then, in the early 
1970's, Burns and Tannock (1970) as well as Smith and Martin (1973) carried on Lajtah's work 
using a two phase model: the proliferating phase and the resting phase. This study was then 
generalized by Mackey in the late 1970's and applied to the study of hematopoietic stem cell. 
All these models consist in systems of ordinary differential equations, linear or not. In 1976, 
Wazewska-Czyzewska and Lasota (1976) proposed a similar model but they introduced a 
discrete model and applied it to erythrocyte production.  

3.1.2 Development of the models: going to more realistic and complex models 
Each model afterward was more or less built from the first ones, with significant 
improvement, adding nonlinearity, delay. Several systems of partial differential equations 
arose then from that time; some were structured in age, size or maturity, sometimes two of 
them at the same time, sometimes with discrete delays, other times with distributed delays. 
They have been used to describe different parts of hematopoiesis: it could have been the 
stem cell compartment only, the red blood cell lineage, the myeloid lineage, with feedback 
or not regulating the production. The objective of each model was to understand the 
possible dysfunction of the system leading to diseases like anemia, leukemia, neutropenia or 
thrombocytopenia. Some of these diseases are chronic (this will be developed below) and 
oscillations of the size of cell populations could occur: this is the case for chronic 
myelogenous leukemia, cyclic neutropenia or cyclic thrombocytopenia. Incorporating one or 
several feedback loops on one or more lineages in the model was then necessary to simulate 
a possible regulation of the blood cell in the bone marrow.  

3.1.3 Some success stories 
All these deterministic models combined with the study of the influence of different 
parameters allowed the authors of these researches to obtain accurate results and even 
predictions in rather good agreement with the experiments. 
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It has been proven for instance by Crauste et al. (2008) that EPO was not the only growth 
factor involved in the recovery of red blood cell homeostasis in case of stress erythropoiesis 
(anemia, important blood loss, blood transfusion, etc.). It was indeed shown mathematically 
that some glucocorticoids were necessary to explain the rapid recovery of normal red blood 
cell levels in mice suffering from severe loss of erythrocytes. It is indeed believed that 
glucocorticoids encourage progenitor cells to self-renew which does not happen or rarely in 
non pathological cases. In the same paper, the authors predicted also the fact that after such 
a pathological event, new born cells, too rapidly put in the blood stream were too weak to 
get a longer lifetime than usual. Consequently, the death rate of such cells was shown to be 
higher than the average normal erythrocytes. 
Another prediction was made in a cyclic neutropenia model (Colijn et al., 2005a, b). The 
authors forecast that the G-CSF treatment (stimulating factor for the white cell lineage) 
would decrease the rate of apoptosis among neutrophil precursors back to normal levels 
while the differentiation rates for the neutrophil lineage would rise. It has also been 
assumed that apoptosis rate of the proliferating stem cells should be amplified for treated 
cyclical neutropenia (CN). Foley et al.  in 2006 and Colijn et al. in 2005 (a, b) suggested then 
that it would be possible to get the same therapy effect with less G-CSF as usually used by 
changing the timing and duration of the treatment. This was obtained by combining the 
existing models on hematopoiesis with a model of G-CSF pharmacokinetics and changing 
the time interval between treatments and taking the time in the cycle into account.  
Other approaches allowed nice discoveries: it was, for instance, possible to explain how 
such a short cycle of about 24 to 48 hours for blood cells could induce the oscillations of 
about 40 up to 80 days in the whole blood system in case of chronic myelogenous leukemia 
(CML). This work has been investigated by Pujo-Menjouet et al. (2005) and Adimy et al. 
(2007). The authors used different deterministic models and found two groups of 
parameters able to change either the period of the oscillations or their amplitude. These two 
groups were:  
- the parameters involved in cell loss (apoptosis and differentiation) able to change the 

periods of the population dynamics, and 
- the parameters involved in the cell cycle regulation (duration of the proliferating phase, 

and reentry rate of the resting cells into proliferation) able to change the amplitude of 
the cell population.  

Many other results were achieved with deterministic models and one of the latest models 
try to include treatment strategies using not only the stimulating factors such as EPO or G-
CSF as mentioned above but also some drug associated to chemotherapy such as Imatinib to 
treat certain types of leukemia (Michor et al. (2007a, b)). 
However, it seems important to note that something quite relevant is missing in all the 
models cited in this section. Not a single model here takes the bone structure into account. 
Moreover, there are three big issues that should be incorporated in the studies: how to cell 
communicate between each other and get the information from the environment? How do 
they decide which lineage should be chosen when they are still immature enough to decide 
and be able to change from one branch to another one (like the MEP presented in section 
1.4)? Finally, what could be said about the niches (places seeded by stem cells to give birth 
to different colonies of all blood cell types)? Is the number of cells in this niche large enough 
to consider continuous deterministic models, or is it possible to describe these niches with 
other discrete and stochastic models taking space competition into account?  
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The last question would be answered yes. Under the assumption that a study is mainly 
focused on very few niches at the same time in a tiny part of the medulla; a discrete and 
stochastic approach would make sense.  
This is what is developed in the next paragraph. 

3.2 A different approach: the multi-agent models 
Before the introduction of the multi-agent models, it appears necessary to have an insight of 
what has been done in term of stochastic models. They have been used to describe the 
mechanism of cell proliferation determined with a certain probability, and not by previous 
deterministic mechanisms. It is also important to remind one of the rare existing models 
with reaction diffusion taking the spatial structure of the bone marrow into account. This 
will help to justify the use of our software based on the multi-agent systems taking the 
medulla structure into account. 

