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Abstract

Catalytic surface reactions are of great importance both for chemical industry and as model

systems for the study of pattern formation far from thermodynamic equilibrium. A reaction

that has been investigated extensively in experiments is the oxidation of carbon monoxide on

platinum. In the present work we first develop a mathematical model for CO oxidation on

Pt which is valid over a wide pressure range. This requires the use of different model types.

While at low pressures in the gas phase the system can be described by a deterministic

model in the form of ordinary or partial differential equations, a stochastic particle model

is needed at higher pressures due to rising fluctuations. A numerical bifurcation ananalysis

for the deterministic model is performed, which yields good agreement with experimental

findings. Subsequently, we investigate the consistency of deterministic differential equations

models and stochastic particle models for reaction-diffusion systems in a more general setting.

We rigorously derive partial differential equations as limit dynamics of certain linear and

nonlinear ‘mesoscopic’ stochastic particle models in the limit of large particle numbers. The

convergence proofs combine techniques from numerical analysis and the theory of Markov

processes. Finally, we use the stochastic particle model for CO oxidation on Pt to simulate

the spontaneous nucleation and subsequent dying out of pulses (‘raindrop patterns’) that has

been observed experimentally.

Zusammenfassung

Katalytische Oberflächenreaktionen sind von großer Bedeutung sowohl für die chemische In-

dustrie als auch als Modellsysteme für die Untersuchung von Strukturbildung weit weg vom

thermodynamischen Gleichgewicht. Ein experimentell intensiv untersuchtes Beispiel ist die

Oxidation von Kohlenmonoxid an Platinoberflächen. In der vorliegenden Arbeit entwick-

eln wir zunächst ein mathematisches Modell für die CO-Oxidation an Pt, das über einen

weiten Druckbereich Gültigkeit besitzt. Hierzu ist es erforderlich, verschiedene Modelltypen

zu verwenden. Während bei niedrigen Drücken in der Gasphase deterministische Modelle in

der Form von gewöhnlichen oder partiellen Differentialgleichungen eine gute Beschreibung

des Systems bieten, ist es bei höheren Drücken aufgrund der auftretenden Fluktuationen er-

forderlich, ein stochastisches Vielteilchenmodell zu verwenden. Eine numerische Bifurkations-

analyse des deterministischen Modells ergibt eine gute Übereinstimmung mit experimentellen

Resultaten. Anschließend untersuchen wir in einem allgemeineren Rahmen die Konsistenz von

Differentialgleichungsmodellen und ‘mesoskopischen’ stochastischen Vielteilchenmodellen für

Reaktions-Diffusions-Systeme. Partielle Differentialgleichungen ergeben sich als Approxima-

tion der stochastischen Dynamik im Limes großer Teilchenzahlen. Für die Konvergenzbeweise

benutzen wir Techniken aus der numerischen Analysis und der Theorie der Markov-Prozesse.

Schließlich verwenden wir das stochastische Modell für die CO-Oxidation an Pt, um ‘Re-

gentropfenmuster’, d.h., die spontane Nukleation von Pulsen verbunden mit anschließendem

Aussterben, zu simulieren.
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h sets of grid points related to the domain G

L2(G) square-integrable real-valued functions on G

H1(G), H1
0 (G) Sobolev spaces of functions on G

H−1(G) dual space of H1
0 (G)
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Introduction

‘Large composite systems are variegated and full of surprises. Perhaps the most

wonderful is that despite their complexity on the small scale, sometimes they

crystallize into large-scale patterns that can be conceptualized rather simply, just

as crazy swirls of colors crystallize into a meaningful picture when we step back

from the wall and take a broader view of a mural.’

Auyang (1998)

This thesis is concerned with the mathematical modelling of a complex physico-chemical

system: the oxidation reaction of carbon monoxide on a platinum surface. Although the

terms ‘complex system’ and ‘mathematical modelling’ are by now widely used, we shall try

in the first part of this introduction to sketch their meaning and our personal point of view.

In the second part we give an overview of the contents of the thesis and the main results.

This part assumes a certain familiarity of the reader with the subject matter. We conclude

this introduction by some remarks on notation and style.

Complex systems and mathematical modelling

Complex systems

A system is understood in various branches of science as a part of reality that is composed

of many interacting constituents. It is separated, at least conceptually, from the rest of the

world which takes the role of the system’s environment: solids, liquids and gases as well as

biological macromolecules are composed of single atoms or simple molecules; organisms are

made up of a large number of cells; in the brains of behaving animals information is processed

by a network of neurons; biological populations are composed of individual organisms; an

economy is a system of consumers and producers. ‘Complex systems’ is by now the most

widely accepted label for an interdisciplinary field of research that started to emerge a few

decades ago. (Some classical references are, e.g., von Bertalanffy (1968); Nicolis & Prigogine

(1977); Haken (1983).)

What makes a particular system a ‘complex’ system? In a broad sense a system may

be called complex if it is complicated by some subjective judgement. A still fuzzy but
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more restrictive working definition is to call a system complex if its constituents, by their

cooperative activities, are able to form and maintain spatio-temporal patterns or functional

structures on the macroscopic (system) level.

This is best explained by an example. A classical magician’s trick is ‘turning water into

wine’: a glass of slightly alkaline water is poured into a wine glass on the bottom of which

are hidden a few drops of phenolphthalein solution. This organic compound is colourless

in neutral solution. However, it has an intense red colour in alkaline solution, which yields

the desired effect (as long as no one wants to taste the ‘wine’). At second sight this change

of colour is not surprising. It can be readily explained by the fact that in alkaline solution

the phenolphthalein molecule loses two hydrogen atoms. This shifts absorption from the

ultra-violet to the blue-green part of the spectrum and makes the solution appear red. The

periodic switching of the colour of a solution from blue to red during the celebrated Belousov-

Zhabotinsky (BZ) reaction, on the other hand, caused protest among chemists who saw in

it a violation of the laws of thermodynamics (Zhabotinsky, 1991; Murray, 2004a). These

colour changes are due to oscillations of the concentration of a redox indicator. They are an

example of temporal pattern formation and cannot be explained by a simple extrapolation

of the features of a single molecule to the whole system. Their appearance constitutes a

‘new’ or ‘emergent’ property of the system. If the BZ reaction is prepared in a Petri dish one

can observe, in addition, spatio-temporal concentration patterns such as spirals and target

patterns (the spreading of concentric rings).

