Université Claude Bernard, Lyon I 43, boulevard 11 novembre 1918 69622 Villeurbanne cedex, France Licence Sciences & Technologies Spécialité Mathématiques Calcul Différentiel Printemps 2011

Interrogation écrite no. 3:

Exercice 1.

(Question de cours)

- a) Enoncer le théorème d'inversion globale
- b) Enoncer le théorème des fonctions implicites.

Exercice 2.

On admet qu'au voisinage du point (x, y, z) = (1, -1, 1) les solutions du système

$$\begin{cases} x^3 + y^3 + z^3 = 1 \\ x^2 + y^2 + z^2 = 3 \end{cases}$$

vérifient $(x, y) = f(z) = (f_1(z), f_2(z))$ où f est une fonction C^1 dans un voisinage de 1 à valeurs dans \mathbb{R}^2 . Montrer que f'(1) = (-1, 0).

Exercice 3.

Soit $E = \{ y \in C^2([0,1]; \mathbb{R}), y(0) = 0, y'(0) = 0 \}$. On admet que E, muni de la norme

$$||y||_E = \sup_{[0,1]} |y''| + \sup_{[0,1]} |y'| + \sup_{[0,1]} |y|,$$

est un espace de Banach. On considère par ailleurs $F = C^0([0,1]; \mathbb{R})$ muni de la norme $\|\cdot\|_{\infty}$. Soit l'application $\varphi : E \to F$ définie par $\varphi(y) = y'' + yy'$.

- a) Montrer que φ est de classe C^1 sur E et calculer $d\varphi_0$.
- b) Montrer que $d\varphi_0$ est un isomorphisme de E dans F.
- c) En déduire qu'il existe un réel $\epsilon > 0$ tel que pour toute application f appartenant à F et vérifiant $\sup_{[0,1]} |f| < \epsilon$ il existe une solution à l'équation différentielle

$$y'' + yy' = f$$

qui vérifie y(0) = 0, y'(0) = 0.

Université Claude Bernard, Lyon I 43, boulevard 11 novembre 1918 69622 Villeurbanne cedex, France Licence Sciences & Technologies Spécialité Mathématiques Calcul Différentiel Printemps 2011

Interrogation écrite no. 3 – Corrigé

Exercice 1.

(Question de cours)

- a) Enoncer le théorème d'inversion globale
- b) Enoncer le théorème des fonctions implicites.

Corrigé : voir le cours!

Exercice 2.

On admet qu'au voisinage du point (x, y, z) = (1, -1, 1) les solutions du système

$$\begin{cases} x^3 + y^3 + z^3 = 1 \\ x^2 + y^2 + z^2 = 3 \end{cases}$$

vérifient $(x, y) = f(z) = (f_1(z), f_2(z))$ où f est une fonction C^1 dans un voisinage de 1 à valeurs dans \mathbb{R}^2 . Montrer que f'(1) = (-1, 0).

Corrigé : On remplace dans le système x et y par $f_1(z)$ et $f_2(z)$ respectivement. Puis on dérive par rapport à z et on obtient.

$$\begin{cases} 3f_1'(z)f_1^2(z) + 3f_2'(z)f_2^2(z) + 3z^2 = 0\\ 2f_1'(z)f_1(z) + 2f_2'(z)f_2(z) + 2z = 0 \end{cases}$$

On sait que $f_1(1) = 1$ et $f_2(1) = -1$ puisque le point (1, -1, 1) est solution du système. Il suffit de remplacer z par 1 dans le système pour obtenir

$$\begin{cases} 3f_1'(1) + 3f_2'(1) + 3 &= 0 \\ 2f_1'(1) - 2f_2'(z) + 2 &= 0 \end{cases}$$

dont la solution est f(1) = (-1, 0).

Exercice 3.

Soit $E = \{y \in C^2([0,1]; \mathbb{R}), \ y(0) = 0, \ y'(0) = 0\}.$ On admet que E, muni de la norme

$$||y||_E = \sup_{[0,1]} |y''| + \sup_{[0,1]} |y'| + \sup_{[0,1]} |y|,$$

est un espace de Banach. On considère par ailleurs $F = C^0([0,1];\mathbb{R})$ muni de la norme $\|\cdot\|_{\infty}$. Soit l'application $\varphi: E \to F$ définie par $\varphi(y) = y'' + yy'$. a) Montrer que φ est de classe C^1 sur E et calculer $d\varphi_0$.