3.2.1 Stochastic models 
In every deterministic model, any cell fate such as differentiation, apoptosis or self-renewal 
is predicted by specific processes well defined, like a good engine that self-regulates. In case 
of deregulation, the whole mechanism reacts and tries to reach back its non pathological 
equilibrium, also called homeostasis. Sometimes things do not occur in this way, and other 
equilibria can be reached, changing the population fate and subsequently the whole system. 
However, in vivo, the cell decisions may not originate from well determined laws, and the 
parameters involved in the problem can exhibit great sensitivities to tiny changes. These 
small variations could appear in the inside of the cell (intrinsic) as well as its external 
environment (extrinsic). This problem has been investigated in the study of stem cells in the 
late 1990's and year 2000's with the work of Abkowitz (1996, 2000), Dingli, (2006, 2007a, b), 
Newton (1995), Roeder and Loeffler (2002, 2006b). The authors used discrete models where 
decisions ruling the cell future could be made following stochastic processes. 
Some studies have shown the high sensitivity of stability of the HSC system to perturbation 
and death rates but not to proliferation rates (Lei and Mackey, 2007). The influence of 
extrinsic fluctuation has been modelled by Gillespie (1992) and Shahrezael (2008). 
Concerning the intrinsic perturbation, the influence of intern information and variation 
inside the cell nucleus leading to a drastic change of its fate is still in discussion amongst 
biologists. It is currently being investigated by mathematicians who would like to 
understand the influence of these changes to the lineage choice of a progenitor cells due to 
the different changes occurring randomly in the nucleus (variation during transcription of a 
gene, translation or mRNA, etc.). Sensitivity to such modifications would decrease as cells 
increase their maturity. In other words, it would be more difficult for a precursor cell to 
change its lineage, while, an immature cell, let say a MEP progenitor could be easily 
influenced to become either a megakaryocyte or an erythrocyte. This decision could occur as 
explained above at the molecular level, when stochasticity would have a greater influence. 
Thus multi-scale models would be necessary. This has been already proposed by Crauste et 
al. in 2010. 
All these works are of great interest, but still, one important thing is missing in the models: 
space. Consequently, cell competition for space, their communication depending on their 
position, and of course the bone marrow structure should be taken into account. However, 
one deterministic approach exists and is briefly explained in the next paragraph. 
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3.2.2 Spatial models 
In 2005, Bessonov et al. proposed a spatial model in order to describe the influence of the 
medullar stroma. Indeed, in these compact areas, spatial position and competition are 
important. This is even more a crucial matter in case for instance of acute leukemia. When 
this pathology develops in the bone marrow, immature cells, mostly white cells, overtake 
the space dedicated to more mature cells. These latter are pushed out from the marrow 
directly to the blood stream without completing their maturation process. The whole system 
is rapidly invaded by immature cells unable to satisfy the function requested. Furthermore, 
they stop the development of cells from other lineages which causes anemia due to a lack of 
erythrocytes and hemorrhages because of a lack of platelets. The approach introduced by 
Bessonov et al. in 2005 consists in a simplified continuous model describing cell movement 
in the stroma. It is built with reaction-diffusion systems of partial differential equations with 
convection. The role of cell diffusion was used to illustrate a random motion in the stroma, 
mechanical pressure between cells was set up explain the space competition in the marrow 
and Darcy law in porous medium allowed the authors to simulate the medullar stroma. 
Existence of a diffusion threshold for leukemic cells was proven, below which the healthy 
state loses its stability and let the leukemic cells overtake the system. Their simulations 
showed also the action of chemotherapy on the proliferation velocity of the cells. 

3.2.3 Multi-agent models: a compromise  
There exist two ways to combine spatial models with stochasticity. One way could be to 
include some stochasticity in the continuous reaction-diffusion system of partial differential 
equations. The second way would be to consider discrete multi-agent models. To the best of 
our knowledge, the first way has not been tackled yet. This is the reason why we focus our 
attention here on the second approach: the multi-agent models.  
The main objective of the use of the multi-agent systems applied to hematopoiesis is to 
simulate cells as individual capable of self-renewal, apoptosis or differentiation in a closed 
space representing a part of the bone marrow. The first models appeared in 2006 with 
Pimentel 2006 who introduced a simple interface based on the early 1978's Mackey model on 
hematopoiesis. In 2008, D'Inverno et al. worked on a multi-agent model simulating stem 
cells but the problem was more adapted for the intestinal crypt cells.  
Ramas at the same period developed a software package named Netlogo 
(http://ccl.northwestern.edu/netlogo/), a "programmable modeling environment for 
simulating natural and social phenomena", with one application to the blood cell formation. 
However, Netlogo's aim is not to model hematopoiesis only. Thus, many specificities related 
to the bone marrow do not appear. This is the reason why in 2006, Bessonov et al. created a 
new multi-agent based software dedicated only to the cell interaction in the bone marrow. 
This work integrated complex processes that have not been taken into account by the 
previous studies, such as cell communication, size difference, cell differentiation, space 
competition, pathological and non pathological cell mutations, spread of diseases like 
leukemia and the bone marrow niche.  
All the details of this new interface are developed in the next section. 

4. A specific multi-agent model adapted to hematopoiesis 
How is it possible to model hematopoiesis in the bone marrow in a realistic way using at the 
same time the space structure and the cell population dynamics? The aim of this section is to 
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present an attempt to answer this question by the use of the multi-agent systems. It has been 
introduced by Bessonov et al. for the first time in 2006. An improved version of the software 
was given in Bessonov et al. in 2009 and new perspective applications are introduced at the 
end of this section. 

4.1 The software basis 
Before showing simulations of the software we propose the basic assumptions made to 
obtain a clear, realistic and understandable approach of the problem. It appears necessary 
thus for a start to expose the way the cell cycle was modeled. Then it seems interesting to get 
an insight of how the bone marrow structure could be described and how the space 
competition could be simulated.  

4.1.1 Modeling the cell cycle 
In the software it was necessary to depict precisely the different cell fates. We assume here 
that cells are small disks having three possibilities: self renew (a capacity mostly authorized 
for stem cells, but this can be applied to any other cell types, such as progenitors, precursors 
or mutated cells), differentiate or die by apoptosis (natural death).  