The BZ reaction is a homogeneously catalysed reaction because the catalyst and the

reactants are in the same phase. Surface reactions such as the oxidation of carbon monoxide

on platinum belong to the class of heterogeneously catalysed reactions. Oscillations in the

reaction rate of CO oxidation on Pt had first been observed at atmospheric pressures with a

polycrystalline catalyst. In later studies on well-defined single-crystal surfaces a large variety

of patterns has been found that are often similar to those observed with the BZ reaction

(Ertl, 1991; Eiswirth & Ertl, 1995; Imbihl & Ertl, 1995). CO oxidation on Pt has since

become a model system for the study of pattern formation in reaction-diffusion systems.

Other prominent surface reactions are, e.g., the NO + CO reaction on platinum or the NO

+ H2 reaction on rhodium which exhibits spirals with ‘corners’ (Imbihl & Ertl, 1995).

Pattern formation can be observed also in biological systems (oscillations in populations;

cardiac rhythm; circadian rhythms, i.e., periodic changes between sleep and awakeness; mam-

malian coat patterns, e.g., the famous question ‘how the leopard got its spots’; cf. Murray

(2004a,b)). Other classical examples of pattern formation are convection patterns in fluids

(e.g., Rayleigh-Bénard convection or Taylor-Couette flow; cf. Cross & Hohenberg (1993)).

Functional structures do not appear in chemical systems nor hydrodynamic systems but

are omnipresent in biology. We mention two important examples: proteins and the brain.

Proteins are biological macromolecules. They are chains composed of 20 types of amino-
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acids which are assembled according to the genetic code in the genome (Alberts et al., 2004).

These chains fold in a complicated three-dimensional structure of minimal free energy in

which up to four levels can be distinguished. Because of their characteristic shape and

surface topography, proteins generally show great specificity in their ability to bind to other

molecules. Their particular structure thus enables proteins to perform specialised tasks, e.g.,

to catalyse biochemical reactions or to serve as receptor molecules.

Information is processed in the brain by a large assembly of interconnected neurons.

On the macroscopic level the brain has sometimes been divided on anatomical grounds in

different areas that were thought to specialise in different kinds of information. It seems,

however, that this point of view is only partially correct. Even relatively simple tasks, e.g.,

the tactual discrimination of the shape of two objects, are performed in collaboration by

different macro-circuits of a size of the order of 107 neurons located in different areas so that

there is no localised neuronal population responsible for one particular task. Moreover, the

populations that are involved in different tasks may overlap (Roland, 1993).

Mathematical modelling of complex systems

An interesting account of the meaning of ‘mathematical modelling’ is given in (Aris, 1978),

where a mathematical model is characterised as a ‘complete and consistent set of mathemat-

ical equations which is thought to correspond to some other entity, its prototype’. We agree

with this characterisation, although ‘set of mathematical equations’ should perhaps be re-

placed by some more general concept. Virtually all mathematical models of complex systems

come in the guise of either a dynamical system (in the mathematical sense) or a stochastic

process, two concepts that shall be introduced informally in the sequel.

A dynamical system is a triple consisting of a time set T , a state space S, and a family

of operators φt : S → S, t ∈ T , that represent the time evolution of the system. That is, an

initial state u0 ∈ S is mapped by φt to the state u(t) = φt(u0) ∈ S at time t. A dynamical

system is the mathematical formalisation of the concept of a deterministic evolution. If the

system is not controlled from the outside, i.e., if it is autonomous, the evolution operators

usually satisfy the condition φt+s(u0) = φt(φs(u0)), which implies u(t+ s) = φt(u(s)).

The mathematical concept that formalises a random evolution is a stochastic process.

Randomness typically comes into play in two different ways: it can be caused by either a

fluctuating environment or by the randomness of certain intrinsic processes, e.g., chemical

reactions. Randomness is represented mathematically by a sample space Ω on which a prob-

ability measure P is defined that assigns a probability to certain ‘reasonable’ subsets of Ω

called events. Every ‘reasonable’ mapping u from Ω to a space S can then be thought of as a

random element in S or a random variable taking values in S. A stochastic process is a triple

consisting of a time set T , a state space S and a family of random variables u(t), t ∈ T , that

take values in S. That is, for each t ∈ T , u(t) is a random element in S.
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Let us discuss how some of the examples for complex systems introduced above can be

modelled by dynamical systems or stochastic processes. Generally, for complex systems are

composed of a large number of constituents, mathematical models can be set up on the level

of the constituents (microscopic models, individual-based models) or on the system level

(macroscopic models). In addition, there are mesoscopic models that ‘interpolate’ between

micro- and macro-models. Which level of detail is appropriate depends on the specific problem

at hand. The question whether there is a supremacy of microscopic over macroscopic models,

in the sense that the latter can be ‘derived’ from the former, incites philosophical debates

(Auyang, 1998).

Pattern formation in reaction-diffusion systems in homogeneous solution, as e.g. the BZ

reaction, are typically modelled on the macroscopic level by systems of ordinary or partial

differential equations (PDEs) for the concentrations of the chemical species. Here the time

set consists of the nonnegative reals, the state space is Rn or an appropriate function space

(e.g., L2, the space of square-integrable functions) and the evolution operators are usually

obtained implicitly by solving the differential equations. The same approach can be applied to

model surface reactions (Krischer et al., 1992; Bär, 1993) and biological populations (Murray,

2004a,b).

On the microscopic level reaction-diffusion systems are often modelled by ‘microscopic’

stochastic particle models (interacting particle systems, lattice-gas models, stochastic spatial

models), where mutually interacting particles randomly move on a lattice, say Zm (m =

1, 2, 3), representing certain ‘sites’ (e.g., adsorption sites in the case of surface reactions). Here

the state space is the space of all possible particle configurations on the lattice, i.e., S = CZm
,

where the set C contains all possible configurations of a single site. In the simplest case C

might be the set {0, 1}, where 0 stands for empty, and 1 for occupied. For CO oxidation

on Pt the first model of this type was introduced by Ziff et al. (1986). A more elaborate

model is described in Rosé et al. (1994). In a coarser ‘mesoscopic’ approach the particles

move randomly on a lattice now representing certain cells or compartments of mesoscopic

size. Particles are randomly created or destroyed with intensities that depend on the local

particle density. The state space is given by the collection of all possible particle numbers in

the cells, i.e., S = (Nns
0 )Z

m
, where ns denotes the number of species. In computer simulations

the use of microscopic particle models is at present limited to rather small systems, e.g., CO

oxidation on a platinum field emitter tip where only about 500 × 500 adsorption sites are

involved. For the description of a fluctuation phenomenon in CO oxidation on Pt which

occurs on a larger scale (≈ 1 – 100 µm) and involves about 109 adsorption sites, so-called

raindrop patterns, a mesoscopic approach is more appropriate (cf. Chapters 1 and 4). The

mesoscopic models find application also in biology, e.g, in the modelling of fluctuations in the

rates of gene expression, which can lead to the appearance of different phenotypic outcomes

in initially uniform populations (Arkin et al., 1998).
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We briefly comment on mathematical models for the complex systems exhibiting func-

tional structures mentioned above. Comparing to reaction-diffusion systems, for instance, it

is probably fair to say that the mathematical modelling of such systems has so far been of

limited success. Proteins and neural networks are at present modelled almost exclusively on

the microscopic level (Snow et al., 2005; Dayan & Abbott, 2001), although in the context of

neural networks there do exist models working with population densities (Ermentrout, 1998).