Pour tout z de E on a $\varphi(y+z) = (y+z)'' + (y+z)(y+z)' = y'' + y'y + z'' + zy' + yz' + zz' = \varphi(y) + z'' + zy' + yz' + zz'.$

L'application $z \mapsto z'' + zy' + yz'$ est linéaire de E dans F. Elle est aussi continue car $||z'' + zy' + yz'||_F = ||z'' + zy' + yz'||_\infty \le ||z''||_\infty + ||y'||_\infty ||z||_\infty + ||y||_\infty ||z'||_\infty \le (1 + ||y'||_\infty + ||y||_\infty)||z||_E$ On a par ailleurs $||zz'||_F \le ||z||_\infty ||z'||_\infty \le ||z||_E^2$ donc $zz' = o(||z||_E)$. On en déduit que $z \mapsto z'' + zy' + yz'$ est la différentielle $d\varphi_y$ de φ en y. Montrons que cette différentielle est continue sur E. On va donc montrer que si $||\tilde{y} - y||_E \to 0$ alors $||d\varphi_{\tilde{y}} - d\varphi_y||_{\mathcal{L}(E,F)} \to 0$. On calcule que pour tout z de E

 $\|d\varphi_{\tilde{y}}(z) - d\varphi_{y}(z)\|_{F} = \|z(y - \tilde{y})' + z'(y - \tilde{y})\|_{F} \le \|z\|_{\infty} \|y' - \tilde{y}'\|_{\infty} + \|z'\|_{\infty} \|y - \tilde{y}\|_{\infty} \le 2\|z\|_{E} \|y - \tilde{y}\|_{E}$ d'où

$$||d\varphi_{\tilde{y}} - d\varphi_{y}||_{\mathcal{L}(E,F)} \le 2||y - \tilde{y}||_{E}.$$

On a ainsi montré que l'application $y\mapsto d\varphi_y$ est lipschitzienne donc continue sur E.

- b) Montrer que $d\varphi_0$ est un isomorphisme de E dans F. Pour tout z dans E, $d\varphi_0(z) = z''$. C'est une application linéaire et continue de E dans F (la continuité découle de l'inégalité $||z''||_{\infty} \leq ||z||_{E}$). C'est en outre une application inversible car si $y \in F$ alors l'application $z(t) = \int_0^t \int_0^u y(v) dv du$ est de classe C^2 sur [0,1] et vérifie z(0) = 0, z'(0) = 0. C'est donc un élément de E.
- c) En déduire qu'il existe un réel $\epsilon > 0$ tel que pour toute application f appartenant à F et vérifiant $\sup_{[0,1]} |f| < \epsilon$ il existe une solution à l'équation différentielle

$$y'' + yy' = f$$

qui vérifie y(0) = 0, y'(0) = 0.

On considère l'application $\psi(f,y) = y'' + yy' - f$ de $F \times E$ à valeurs dans F. On a $\psi(0,0) = 0$. La différentielle de ψ par rapport à la variable y en un point (f,y) coïncide avec l'application $d\psi_y$ qui ne dépend pas de f et $y \mapsto d\varphi_y$ est C^1 sur E. Donc l'application $(f,y) \mapsto d\varphi_y$ est C^1 sur $F \times E$. La différentielle de ψ par rapport à la variable f est l'application identité sur E et $(f,y) \mapsto \mathrm{Id}_E$ est bien sûr C^1 sur $F \times E$. On en déduit que ψ est de classe C^1 sur $F \times E$. Enfin, on a $d_2\psi(0,0) = d\psi_0$ qui est un isomorphisme de E dans F. Par le théorème des fonctions implicites, il existe un voisinage E de classe E0 tels que

$$(f,y) \in U, \ \psi(f,y) = 0 \quad \Leftrightarrow \quad f \in W, \ y = H(f).$$

Ceci prouve qu'il existe $\epsilon > 0$ tel que si $f \in F$ avec $||f||_{\infty} < \epsilon$ alors $f \in W$ donc la fonction g définie par g = H(f) est dans E et vérifie $\psi(f, y) = 0$ c'est-à-dire g'' + g'