4.1.1.1 The division process 

Before dividing, a cell will grow to get enough room for its two daughter cells. Note that we 
assume here that a mother cell will give birth to two daughter cells. But this is not exclusive. 
It is possible in the software to let a cell be able to divide into more than two cells: this could 
be used to get a faster result in the simulations. A stem cell could for instance give birth to 4 
cells, one would be another stem cell, and the other three cells would correspond to the 
progenitors of the three lineages of the myeloid branch (see Fig. 3). Each cell can be given a 
specific color depending on its type: yellow for instance for stem cells, red for the red 
 

 
Fig. 3. Different stem cell fates taken into account by the software. A stem cell in yellow can 
either give birth to two daughter cells with exactly the same structure as their mother, or 
give birth to one stem cell and one differentiated progenitor (red cell, white cell or platelet), 
or die by apoptosis. 
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lineage, green for platelets and blue for the white lineage. This depends totally on the user's 
decision. Each lineage can be simulated at the same time or not. One can focus only on one 
branch, each one having a specific property or not: the size of the white cells or erythrocytes 
decreases as their maturity increases but this is exactly the opposite for megakaryocytes for 
instance. The size of each cell type can be determined by the user just by changing the radius 
of the disks illustrating the cells. 
4.1.1.2 Stochasticity in proliferation 
A cell can die by apoptosis at any time. The proliferation duration can be constant and 
defined by the user for each cell type, but it can be determined and occur within a time 
distribution: a constant time plus or minus a range whose value is defined by the user. This 
is one of the various specificities of this software. It is also possible to decide what could be 
the probability for a stem cell for instance to give birth to a red white or platelet progenitor. 
This ability of the software seems quite important for hematologists in the sense that almost 
45 % of the blood consists of red blood cells that is about 99% of the hematocrit (portion of 
cells in the blood, the other portion consist of plasma, that is the remaining 55% of blood). 
The rest of the hematocrit is composed of white cells for 0.2%, and megakaryocytes between 
0.6 to 1%. Thus, it seems realistic to assume that a stem cell has more chances to give birth to 
a red blood cell rather than a cell from another lineage. The software offers this possibility 
by choosing different probability for a cell to give birth to a certain cell type. This possibility 
includes also the probability to die. Thus, even apoptosis can be given a random rate that 
can be determined by the user (see Fig. 4). This is also relevant in the sense that apoptosis is 
rather important in the erythrocyte lineage, and this rate can be reduced under the influence 
of EPO. The influence of EPO and other simulating factors will be described later on.  

4.1.2 The bone marrow structure 
The bone marrow is set up as a simple rectangle in the software. Any time that a cell is 
pushed away from the rectangle border, it is assumed to reach the blood stream. The size of 
the rectangle can be chosen easily by the users, and modified anytime. Moreover, in order to 
be more realistic, it is possible to introduce fixed segments of different size anywhere in the 
rectangle to simulate the porosity of the bone marrow. These segments cannot be crossed by 
the cells and they are considered as walls necessary to bypass for the cells. The user can 
place the segments in different ways: they can be put like a bottle neck to force the cells to 
use only one way out to the blood stream, they can be in 3 of the 4 borders of the rectangle 
to give only one possible side for cells to reach the stream, they can also represent different 
niches where stem cells could develop colonies forming grapes of new born cells. Viscosity 
of the blood cells in the bone marrow can also be decided by changing a parameter value in 
the run window of the software.  
When dividing, each cell giving birth to two or more daughter cells pushes away the other 
individuals. Space competition is then described. Consequently, if one cell type divides 
more rapidly than others, the bone marrow would swiftly be full of this type of cells and 
offspring, the other cells would be pushed away out in the bone marrow, or would have no 
room to develop their lineage. This phenomenon can occur for instance in case of acute 
myeloid leukemia described in the next section. It seems more realistic for stem cells to be 
fixed in a niche and the more a cell is mature, the more its ability to get detached from the 
colony would be important. This has not yet been taken into account in the software, but it 
is under current investigation. For the moment, all the cells have the same ability to move 
out from the bone marrow walls. 
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Fig. 4. Presentation of the different windows given by the software. The top left window 
represent the running application with different parameters such as viscosity. The left 
window gives the illustration of the tree consisting of all the cells and offspring, each 
differentiation probability are set up in this tree, each colour represents a cell type, the red 
frame corresponds to some of cell properties such as the life time, size (radius), etc. The 
green frame deals with the space property (size of the domain, and addition of segments). 
The small disks in the grids represent the different cells dividing, differentiating and dying 
with a focus on one part of the simulation at the bottom left of the figure.  

4.2 Normal and pathological hematopoiesis 
After setting up all the adjustments for the specific problem chosen by the user: number of 
cell lineages, cell fate, different probabilities (differentiation rates, apoptosis rates, etc.), size, 
bone marrow structure... It is possible to simulate normal and pathological hematopoiesis.  

4.2.1 Normal hematopoiesis 
To get an accurate model of normal hematopoiesis it is important to collect as many 
information about the different parameters as possible. This is the reason why it is necessary 
to exchange many discussions with hematologists. One attempt has been made, taking each 
size of cell type into account, with different proliferating times, apoptosis probabilities and 
different niches. The result has been plotted. However, many parameters need to be set up 
properly in good agreement with the experimental observations. This is under current 
investigation (see Fig. 5).  
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Fig. 5. Attempt of the simulation of a full normal hematopoiesis in one tiny part of the bone 
marrow. Each cell type has been determined with its size, colour, differentiation properties, 
etc. It is then possible to identify the dynamics for each lineage. One can observe the 
different colonies formed after the seeding of six hematopoietic stem cells. 