Since proteins are macromolecules, their state can be specified on the microscopic level by

giving the position and momentum of each of their atoms. The atoms are assumed to interact

with each other via phenomenological forces. In addition one must introduce a model for the

protein’s environment (the solvent). In order to predict the final shape and functionality

of the protein, one would like to use such a microscopic model to simulate the folding pro-

cess. However, molecular dynamics simulations are currently limited to the nanosecond to

microsecond regime, while even small proteins fold on the microsecond to second timescale

(Snow et al., 2005). This shows the limitations of a ‘brute force’ microscopic approach. Sim-

ilarly, neural networks are often modelled by large systems of coupled differential equations

for the dynamics of the firing rates or the membrane potentials of all neurons. Certain as-

pects of brain activity and learning can successfully be reproduced by such models. However,

the connection to actual neural circuits in the brain and the emergence of more complicated

behaviour remain unclear.

We have pointed out that complex systems at various levels of detail are modelled either

by dynamical systems or stochastic processes. These are two vast sub-areas of contemporary

applied mathematics. The problems addressed there range from the fundamental problem of

establishing the existence of certain dynamical systems or stochastic processes to the analysis

of their qualitative features. Which mathematical questions are particularly relevant for the

study of complex systems? We give a few examples.

I Bifurcations. In the study of pattern formation one is interested in a pattern that

is established after a certain period of transient behaviour. This corresponds to the

fact that the trajectories of autonomous ‘dissipative’ dynamical systems asymptotically

approach a subset of the state space S called the ‘global attractor’. It may contain or

consist of stable steady states (states u ∈ S for which φt(u) = u for all t ∈ T ), stable

periodic orbits (subsets B of S for which exists a period T such that φt+T (u) = u

for all u ∈ B) or even a ‘strange attractor’. Roughly speaking, qualitative changes

in the structure of the global attractor (e.g., changes in the number of stable steady

states or stable periodic orbits) upon variation of parameters are called bifurcations.

Spatio-temporal pattern formation is often explained by bifurcation: the pattern is

associated with the appearance of a nontrivial solution bifurcating from a trivial or

homogeneous one. The physical background is that pattern formation typically occurs

in open systems (systems that exchange energy and/or matter with their environment)
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far away from thermodynamic equilibrium. Typically, one can experimentally tune

a control parameter, e.g., a temperature gradient, that gradually drives the system

from thermodynamic equilibrium, where it is uniform, to the non-equilibrium situation

where patterns are formed. In order to understand a dynamical system depending on

parameters one tries to figure out its bifurcation diagram or tableau. That is, one tries

to determine all regions in parameter space with qualitatively different dynamics, either

analytically or numerically (Guckenheimer, 1986).

I Model reduction. Often one is interested in finding out the ‘effective’ number of de-

grees of freedom in a dynamical system. In the simplest case certain systems of ordinary

differential equations (ODEs) can be reduced, at least heuristically, by setting the time

derivative of some ‘fast-relaxing’ variables to zero. In a more complicated situation one

might want to prove that the behaviour of an infinite-dimensional dynamical system

defined by a PDE can approximately be determined by the projection of the dynamics

on a finite-dimensional subspace of the infinite-dimensional state space.

I Coarse graining. We have already seen that complex systems may be modelled on

at least two levels, the microscopic (constituent) level and the macroscopic (system)

level. The introduction of models at several levels of detail naturally raises the question

whether these models are consistent and how they can be linked together. For reaction-

diffusion systems macroscopic PDE models and microscopic or mesoscopic stochastic

particle models can sometimes be linked by a so-called law of large numbers. That is,

in the limit of large particle numbers, a particle density associated to the stochastic

model approaches the solution of the macroscopic PDE.

I Stochastics. Fluctuations, either due to environmental influences or internally cre-

ated, offers new possibilities for the dynamical behaviour. If the dynamics is purely

deterministic, then the system will always stay close to a stable steady state, for in-

stance, once it has reach its vicinity. In the presence of fluctuations the system might

leave this vicinity and then ‘deterministically’ approach a second stable steady state.

The interplay between stochastic and deterministic dynamics may lead to a sort of ‘os-

cillation’ with a random period. Often a quantity of interest for this type of problem

is an exit time τB, the time to reach the boundary of a neighbourhood B of a certain

state u when starting in u (or, in other words, the hitting time of S \B). Exit times and

hitting times are random variables whose distribution or expected value can sometimes

be calculated.

The short selection above is by no means complete. Some of these typical problems are

important for the understanding of CO oxidation on Pt and will be tackled later, either with

mathematical rigour, by a computational approach, or in a purely heuristic way.
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Contents and main results

The main motivation for the present work is the experimental observation of temporal, spatio-

temporal and noise-induced pattern formation in the oxidation of carbon monoxide on plat-

inum single crystal surfaces. Therefore we present the necessary experimental background

to CO oxidation on Pt in the first section of the next chapter and give an overview of the

observed patterns at low (/ 10−4 mbar) to intermediate (≈ 10−2 mbar) pressures in the gas

phase. We shall focus mainly on the Pt(110) surface and mention only briefly the surfaces

with Miller indices (100) and (111). In order to capture both deterministic and random

phenomena, we then introduce a macroscopic PDE model and a mesoscopic stochastic par-

ticle model, both including a temperature variable. It follows a discussion of the bifurcation

structure of the kinetic part of the macroscopic model with fixed temperature. Heat effects

are considered in more detail in Chapter 4. Our model extends and improves the well-known

(isothermal) model for Pt(110) by Krischer et al. (1992) in several respects. As compared

to Krischer et al. (1992), the term for oxygen adsorption is changed, which yields a better

correspondence with experimental results at higher pressures. Moreover, we use a different

ansatz for the kinetics of the surface structural phase transition so that the model can easily

be adapted to other platinum surfaces by changing certain parameters. The present work

is a continuation of Reichert (2000) and Reichert et al. (2001), where we focused on the

isothermal and homogeneous case.

The introduction of two different models, a macroscopic deterministic model and a meso-

scopic stochastic particle model, naturally raises the question whether these models are con-

sistent. This issue is dealt with in a quite general setting in Chapters 2 and 3 where we

investigate how certain classes of PDE models and stochastic particle models are related. We

prove rigorously that a particle density associated to the stochastic particle model converges

to the solution of the PDE in the limit of large particle numbers.

The stochastic particle models we call mesoscopic can be thought of as a combination

of a continuous-time version of the classical urn model by P. and T. Ehrenfest for diffusion

through a membrane (see, e.g., Karlin & Taylor (1975)) and the standard stochastic model

for chemical reactions (see, e.g., van Kampen (1992)). That is, we think of a chemical

reactor as being composed of cells or compartments of length l. Each cell may contain

up to about n particles of each species. These particles jump randomly from a cell to an

adjacent one with rate d. Moreover, if we denote the vector of particle concentrations (the

particle numbers divided by n) by ul = (ul,1, . . . , ul,ns), ns being the number of species, the

particle numbers in a cell change according to nr possible reactions that occur randomly with

rates nKi(ul). Stochastic particle models of this type have been described since the early

seventies by many authors in physics (Nicolis & Prigogine, 1977; Gillespie, 1977; Haken, 1983;

van Kampen, 1992; Gardiner, 2004) and mathematics (Kurtz, 1981; Arnold & Theodosopulu,

1980; Kotelenez, 1986, 1988; Blount, 1991, 1993, 1994; Guiaş, 2002). In the physical literature



8 Introduction

the model is often simply called ‘the’ stochastic model for chemical reactions; in mathematics

it also goes under the name of ‘density-dependent population process’.

The methods for proving laws of large numbers for such particle models are closely related

to techniques for solving the limit PDEs. In order to distinguish our approach from the one

based on Kotelenez’s work (Kotelenez, 1986, 1988) which has been used in the literature cited

above, we start with a short, informal discussion of the simplest nonlinear limit PDE. That

is, we consider a scalar reaction-diffusion equation

∂tu−∆u = f(u) (1)

on a bounded domain G ⊂ Rm with sufficiently smooth boundary together with (homoge-

neous) Dirichlet boundary conditions. Here f is a linear combination of the reaction rates

Ki involving the stoichiometric coefficients.

As is often the case in PDE theory, we look for generalised solutions. In the semigroup

approach one first defines S(t) = et∆, the semigroup of bounded linear operators on L2(G)

generated by the Laplacian (with Dirichlet boundary conditions). By variation of constants,

a classical solution of (1) also satisfies

u(t) = S(t)u(0) +
∫ t

0
S(t− s)f(u(s)) ds. (2)

Any function u : [0, T ] → L2(G) that satisfies Eq. (2), on the other hand, is called a generalised

mild solution of Eq. (1).

In the variational approach one multiplies Eq. (1) with a test function v and integrates

over the domain G. After an integration by parts one observes that a classical solution also

satisfies

d

dt

(
u(t), v

)
L2(G)

+ a(u(t), v) =
(
f(u(t)), v

)
L2(G)

for all v ∈ H1
0 (G), (3)

where the bilinear form a( · , · ) on H1
0 (G)×H1

0 (G) is given by

a(u, v) =
(∇u, ∇v)

(L2(G))m .

A function u ∈ H1(0, T ;H1
0 (G), L2(G)) that solves (3) is called a weak solution of Eq. (1).

While for semilinear equations as the one discussed above both the semigroup approach

and the variational approach are successful, it is probably fair to say that the variational

approach is more powerful when tackling quasilinear equations, e.g., equations involving a

nonlinear diffusion operator.

In order to connect the stochastic process modelling the dynamics of the absolute particle

numbers that has been described above to the solution of the PDE (1), we rescale it and

define an appropriate step function-valued particle density ul on a set of grid points Gl that

corresponds to the continuous domain G. (Recall that l is the edge length of a cell.) With the
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aid of Dynkin’s formula it can be seen that this particle density solves a system of stochastic

differential equations

dul(z, t) =
(
(d/2m) l2 ∆lul + f(ul)

)
dt+ dMl(z, t), z ∈ G1

l . (4)

Here ∆l is a discretized Laplacian, the processes Ml(z, · ) are certain martingales and G1
l

is the ‘interior’ of Gl. This observation can be used to guess the limit PDE: if one shrinks

the cell size l and increases the number of particles per cell n and the hopping rate d in an

appropriate way, then, one hopes, the fluctuating martingale terms will become small, and

the equations defined on the grid G1
l will approximate the equation defined on the continuous

domain G.

There are (at least) two possibilities to make these considerations rigorous, which are

closely related to the semigroup approach and the variational approach to solving the limit

PDE. In the first approach (Kotelenez, 1986, 1988) one observes that by variation of constants

the stochastic particle density ul satisfies the equation

ul(t) = Sl(t)ul(0) +
∫ t

0
Sl(t− s)f(ul(s)) ds+

∫ t

0
Sl(t− s) dMl(s). (5)

Here Sl(t) is the semigroup generated by the discrete Laplacian, and the second integral term

is a so-called stochastic convolution integral. Then one subtracts Eq. (5) from Eq. (2) and

estimates ‖u(t)− ul(t)‖L2(G). This yields a law of large numbers of the form

P

[
sup
t≤T

‖u− ul‖L2(G) ≥ ε

]
→ 0 (l→ 0) (6)

for arbitrary ε > 0.

Our technique, which will be introduced in Chapters 2 and 3, is related to the variational

approach to solving Eq. (1). We also start with the observation that Eq. (4) looks like a

spatially semi-discretized finite difference approximation of Eq. (1) perturbed by a martingale

noise term. In a first step we then consider the (deterministic) step function-valued solutions

vl of
d

dt
vl(z, t)− (d/2m) l2 ∆lvl(z, t) = f(vl(z, t)), z ∈ G1

l , (7)

and show that they converge to the weak solution of Eq. (1) in L2(0, T ;L2(G)). Subsequently,

in the second step, we show that

E

∫ T

0
‖ul − vl‖2

L2(G) dt→ 0 (l→ 0). (8)

In order to obtain (8), we first use Dynkin’s formula to show that the process

‖ul(t)− vl(t)‖2
L2(Gl)

− ‖ul(0)− vl(0)‖2
L2(Gl)

+ 2
∫ t

0
al

(
ul(s)− vl(s), ul(s)− vl(s)

)
ds

− 2
∫ t

0

(
f(ul(s))− f(vl(s)), ul(s)− vl(s)

)
L2(Gl)

ds−Rl(t), t ≤ T,

(9)
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is a (local) martingale. Here al( · , · ) is the discrete analogue of the bilinear form a( · , · ),
L2(Gl) is a finite-dimensional subspace of step-functions in L2(G), and Rl is a remainder term

that vanishes in the limit. Formula (9) clearly reveals the relationship between the stochastic

particle model and the variational structure underlying Eq. (1). Sufficient conditions for

convergence are (d/2m) l2 → 1 and d/n → 0 as n → ∞, l → 0. These are the same as the

conditions needed in Kotelenez (1988) to show (6).