4.2.2 Pathological hematopoiesis: an application to leukemia 
Different pathologies could be simulated: stress erythropoiesis such as anemia, 
thrombocytopenia or leukemia amongst the most known possible diseases. We decide here 
to present only some results related to leukemia. We were interested in the different 
possibilities for leukemia to spread in the bone marrow. It is indeed known that some 
leukemia can be removed from the body without even the individual to be aware of 
suffering from the disease. However, in some cases, the pathology can settle down and 
spread until all the malignant cells fulfill the bone marrow. It can also be possible to get 
chronic symptoms of the disease. In other words, pathological cells and non pathological 
cell population would oscillate which could correspond to chronic myeloid leukemia cases.  
Everything starts with a single cell that mutates. Settlement of the disease depends on 
different factors. Here are some of the main explanations of the pathological dynamics. The 
software allows the user to choose any cell to be a mutant cell. It can be a stem cell as well as 
any other cell. This cell can have the same properties as a normal cell but it can also have the 
ability to divide faster than the other, with a proliferation time much shorter than an 
average cell, or a division rate much more important. This cell can also differentiate and 
keep mutating to obtain more aggressive malignant cells. Here are three examples of the 
spread of the disease in the bone marrow.  
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Fig. 6. Illustration of the spread of a disease. A malignant cell is placed in the bone marrow 
during normal hematopoiesis (top left) and develops to eventually invade the whole 
domain. This could correspond to a case of acute leukemia (illustration taken from Bessonov 
et al. 2006). 

4.2.2.1 Acute leukemia 

In this example, we consider a malignant cell that mutates. The cell chosen is not a stem cell. 
This choice was made in order to show that the disease can spread and settle down the 
marrow even if it is not a stem cell. It all depends on the properties given on the mutant cell. 
In this case, the pathological cells proliferate more rapidly than the average cells. At the 
early stage of the disease, it seems that leukemic cells will not stay in the marrow. But 
rapidly, they start to wash out the non pathological cells from the bone marrow and spread 
all around the place to eventually occupy almost all the medullar medium (see Fig. 6). It is 
important at this point to note that production of normal cells does not decrease in presence 
of the pathology. The only event occurring here is the strong local pressure that pushes 
other cells out to the blood systems. As a consequence, a large number of immature cells 
invade the blood stream which gives the onset of the symptoms. The proliferation time is of 
great importance in the spread velocity of the disease. It has been illustrated in Fig. 7. For a 
long proliferation time, malignant cells remain localized in a small region and do not seem 
to spread in the whole system. On the contrary, for a short proliferation time the disease 
would easily spread out and invade the bone marrow. A combination of different 



 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies 

 

408 

parameters would then allow the system to reach different equilibria depending on the 
threshold reached. A mathematical analysis corresponding to the simulation has not yet 
been done but should be investigated in the future showing a great range of dynamics. It is 
interesting for instance to note that if the density of stem cells is increased, and the same 
values for parameters are kept, then leukemia in these specific simulations has less chances 
to develop. Furthermore, if a mutation is given to a mature cell, this cell will have more 
difficulties to multiply and let the disease spread, and vice versa. Each choice could be 
driven by a specific type of leukemia one wants to model. 
 

 
Fig. 7. Comparison between three simulations with different proliferation times for leukemic 
cells. The rst one is modelled with a proliferation time of 100 time unit, the second 50, and 
the third 20 (illustration taken from Bessonov et al. 2006).  

4.2.2.2 Chronic myelogenous leukemia (CML) 

Chronic myelogenous leukemia occurs when concentration of cells of all types oscillate 
periodically. This kind of behavior has been observed in the 1970's and studied in the late 
1990's and beginning of the 2000's (see section 3.1.3). It is possible, using a specific choice of 
parameters to obtain such oscillations with the Bessonov's software. Moreover, this 
application is able to get an output of the cell population leaving the bone marrow. Each cell 
type can be counted and put in a specific file. This file can be analyzed by any mathematical 
software able to analyze sets of data. The result we obtain with the example shown here 
seems qualitatively equivalent to the clinical data obtained in the 1970's (see Fig. 8). Getting 
quantitative results would be quite interesting for the biologist community in the sense that 
it would be then possible to replicate quite accurately the experimental or clinical data. This 
is still under investigation. 
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Fig. 8.  Simulation of a pathological case. The black cells are malignant cells. The cell 
distributions are taken at three different times. The black cells form one, two or three 
domains almost periodically as shown in the time series right below the figure. It is possible 
to show that the concentrations of all cell types oscillate in time too (not shown here). The 
time series of the malignant cell population in the bone marrow could correspond to a CML 
case as illustrated by a time series of a leukocyte population in the bone marrow taken from 
a patient having CML  (Fortin et al. 1999) (illustration taken from Bessonov et al. 2006). 

4.2.2.3 A case where the disease fades out 

Let us consider a case where the disease seems to spread in the bone marrow but eventually 
is being washed out and the systems returns to normal. In this example, the first generations 
of mutant cells can self-renew, and also differentiate to more aggressive cells. The last 
generations of mutant cells cannot self-renew. In this case, a simple simulation can exhibit a 
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rapid increase of the pathology in the bone marrow. But after a certain period of time, the 
malignant cell population is washed out from the bone marrow and is replaced by normal 
cells (see Fig. 9). A question may arise then from this point: how is it possible for a 
population of mutant cells able to develop rapidly to disappear from the space representing 
the bone marrow here? The answer could enlightened by a simple focus of the individual 
level. In the simulation proposed here, all the stem cells are attached to the left wall of the 
domain, which is not the case for all the other cells. Thus, each cell except the stem cells is 
either condemned to die by apoptosis, differentiate, self-renew or leave the blood stream 
after a certain period of time. This is also the case for the cells defined as mutant cells in the 
example here. They are also part of the dynamics rules of the software. They can self-renew 
or differentiate but do not increase their number. It may thus be impossible for these cells to 
overcome their loss and eventually, they are pushed out of the bone marrow by the younger 
generations of healthy cells. In some cases however, self-renewing mutant cells can divide 
with a rate large enough to spread out and settle down in the medulla. 
 

 

 

 
Fig. 9. Evolution of the disease spread: malignant (black) cell population grows from a 
malignant focus but not for a long time but eventually get washed out by the healthy cells. 
The disease free steady state is then stable in this example. This could correspond to what 
happens frequently in everyone's body (illustration taken from Bessonov et al. 2006). 

In the next section, we go further into the cell environment, by taking the cell 
communication into account. Thus, not only space competition in the bone marrow plays a 
role for the development of different cells, but also the influence of the environment and the 
communication between cells in one neighborhood via some exchange of molecules. 
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4.3 Cell communication 
Cell communication corresponds to another application of the Bessonov's software. In this 
section, we give an overview of the possibilities given by this application and the influence 
of different parameters on the cell population dynamics. 