The ideas outlined above are carried out in Chapter 2 first for linear models, in order to

introduce our method of proof with a minimum of technical and notational difficulties. In

Chapter 3 we then study the convergence of certain nonlinear stochastic particle models. We

first treat models with Lipschitz continuous reaction rates that have semilinear systems of the

type of Eq. (1) as limit dynamics. It turns out that this constitutes only a slight extension

of the linear case. Furthermore, we discuss the more realistic case of reaction functions

f = (f1, . . . , fns) admitting an invariant region. More precisely, we assume that the vector

field f induced by the reaction rates Ki points inwards on the boundary of the cube [0, 1]ns .

In addition, we allow for non-diffusing species. This model generalises the single-species

models with polynomial reaction kinetics treated in Kotelenez (1988) and Blount (1994), and

the two-species model discussed in Guiaş (2002).

In the second part of Chapter 3 we treat two models with a nonlinear diffusion mechanism.

For the sake of simplicity, we restrict the discussion to single-species models in one space

dimension without chemical reactions. We first investigate what happens when the intensity

for a jump of a particle to a neighbouring cell depends on the local concentration, i.e.,

d = d(ul(z)), where d( · ) is monotonously increasing on R+
0 . It turns out that, if D( · )

denotes the limit of 1
2 l

2d( · ), the diffusive mass flux on the macroscopic level is given by

J = −(D′(u)u+D(u)) ∂xu. (10)

Thereafter, we have a look at the case when the intensity for a jump to a neighbouring cell

depends on the absolute value of the discrete concentration gradient, i.e., d = d(|∂+ul(z)|) for

a jump to the right and d = d(|−∂−ul(z)|) for a jump to the left, respectively. The resulting

diffusive mass flux is

J = −D(|∂xu|) ∂xu, (11)

where D( · ) is the limit of l2d( · ).
The limit behaviour of the particle models with nonlinear diffusion mechanism has (to

the best of our knowledge) not been investigated yet in the context of mesoscopic stochastic

particle models. The first model (d = d(ul(z))) resembles the so-called zero-range process that

is studied extensively in the literature on interacting particle systems where a macroscopic

limit is obtained by rescaling the space and time variables (Kipnis & Landim, 1999). Finally,

in the last section of Chapter 3, we demonstrate for a linear example model from Chapter
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2 how the law of large numbers obtained there can be refined. Possible improvements and

extensions of the results are discussed at the end of Chapter 3.

In Chapter 4 we turn to the more practical problem of simulating paths of the particle

density process for the models considered in the previous chapters. The discussion applies,

in particular, to the particle density process associated to the model for CO oxidation on

Pt(110) that is introduced in Chapter 1. We propose a simulation algorithm which is then

used for the simulation of the raindrop patterns described in Chapter 1.

More details about the contents are given in an overview paragraph at the beginning of

each chapter. At the end of each chapter the results are discussed and related to other work.

Remarks on notation and style

The language and level of mathematical rigour is adapted to the specific purposes of each

chapter and thus varies slightly throughout the thesis. The ‘hard’ mathematics is contained

in Chapters 2 and 3, while Chapters 1 and 4 are concerned with modelling and simulation.

Overall, we have tried to use only standard notation, although this is practically impossible,

since this is interdisciplinary work and the same letters often have different meanings in

different fields. For example, it is customary in probability theory to reserve the letter Ω for

a sample space, while in analysis it often denotes a domain. We point out that we do not keep

to the convention of denoting random variables and stochastic processes by capital letters.

Vector-valued functions are always printed in bold face, whereas a point x = (x1, . . . , xm)

in Rm is printed in normal face. The letter C is reserved for a positive constant that can

vary from line to line. Abstract vector spaces are generally assumed to be real. If X is a

Hilbert space, then the scalar product in X is denoted by
( · , · )

X
. The dual pairing between

a Banach space X and its dual X∗ is denoted by
〈
x∗, x

〉
X∗, X =

〈
x∗, x

〉
X

, x∗ ∈ X∗, x ∈ X.

A list of mathematical notation can be found on page iv.
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Chapter 1

Experimental background and

mathematical modelling

Overview

In the first section of the present chapter we describe the experimental background to CO

oxidation on Pt single crystal surfaces at low (/ 10−4 mbar) to intermediate (≈ 10−2 mbar)

pressures in the gas phase. We shall focus mainly on the Pt(110) surface and mention only

briefly the surfaces with Miller indices (100) and (111). In addition, we indicate how some

of the experimental results can be included in a mathematical model on the mesoscopic or

macroscopic level. In Section 1.2 we develop a macroscopic deterministic PDE model for CO

oxidation on Pt surfaces starting from a basic isothermal model that involves three species.

The results of a numerical bifurcation analysis of the kinetic part for Pt(110) are discussed

in Section 1.2.3. Subsequently the model is augmented by an equation for the (rescaled)

surface temperature to capture also thermal effects. Finally, in Section 1.3, we introduce

a corresponding mesoscopic stochastic particle model that accounts for fluctuations in the

reaction processes.

1.1 Experimental background

On all platinum surfaces the CO oxidation reaction proceeds via a Langmuir-Hinshelwood

mechanism: both CO and oxygen have to be adsorbed from the gas phase at adsorption sites

on the platinum surface before reaction can occur. The adsorption of O2 is dissociative, i.e.,

the oxygen molecule is split in two oxygen atoms, which constitutes the catalytic action of the

surface. Adsorbed CO molecules are mobile: they perform a diffusive hopping from site to

site. When a diffusing CO molecule encounters an oxygen atom both react to carbon dioxide

CO2 that desorbs immediately. The reaction is exothermal, the heat of reaction being about
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20 – 30 kJ/mol. A basic reaction scheme reads

CO(g) + ? À CO(ad)

O2(g) + 2 ? → 2 O(ad)

CO(ad) + O(ad) → CO2(g),

(1.1)

where ? denotes a vacant adsorption site.

1.1.1 Experimental methods

For a detailed understanding of the mechanism of any surface reaction one has to use experi-

mental methods from surface physics and chemistry (‘surface science’). In spite of the ambient

gas phase, these methods allow to retrieve information about the processes taking place di-

rectly on the surface (‘in situ’). In the following we shall briefly discuss some techniques

that are important for the experimental study of CO oxidation on Pt. For more information

see Zangwill (1988); Imbihl & Ertl (1995); Thomas & Thomas (1996); Rotermund (1997a);

Oura et al. (2003). An essential prerequisite for many experimental techniques is vacuum

technology (see, e.g., Oura et al. (2003)), at least for the preparation and purification of

the catalytic surface. Therefore experiments are performed in an ultra-high vacuum (UHV)

chamber in which a platinum probe of a typical size of 1 cm2 is installed. The temperature of

the probe can be regulated by a feedback-controlled heating mechanism. A gas inlet system

allows to operate the UHV chamber as a constant flow reactor ; the concentrations of CO and

O2 in the gas phase are held fixed to a good approximation, and the reaction product CO2

is continuously removed.

A widely used method for determining surface structures and their changes is low-energy

electron diffraction (LEED), where incoming electrons are scattered from the outer surface

layers. The diffraction pattern provides information about the surface structure as well as

evidence for superlattices. Because of the short mean free path of the electrons in the gas

phase, the method can only be applied at low pressures (/ 10−4 mbar). To get an idea about

the global adsorbate coverages one can measure the work function of the probe and compare

it to the work function of an empty surface. This methods has been applied, e.g., for the

study of global concentration oscillations on Pt(110) (Eiswirth, 1987). The development of

the photoemission electron microscope (PEEM) permitted the visualisation of spatio-temporal

concentration patterns. The spatial resolution of the PEEM is about 0.2 µm and its temporal

resolution is about 20 ms. In the PEEM images oxygen-covered areas appear dark due to the

high work function of the O-covered surface; a CO-covered area is characterised by a light

grey, and the empty parts of the surface appear bright. Measurements with atomic resolution

can be performed with the scanning tunnelling microscope (STM), but because of its yet

limited temporal resolution it cannot be applied to CO oxidation on Pt (at temperatures

where pattern formation occurs). Experimental results from the atomic to the mesoscopic



1.1: Experimental background 15

scale are available for the catalytic oxidation of hydrogen on Pt(111) (Sachs et al., 2001).

Another possibility to visualise surface reactions with nearly atomic resolution is to follow

the reaction on a field emitter tip. This method has been applied to study the effects of

internal noise in CO oxidation on Pt(110) (Suchorski et al., 1999, 2001; Imbihl, 2005).

All methods mentioned so far make use of electrons to characterise the structure or

coverage of the surface. Therefore they cannot be employed at higher pressures in the gas

phase, since the mean free path of the electrons is then too short. More recently, several

methods using electromagnetic radiation (either in the infrared or in the visible part of

the spectrum) have been developed which allow to observe the surface even at atmospheric

pressures (Rotermund et al., 1995; Rotermund, 1997a). One of them is ellipsomicroscopy for

surface imaging (EMSI) which is based on the change of polarisation of an outgoing with

respect to an incoming light beam.

Finally, it should be mentioned that all known experimental methods on the mesoscopic

or macroscopic scale provide only qualitative information about the surface coverages. Exact

quantitative information about the coverages is usually not available.

1.1.2 Reaction steps of CO oxidation on Pt

Here we discuss in more detail the reaction steps of CO oxidation on Pt outlined at the begin-

ning of this section. At the same time we introduce some generalities about the mathematical

modelling of surface reactions on the mesoscopic and the macroscopic level. Reasonable val-

ues for the parameters introduced below are specified in Section 1.2 for the Pt(110) surface at

low to intermediate pressures in the gas phase. For further discussions and references we refer

to Eiswirth (1987) and Krischer et al. (1992). For further information about the kinetics of

surface reactions see, e.g., Zangwill (1988) or Oura et al. (2003). In the following we denote

the CO coverage by u, the oxygen coverage by v, and the fraction of surface in the 1 × 1

structural phase (see below) by w.

Surface reconstruction

Conceptually cutting through a platinum crystal under different angles yields different single

crystal surfaces. The surface of polycrystalline platinum is composed of domains which are

orientated like crystal planes with Miller indices (100), (110), or (111). It is a well-known fact

that many solids reconstruct in the vicinity of their surface in order to reach an energetically

more favourable structure. Investigations with LEED and other methods proved that this is

also the case for platinum; Pt(100) reconstructs in a quasi-hexagonal (hex) structure, while

reconstructed Pt(110) exhibits a (1×2) missing-row structure. No reconstruction is observed

for Pt(111).

The surface reconstruction can be lifted by certain adsorbates; in particular, an elevated

CO coverage leads to a lifting of the reconstruction of both the (110) and the (100) surface.
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Figure 1.1: Reconstructed and 1×1 surface structures of Pt(100), Pt(110) and Pt(111) (after

Imbihl & Ertl (1995)).

The lifting of the reconstruction constitutes a phase transition. It starts at a certain crit-

ical coverage and the fraction of reconstructed surface then either decreases monotonously

(Pt(110)) or abruptly jumps to a lower value (Pt(100)). The lifting of the reconstruction is

reversible and in the case of Pt(100) hysteresis is observed. The critical coverage for Pt(110)

(at a temperature of about 500 K) amounts to about 0.2 monolayers and at a coverage of

0.5 monolayers the reconstruction has completely been lifted. (A monolayer is defined as the

number of atoms in the outermost layer.)

For the modelling of the reaction dynamics of CO oxidation on Pt the rate of change of

the surface structure in the presence of changing adsorbate coverages is of utmost importance.

It is a priori not clear how these structural changes should be included in a mathematical

model.