4.3.1 How does cell communication is taken into account in the software? 
4.3.1.1 A simple example 

It is known now that cell differentiation, self-renewal and apoptosis properties can be ruled 
by complex dynamics of molecules produced inside and outside each cells. For instance, it 
has been discovered that the stimulation hormones like EPO (see 1.5) would decrease the 
apoptosis rate in the red blood cell lineage. On the other hand, cell differentiation and the 
choice of one of the lineages can be regulated by a system of transcription factors. Some 
mathematical models have been attempted to tackle this problem (Roeder 2006, Crauste 
2010). In Huang et al. (2007), the authors developed a model of binary cell fate decisions 
combining stochastic and deterministic instructions. In our work, we decided to give the 
possibility for the user to add this ability of cell differentiation through communication with 
the environment to the existing other applications provided by our software and described 
above. As mentioned by Roeder et al. (2006a) lineage specification is "a competition process 
between different interacting lineages propensities".  
Even if our software allows the user to simulate several cell lineage specifications and 
communication with as many stimulating factors as wanted, we believe that a description of 
the application use with the simplest model of only two subpopulations would be more 
understandable.  
4.3.1.2 An exchange of information 

Let us then start with one population of undifferentiated cells denoted by A. These cells can 
divide, giving two daughter cells. One of the daughter cell would be exactly of the same 
type of its mother (self-renewing), and the other would be of either type G or type F. Two 
possible lineages are then given to the undifferentiated cells. The color given to the A-type 
cell would be white, if would be blue for the G-type and red for the F-type (see Fig. 10). Each 
cell denoted i- not even a cell type but really each individual - is characterized by two 
functions: fi and gi depending on time the time t, which could correspond for instance to a 
certain amount of two types of molecules. We assume in this simulation that every new 
born cell is undifferentiated, that is white. In other word, every time that a stem cell divides, 
it gives rise to two white cells. These cells are prescribed by the same initial amount of 
molecules, i.e. f0, g0. This content changes with time with a rate defined by two differential 
equation describing the evolution of fi and gi with respect to time: 

 dgidfi =a(Fi-fi), and =a(Gi-gi),
dt dt

 (1) 

where a is a constant, and the Fi and Gi can be chosen to satisfy the so-called "average rule", 
that is 

 
j i j i

Fi= fj/N, and Gi= gj/N,  (2) 
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where N is the sum of the number N of neighbor cells, which is defined automatically in the 
software code. The other possibility to define Fi and Gi is to follow the "max rule", that is the 
cell content fi will evolve depending on the influence of its neighbor having the greatest 
amount of F-type molecule and likewise for gi. In other words,  

 
j i j i

Fi=maxfi and Gi=maxgi.  (3) 

From a biological point of view, this means that each individual releases the molecules of F 
or G-type with a rate proportional to their concentration, and similarly, it receives the 
molecules from its neighboring cells with a rate proportional to their concentrations.  
 

 
Fig. 10. Cell communication: each cell denoted "i" at a time t is characterized by two 
parameters, fi(t) and gi(t). Under specic conditions the neighboring cells can inuence the 
undifferentiated (white) ones. This influence depends on the number of each cell type 
around. After a certain time, the simulation is stopped, the software counts the number of 
each cell type (f and g) and plot their distribution in the f  g plane (illustration taken from 
Bessonov et al. 2006).  
4.3.1.3 Choice of one lineage and evolution of the cell content 

Different rules are set up for an undifferentiated cell to remain white or to choose a lineage. 
A new born cell stays white as long as 2 2fi (t)+gi (t) , where  is a given parameter set up 
by the user. This means that a cell needs a specific threshold of molecule concentration to be 
differentiated taking the color of the greater concentration between fi and gi to become red 
or blue.  
When a cell has "chosen" its lineage, its content can evolve depending on the following 
rules: 

 *dfi =P(fi,gi), gi=gi =constant
dt

 (4) 

for red cells,  and 
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 *dgi =Q(fi,gi), fi=fi =constant
dt

 (5) 

for blue cells, where fi* and gi* stand for the concentration of molecules of F and G-type at 
the moment when differentiation has been decided. In other words, if a cell is of type F, the 
amount of "F-molecules" would change depending on the defined function P but the "G-
molecule" content will remain constant and vice versa with function Q. This property gives 
the specific shape of the figures representing the simulations on the cell type evolution with 
a blank squared shape on the upper right part of the plot (see Fig. 11). The function P and Q 
are defined to be quadratic functions as follows 

 2
1 2 3 4 5P(f,g)=a +a f+a f +a fg+a g,  (6) 

and 

 2
1 2 3 4 5Q(f,g)=b +b g+b g +b fg+a f,  (7) 

where ai and bi, i=1,...,5 are some constants defined by the user. The quadratic form of P and 
Q was chosen for simplicity, but can be modified anytime by the user. 
 

 
Fig. 11. Cell position in the f�–g plane. A white cell remains undifferentiated as long as  

2 2fi (t)+gi (t)  (inside the disk (figure in the left)), where  is a given parameter. If the 
concentrations of f and g become sufficiently high (greater than ), the cell chooses its type. 
Once the differentiation occurs and the cell chooses its type, further evolution of f and g 
becomes different. For red cells df i/dt =P(fi,gi), gi = g*i (it remains constant), for blue cells 
dgi/dt = Q(fi,gi), fi=f*i (it remains constant). In other words, after differentiation, the value 
of f in red cells increases and the value of g remains constant; for blue cells g increases and f 
remains constant which gives the specific shape of the f  g graph (right) (illustration taken 
from Bessonov et al. 2009).  

In each figure it is then possible to represent the cell of all types with undifferentiated cells 
on the quarter of disk on the bottom left angle with radius equal to  (corresponding to the 
distance between the origin of the axis and the bottom left part of the blank squared shape. 
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Everything above this disk, between the y-axis and the blank squared shape would 
correspond of cells of blue G-type and the higher the cell is located the more mature it is. On 
the other hand, all cells on the right side after the disk and below the blank squared shape 
are the red F-type cells. And thus, the choice of the lineage can be well defined depending 
on the zone a cell can be plot. Consequently, if all cells remain within the disk, this means 
that all cells remain undifferentiated; this could correspond to a case of acute leukemia. 
They can also be located in one or two lineages, or the three depending on the sets of 
parameters chosen. This will be developed in the next paragraph. 
Furthermore, cell generations can be observed by the "circular stripes" appearing in the 
simulations. This is correlated to the ratio of the proliferation time between the stem cells 
and the first daughters. Let us see some examples in the next paragraph. 

4.3.2 Examples of cell communication and differentiation 
We remind the reader here the starting bases of the cell communication application. At the 
beginning of the simulation, only undifferentiated cells are produced by the stem cells. Once 
the whole domain has been filled up with all the white cells, the process stops and each cell 
is prescribed randomly one of the two (red or blue) types with some value fi and gi. The 
application starts again and then, all new born undifferentiated cells are obliged to choose 
one of the types depending on their environment and the parameters set up as explained in 
the previous paragraph. Some structures can appear. This process starts with a random 
distribution of the cells, but specific structures can appear depending on the different sets of 
parameters. 
The application can give different outputs: the number of cells of each type can appear in a 
specific file as explain in a previous section. In other words, after a certain time i , which 
represents the moment when the ith cell leaves the bone marrow. The cell is then registered 
into the file with its fi and gi content, which determines its type depending on the level of 
red or blue molecule inside. To be more convenient, the software plots directly all these cells 
on the (f,g)-plane. In other words, it i i(f( ),g( ))  plots corresponding to each cell leaving the 
bone marrow. The graph obtains represent then the population of blood cells released in the 
system. Let us give three examples corresponding to the influence of the main parameters: 
starting with the proliferation time, then the cell size, and finally a combination of the cell 
communication parameters with the self-renewal processes. 
4.3.2.1 Cell communication and the proliferation time parameter 

In this example, let us assume that cell of the second generation cannot differentiate 
anymore. This may represent a simplified case of normal hematopoiesis. Almost no 
undifferentiated cells are found in the bone marrow, and a great proportion of cells clearly 
belong to one of the two types and increasing the proliferation time would improve the cell 
differentiation process. It is possible to give a biological explanation behind these 
simulations. It is indeed, easy to understand that in the case of non pathological 
hematopoiesis, a cell being given more time to mature will leave the bone marrow with a 
more complete functional material than cells having little time to fulfill the maturation 
process. It has been shown for instance that in case of stress erythropoiesis (like anemia or 
blood loss), cell proliferation is accelerated due to the combination of self-renewal process of 
progenitors, but also the apoptosis rate decreases in the bone marrow, due to the effect of 
EPO, but once in the blood stream, cell death is greater than normal due to the fact that they 
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have not completed their formation and are released in the stream with a weaker structure. 
Moreover, changing the distribution of time (the +/- time column) would imply a change in 
the sharpness of cell generation plots in the sense that the zones representing each 
generation does not show clear borders when the distribution of time is increased ((see Fig. 
12). This makes sense since the cell proliferation occurs more randomly in time. The process 
tends to be then more stochastic.  
 

 
A      B 

 
C 

Fig. 12. Changes in cell proliferation time. A. In this simulation, the proliferation time is not 
exact but distributed. Thus in the plot on the f �–g plane one can observe a less structured 
differentiated cell distribution.  B. In this simulation, the cell lineages have been modified: 
no offspring for several cell generations. In the plot on the f �–g plane one can observe then a 
well defined structure of all the cell generations depending on their maturity level as well as 
their differentiation profile. This could correspond to a non pathological case. C. Changes in 
cell proliferation time that gives a simulation where almost no cells are undifferentiated and 
cell generations are well separated (illustration taken from Bessonov et al. 2009). 

4.3.2.2 Cell communication and the cell size parameter 

As explained in the paragraph 4.1.1.1., the cell size decreases in correlation with their maturity 
except for the megakaryocytic lineage. Thus, it appears necessary to consider the influence of 
the cell size parameter in our application. When comparing the simulations with the size 
decrease taken into account, one can see that no undifferentiated cells can be found in the 
blood stream. All of them remain in the bone marrow (in the non pathological case considered 
here). On the other hand, the cell generations are clearly defined. This result was expected 
since, with increasing maturity, the cells get smaller, they need less space in the bone marrow, 
and so they can stay longer than the one whose size has not changed, and thus can gain more 
differentiation molecules (red or blue). And thus, the f and g colonies appear much more 
distinct than a simple simulation where no evolution of size is taken into account (see Fig. 13). 
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Fig. 13. Changes in cell radius in order to get smaller size as maturity increases, gives clear 
and definite compartments of cell generations (illustration taken from Bessonov et al. 2009). 

4.3.2.3 Cell communication and the self-renewal process 

Let us assume that the system is under a stress erythropoiesis such as a severe anemia or 
blood loss. Then it has been shown that progenitor cells and sometimes precursor cells can 
self-renew under stimulating glucocorticoids. What is expected with this change in the 
parameter set up is an increase of undifferentiated. The population is indeed forced to 
increase and to give rapidly efficient cells to be released in the blood stream. This process 
could also be pushed to and extreme case, where most of the cells leaving the bone marrow 
could be undifferentiated. This would then correspond to cases of acute leukemia, where it 
is not possible for cells to differentiate, and thus malignant cells would only self-renew with 
almost no differentiation. The system, after a certain time would then be filled with 
undifferentiated cells only (see Fig. 14).  
 

 
Fig. 14. Adding self-renewal ability in progenitors leads to a nice illustration of what could 
occur in case of severe bleeding or anemia, and action of the glucocorticoids on cell 
differentiation (illustration taken from Bessonov et al. 2009). 