Adsorption

The probability that a collision of a molecule of a certain species with an empty surface

leads to an adsorption event is called the sticking probability or sticking coefficient for the

species. If adsorbates are already present on the surface, the probability of adsorption is

modelled as a product of the sticking coefficient and an inhibition factor which is a function

of the coverages. The sticking probability and the inhibition factor can, if only one species
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is present in the gas phase, be determined by thermal desorption spectroscopy (Oura et al.,

2003). However, the form of the inhibition factor might change if there are multiple species

present in the gas phase. For CO oxidation on Pt it was found that the sticking coefficient

of oxygen depends on the surface structure, while the sticking coefficient of CO is always

approximately equal to one independent of the phase. The oxygen sticking coefficient has a

value of 0.3 – 0.4 on the reconstructed (1 × 2) phase of Pt(110) and a value of 0.6 on the

1× 1 phase. The inhibition factor of CO has been measured to be 1− uξ for Pt(110), where

ξ ≈ 3.5. The exponent ξ is due to a precursor effect (see, e.g., Oura et al. (2003)). In the

modelling below in Sections 1.2 and 1.3 this precursor effect is considered as a minor detail

and neglected. The inhibition factor for oxygen adsorption is (1− v)2 because an incoming

oxygen molecule needs two neighbouring vacant sites for adsorption.

Desorption

Desorption is a thermally activated process. In the absence of interactions between the ad-

particles the desorption rate is modelled as a product of an Arrhenius rate and a power of

the coverage. The Arrhenius rate ν exp(−E/(RT )), where ν is a frequency, E an activa-

tion energy and R the gas constant, contains the temperature dependence of the desorption

process. It has been found experimentally that the rate of CO desorption on Pt(110) is to

a good approximation proportional to the CO coverage. In the case of Pt(100) desorption

of CO from the 1 × 1 and the reconstructed surface must be distinguished because of the

considerably higher binding energy on the reconstructed surface. The desorption of oxygen

can be neglected below temperatures of about 700 K.

Surface diffusion

On a microscopic level the diffusive hopping from site to site of an adsorbed particle is

described by a random walk on a two-dimensional lattice. By rescaling the distance λ between

two sites and the time τ between two jumps in such a way that D = λ2/(4τ) is kept constant,

one gets a Brownian motion process in the limit λ, τ → 0. The probability density to find a

Brownian particle at time t at a point x in space satisfies a diffusion equation (heat equation)

with diffusion coefficient D (Fick’s law). Consequently, this equation also describes the

particle density of a system of independently moving particles in the limit of large particle

numbers. It can be shown that the same limit equation holds if the molecules are modelled

as ‘hard spheres’, i.e., two molecules are not allowed to occupy the same site at the same

time. (Such a particle system is called a simple exclusion process ; see, e.g., Kipnis & Landim

(1999).) Therefore surface diffusion is often modelled on the macroscopic level by Fick’s law.

Other types of interaction between adparticles can be included by introducing a coverage

dependence of the diffusion coefficient.
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Simple Fickian diffusion has turned out to work quite well for CO on Pt(110). The

diffusion coefficient at temperatures around 500 K is about 10−13 – 10−12 m2/s. The diffusion

of CO molecules is slightly anisotropic; it is faster along the [110]-oriented troughs (cf. Fig.

1.1). The diffusion of adsorbed oxygen is negligible.

Reaction

The reaction of CO(ad) and O(ad) to CO2(g) is thermally activated. The rate is usually

modelled in a first approximation as a product of an Arrhenius rate and the concentrations

(mass action kinetics), although it certainly depends on the coverages in a more complicated

way. (Cf. the discussion in Krischer et al. (1992).)

1.1.3 Spatio-temporal pattern formation

While Pt(111) exhibits merely bistable behaviour, a plethora of oscillations and patterns can

be observed during CO oxidation on Pt(100) and, in particular, Pt(110). In the following we

give an overview of the phenomenology of patterns on Pt(110).

Global oscillations

Global oscillations of the surface coverages have been investigated extensively by Eiswirth

(1987) via work function measurements. Roughly speaking, the work function corresponds

to the oxygen coverage because adsorbed oxygen contributes most. Oscillations have been

observed for partial pressures pCO and pO2 from 10−6 to 10−3 mbar. Their phenomenology

ranges from slow sinusoidal oscillations with large amplitude (Fig. 1.2) and relaxation oscil-

lations involving two different time scales (Fig.1.3) to fast sinusoidal oscillations with small

amplitude. The fast sinusoidal oscillations sometimes give rise to a regime of chaotic dynam-

ics via a series of period doubling bifurcations when decreasing the CO partial pressure pCO

(Fig. 1.4).

Spatio-temporal pattern formation at low pressures

With the development of the PEEM the observation of spatio-temporal pattern formation

became possible. At pressures of the same order of magnitude as the global oscillations

one can observe also spatio-temporal concentration patterns such as fronts, spirals, target

patterns and standing waves (Ertl, 1991; Jakubith et al., 1990). An experimental bifurcation

diagram with oxygen pressure fixed to pO2 = 4× 10−4 mbar is reproduced in Fig. 1.5.

I If the CO partial pressure pCO is increased starting from an O-covered surface, one first

enters a bistable parameter range which is characterised by the spreading of CO islands

on O-covered areas (Fig. 1.6a). Such islands nucleate at defects and may, at slightly

higher pCO, coexist with oxygen islands on CO-covered areas.
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Figure 1.2: Slow sinusoidal oscillations with large amplitude at low temperatures. (a) pO2 =

1.5× 10−4 mbar, pCO = 1.125× 10−5 mbar, T = 460 K. (b) pO2 = 1.5× 10−4 mbar,

pCO = 0.975× 10−5 mbar, T = 470 K. The work function ∆φ is plotted versus time (from

Eiswirth (1987)).

Figure 1.3: Relaxation oscillations at (a) pO2 = 1.5× 10−4 mbar, pCO = 4.5× 10−5 mbar,

T = 520 K and (b) pO2 = 1.5× 10−5 mbar, pCO = 0.6× 10−5 mbar, T = 500 K (from

Eiswirth (1987)).

Figure 1.4: Fast sinusoidal oscillations with small amplitude and period doubling at

pO2 = 6× 10−5 mbar, T = 540 K and (a) pCO = 3.3× 10−5 mbar through (c) pCO =

3.15× 10−5 mbar (from Eiswirth (1987)).
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Figure 1.5: Experimental bifurcation diagram in the temperature T and the CO partial

pressure pCO with oxygen pressure fixed at pO2 = 4× 10−4 mbar (after (Rotermund,

1997a)).

(a) (b)

Figure 1.6: (a) Nucleation and growth of a CO island at pO2 = 4× 10−4 mbar, T = 443 K.

The width of the depicted area is about 200 µm. The time lapse between the pic-

tures is 10 s. (b) PEEM snapshots of spiral waves at pO2 = 4× 10−4 mbar, pCO =

4.3× 10−5 mbar, T = 448 K. The core of the spiral with the largest wavelength has a

size of 25× 14 µm2. The time interval between the snapshots is 30 s (after (Rotermund,

1997a)).