4.4 Niches and colonies in the bone marrow 
In this section, the mechanical interaction and the cell displacement are the same as in the 
previous software interface. However, instead of imposing self-renewal, differentiation and 
apoptosis like it is in the previous model (even if it is a stochastic process in the software, it 
is set up by the user through different parameter choices), these properties are ruled out by 
intrinsic and extrinsic regulation with no user implication. 
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4.4.1 Hybrid models 
Hereafter we propose a new approach of mechanical interactions between cells both from 
intrinsic and extrinsic regions. In order to do so, we focus our attention on intra-cellular 
regulation, described by ordinary differential equations, and on extra-cellular regulation, 
described by partial differential equations. 
We restrict ourselves here to the simplest model where cells are represented as elastic balls. 
In other words, we consider two elastic balls with their centres at the points x1 and x2, and 
with the radii, respectively given by r1 and r2. If the distance d12 between the centres is less 
than the sum of the radii, r1 + r2, then there is a repulsive force between them, denoted by 
f12 depending on the distance d12. Moreover, if a particle with the centre at xi is surrounded 
by several other particles with their centres at the points xj, j=1,..., k, then we consider the 
pair wise forces fij assuming that they are independent of each other. This assumption 
corresponds to small deformation of the particles. Hence, we nd the total force Fi acting on 
the i-th particle from all other particles, 

j¹i
Fi= fij . The motion of the particles can now be 

described as the motion of their centers. By Newton�’s second law 

 
.. .

j¹i
m xi+ m xi- f(dij)=0,  (8) 

where m is the mass of the particle, the second term in the left-hand side describes the 
friction by the surrounding medium. Dissipative forces can also be written in a different 
form. This is related to dissipative particle dynamics (Karttumen, 2004). Intra-cellular 
regulatory networks for the i-th cell are described by a system of ordinary differential 
equations 

 dui =F(ui,ue),
dt

 (9) 

where ui is a vector of intra-cellular concentrations, ue is a vector of extra-cellular 
concentrations, F is the vector of reaction rates which should be specied for each particular 
application. Evolution of the concentrations of the species in the extra-cellular matrix is 
described by the diffusion equation  

 ue =D ue+G(ue,c),
dt

 (10) 

where c is the local cell density, G is the rate of consumption or production of these 
substances by cells. These species can be either nutrients coming from outside and 
consumed by cells or some other bio-chemical products consumed or produced by cells.  In 
particular, these can be hormones or other signalling molecules that can inuence intra-
cellular regulatory networks. In some cases, convective motion of the medium should be 
taken into account.  

4.4.2 1-D model example 
We begin with the 1D model example where cells can move along the line. The coordinates 
x i in equation (1.1) are real numbers. Each cell can divide or die by apoptosis. After division 
a cell gives birth to two daughter cells identical to itself (this is the case of self-renewal 
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division, there is no differentiation taken into account in this example). We suppose that cell 
division and death are inuenced by some bio-chemical substances produced by the cells 
themselves. 
We consider the case where there are two such substances, whose concentrations are 
denoted by ue and ve and satisfy the following system of equations: 

 

2

2

2

2

due ue= d1 +b1c-q1ue,
dt x

dve ve= d2 +b2c-q2ve.
dt x

 (11) 

These equations describe the evolution of the extracellular concentrations ue and ve with 
their diffusion, production terms proportional to the concentration of cells c and with the 
degradation terms. We note that cells are considered here as point sources with a given rate 
of production of u and v. The cell concentration is understood as a number of such sources 
in a unit volume. In numerical simulations, where cells have a nite size, we consider them 
as distributed sources and specify the production rate for each node of the numerical mesh. 
Intra-cellular concentrations ui and vi in the i-th cell are described by the equations: 

 

(1)(1)

(2) (2)

dui = k1 ue(x,t)-k2 ui(t)+H1,
dt

dvi = k1 ve(x,t)-k2 vi(t)+H2.
dt

 (12) 

Here and in what follows we write equations for intra-cellular concentrations neglecting the 
change of the cell volume. This approximation is justied since the volume changes only 
twice before cell division and this change is relatively slow. The rst term in the right-hand 
side of the rst equation shows that the intra-cellular concentration ui grows proportionally 
to the value of the extra-cellular concentration ue (x, t) at the space point x where the cell is 
located. It is similar for the second equation. These equations contain degradation terms and 
constant production terms, H 1 and H 2. When a new cell appears, concentrations ui and vi 
are set to zero. 
If the concentration ui reaches some critical value uc, then the cell divides. If vi reaches vc, 
the cell dies. Consider rst the case where  

 (1) (2) (1) (2)1 1 2 2 0.k k k k  (13) 

Then ui and vi are linear functions of time which reach their critical values at some times 
t= u and t = v, 
respectively. If  u <  v , then all cells will divide with a given frequency, if the inequality is 
opposite, then all cells will die. 
Next, consider the case where (1)k1  is different from zero (see Bessonov, 2010 for other 
examples). If it is positive, then cells stimulate proliferation of the surrounding cells, if it is 
negative, they suppress it. Both cases can be observed experimentally. We restrict ourselves 
here by the example of negative (1)1k . All other coefficients remain equal to zero. Therefore, 
cells have a xed life time  v . If they do not divide during this time, they die. 
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Fig. 15. Dynamics of cell population in the case where cells either self-renew or die by 
apoptosis. Cells are shown with blue dots. Horizontal axis shows cell position, vertical axis 
shows time. 

We carry out the 1D simulation where cells can move along the straight line. Initially, there 
are two cells in the middle of the interval. Figure 15 shows the evolution of this population 
in time. For each moment of time (vertical axis) we have the positions of cells (horizontal 
axis) indicated with blue points. 
The evolution of the cell population in Figure 15 (left) can be characterized by two main 
properties. First of all, it expands to the left and to the right with approximately constant 
speed. Second, the total population consists of relatively small sub-populations. Each of 
them starts from a small number of cells. Usually, these are two cells at the right and at the 
left of the previous sub-population. During some time, the sub-population grows, reaches 
certain size and disappears giving birth to new sub-populations. 
This behavior can be explained as follows. The characteristic time of cell division is less than 
the one of cell death. When the sub-population is small, the quantity of u e is also small, and 
its inuence on cell division is not signicant. When the sub-population becomes larger, cell 
division is slowed down because of growth of ue. As a result the sub-population disappears. 
The outer cells can survive because the level of u e there is less. 
The geometrical pattern of cell distribution for these values of parameters reminds 
Serpinsky carpet (Figure 15, left), an example of fractal sets. The pattern of cell distribution 
depends on the parameters. Other examples are shown in Figure 15 (middle and right). 
The simulations presented here do not use the extra-cellular variable ve. Instead of the 
variable ue, which decelerates cell proliferation, we can consider ve assuming that it 
accelerates cell apoptosis. In this case, qualitative behavior of cell population is similar. 

4.4.3 Erythropoiesis modeling 
We consider two types of erythroid cells, progenitors and reticulocytes.  Erythroid 
progenitor fate (differentiation, self-renewal, death by apoptosis) is supposed to be 
regulated by intra-cellular mechanisms (protein competition) and extra-cellular substances. 
The main external source of control in what follows will be Fas-ligand, a membrane protein 
produced by reticulocytes that activates the intra-cellular protein Fas. Other extra-cellular 
substances include EPO and glucocorticoids, among others. We will restrict our model to 
the inuence of EPO, and even though we do not detail this action in the following, the level 
of EPO can be considered either constant or proportional to mature erythrocyte quantity. 
Fas-ligand will act on progenitor differentiation and apoptosis, whereas EPO will inhibit 
progenitor apoptosis and increase self-renewal. 



 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies 

 

420 

We assume intracellular regulation of erythroid progenitors is determined by two proteins, 
ERK and Fas (Crauste, 2010), although several other proteins may play a role in this 
regulation. A simplied model is given by the system of two ordinary differential equations 
(Crauste, 2010) 

 kdE = EPO + E 1-E -aE-bEF,
dt

 (14) 

 L
dF = F 1-F -cEF-dF,
dt

 (15) 

where E and F  are intra-cellular concentrations of ERK and Fas, a, b, c, d are some non-
negative parameters,  is a function of erythropoietin (EP O) and  is a function of Fas-
ligand, whose concentration is denoted by F L . For xed values of EP O and F L , (14)-(15) is 
a closed system of ordinary differential equations. It can have from one to three stationary 
points. Its detailed analysis is presented in (Crauste, 2010). 
The concentration of Fas-ligand is described by the diffusion equation 

 L
L L

dF =d F +W- F ,
dt

 (16) 

where W  is a source term proportional to the concentration of reticulocytes.  Though Fas-
ligand is considered as a surface protein, and its interaction with erythroid progenitor 
basically occurs when they are in physical contact with reticulocytes, we model it as if it 
could diffuse in the extracellular matrix. If the diffusion coeffcient is suffciently small, it is 
located in a small vicinity of reticulocytes. Therefore, Fas-ligand inuences erythroid 
progenitors when they are suffciently close to reticulocytes. 
Let us summarize the model. System (14)-(15) is considered inside each erythroid progenitor 
with its proper initial condition (see below) and with the value of F L which can depend on 
its spatial location and on time.  Erythroid progenitors can proliferate or die by apoptosis. 
Apoptosis occurs if the intracellular Fas concentration reaches some critical value F c. In this 
case, the cell is removed from the computational domain. 
If the cell does not die by apoptosis, then it proliferates, that is it divides at the end of cell 
cycle. Cell cycle is composed of two parts: G0/G1 phases and S/G2/M phases. The duration 
of the G0/G1 phase is chosen randomly from 0 to some maximal value  max with the 
typical values 6  12 hours, the duration of the remaining part of cell cycle is xed, usually 
12 hours. 
Cell proliferation can result in self-renewal or differentiation. In the rst case, the two 
daughter cells are also erythroid progenitors. For each of them we consider intracellular 
regulation with system (14)-(15). The values of ERK and Fas in the newly born cells can 
either be some given parameters or equal half those of the mother cell. In the case of 
differentiation, the two daughter cells become reticulocytes. The choice between self- 
renewal and differentiation is determined by the values of ERK in the process of cell cycle. 
Once it reaches a critical value Ec , the cell self-renews. Otherwise, it differentiates. These 
assumptions are in agreement with actual biological understanding of these processes. We 
do not consider intracellular regulation for reticulocytes. Once they appeared, they remain 
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in the computational domain one cell cycle more in order to become mature erythrocytes. 
Then they are removed. This corresponds to the fact that erythrocytes leave the bone 
marrow to enter blood ow. Reticulocytes produce Fas-ligand with a constant rate. Fas-
ligand inuences intracellular regulation of erythroid progenitors through equation (15). It 
increases Fas production rate resulting in apoptosis of the progenitors if Fas concentration is 
sufficiently high or in their differentiation for intermediate values of F L . For greater values 
of Fas-ligand, trajectories of system (14)-(15) move towards greater values of F and to 
smaller values of E. Hence, the critical value of ERK may not be reached and the cell will 
differentiate. 
Let us nally recall that proliferation and apoptosis change cell spatial distribution. New 
cells, when they appear, push each other creating cell displacement (see Fig. 16). 
 
 

 
 

Fig. 16. Modelling of erythroblastic islands:  initial cell distribution (left) and a stable island 
(right). Yellow cells in the center are erythroid progenitors, blue cells at the border are 
reticulocytes producing Fas-ligand (in red). 

5. Conclusion 
In this chapter, our goal was to give an insight of the different attempts to model the blood 
cell formation: several purely deterministic, some purely stochastic, few taking the space 
structure of the bone marrow and thus space competition into account. It appeared 
important to us to develop a compromising model where stochasticity is mixed with the 
medulla structure. This approach using the multi-agent systems seems to us a good way to 
describe different mechanism related to the normal and pathological hematopoiesis. We 
have shown that with our software it was possible to get a rich variety of behaviors. Our 
simulations found some interest in the community of biologists and clinicians. However, 
even if we obtained some relevant results none of them where quantitatively compared with 
experimental data. This is part of the perspective work taken in consideration. Another 
objective would be to consider the stimulation factors more explicitly by closing with the 
use of different feedbacks.  
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