(a) (b)

Figure 1.7: (a) Target patterns on an area of 200× 300 µm2 at pO2 = 3.2× 10−4 mbar,

pCO = 3× 10−5 mbar, T = 427 K. The time lapse between the first five images is 4.1 s

and 30 s between the two last images. (b) Standing waves with a period of 1.4 s on an

area of 300× 300 µm2 at pO2 = 4.1× 10−4 mbar, pCO = 1.75× 10−5 mbar, T = 550 K, at

time t = 0 s, 0.08 s, 0.12 s, 0.46 s (after Jakubith et al. (1990)).
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I Upon further increasing the CO pressure one enters a parameter region which is char-

acterised by the existence of pulses and spirals (Figs.1.6b and 1.7a), in other words,

the system can in this parameter region be regarded as an excitable medium (see, e.g,

Mikhailov (1994)).

I At even higher pCO there is an oscillatory region, where mainly global fast sinusoidal

oscillations with small amplitude are observed, but occasionally also standing wave

patterns (stripes oscillating with opposite phase, Fig. 1.7b) and turbulent behaviour.

Fluctuation-induced pattern formation at intermediate pressures

With increasing pressure in the gas phase smaller and smaller patches of the surface can be

regarded as well mixed, the size of critical nuclei for the formation of islands and pulses is

expected to decrease. Thus internal fluctuations due to the discrete nature of the reaction

processes may become relevant. (See also the discussion in Section 1.3.)

An experimental observation at intermediate pressures, so-called raindrop patterns, which

supports this reasoning is reproduced in Figs. 1.8 and 1.9. Starting from a reactive surface

with a relatively high oxygen coverage, the CO partial pressure pCO had been stepwise in-

creased to a value just before the whole surface would switch to the CO-covered state. CO

nuclei could be seen to originate at various places, forming a ring-shaped pattern that was

subsequently destroyed (propagation failure). Their appearance seemed to be randomly dis-

tributed all over the catalyst surface (Rotermund, 1997b).

1.2 Macroscopic deterministic modelling

In this section we introduce a unified macroscopic deterministic model for CO oxidation on

platinum single crystal surfaces at low to intermediate pressures. A complementary meso-

scopic stochastic particle model will be presented in Section 1.3. Concrete parameter values

are specified for Pt(110) at low pressures. The present work is a continuation of Reichert

(2000) and Reichert et al. (2001), where we focused on the isothermal and spatially homo-

geneous case. Previous models based on the same mechanism that incorporate the surface

structural phase transition can be found in Imbihl et al. (1985) and Andrade et al. (1989)

for Pt(100), Krischer et al. (1992) for Pt(110), and Krömker (1997) for both surfaces. A

summary of what follows has already been given in Starke et al. (2006).

1.2.1 Chemical reactions and surface diffusion

The reaction steps

In view of the experimental findings discussed in the previous section, the reaction processes

on the surface should be described in terms of two species that can be adsorbed on either of
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Figure 1.8: EMSI pictures of raindrops at pO2 = 2.2×10−2 mbar, pCO = 4.9×10−3 mbar,

T = 530 K. The time lapse between each snapshot is 0.4 s. The size of the depicted

area is 1.1×0.9mm2 (Rotermund, 1997a).

(a) (b)

Figure 1.9: (a) Part of a Pt(110) surface exhibiting raindrop patterns recorded with EMSI

at pCO = 7× 10−3 mbar and pO2 = 2.2× 10−2 mbar. The time interval between the

snapshots is 160 ms, and the depicted area is 100× 70 µm2. (b) Space-time diagram of

the raindrop (1.6 s× 100 µm, Rotermund (1997b)).

two structural phases of the platinum surface. Therefore one should in principle work with

six variables: two for the phases, and four for the two species adsorbed on each phase. One

phase variable can be eliminated immediately because the sum of the fraction of both phases

must be equal to one. Moreover, for our model we make the simplifying assumption that

locally CO and oxygen are equally distributed over both phases. This assumption is certainly

justified for Pt(110), since the mobility of CO and oxygen is about the same on each of the
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(1) Adsorption of CO CO(g) → CO(ad)

(2) Desorption of CO CO(ad) → CO(g)

(3) Reaction of CO(ad) and O(ad) CO(ad) + O(ad) → CO2(g)

(4) Adsorption of O2 O2(g) → 2 O(ad)

(5) Reverse structural phase transition ?(rec) → ?(1× 1)

(6) Structural phase transition ?(1× 1) → ?(rec)

Table 1.1: Reaction steps of CO oxidation on Pt at low to intermediate pressures

two phases.

All relevant reaction steps for CO oxidation on Pt, as discussed in the previous section,

are listed in Table 1.1. All steps proceed with rates (or velocities) Ki that are supposed to

depend on the local concentrations u = [CO(ad)], v = [O(ad)], w = [?(1× 1)], and the local

surface temperature T . Moreover, they depend on a set of control parameters Λ and a large

number of system parameters that cannot be changed during experiments. The reaction rate

Ki measures how often a certain reaction occurs per unit time. It should not be confused

with the reaction rate constant. Instead of absolute temperature T we shall mostly work with

a rescaled temperature θ = (T − T̄ )/T̄ , where T̄ is a reference temperature (the equilibrium

temperature of an empty surface). The control parameters are thus the partial pressures of

CO and O2 in the gas phase denoted in the following by pu and pv, respectively, and the

reference temperature T̄ , i.e., Λ = (pu, pv, T̄ ). System parameters that cannot be varied in

experiments are, e.g., the sticking coefficients, the coefficient of heat conduction, etc.

The rates

In the following we briefly describe the rate terms we use to model the reaction steps listed

in Table 1.1. The vector of concentrations is denoted by u = (u, v, w), and x = (x1, x2)

denotes a point in two-dimensional space. Note that we always use rescaled concentrations

so that ρs u(x) dx1 dx2 is either the number of CO molecules in the infinitesimal surface area

dx1 dx2 or the number of moles of CO molecules, depending on whether ρs, the density of

surface atoms, is given in atoms/m2 or mol/m2. Since we work with a rescaled temperature,

Arrhenius rates k(T ) = ν exp
( − E/(RT )

)
(where ν is a frequency, E an activation energy

and R the gas constant) have to be transformed to k(θ, T̄ ) in the following way:

k(T ) = ν exp
(
− E

RT

)
= ν exp

(
− E

RT̄

)
exp

(
E

RT̄

θ

1 + θ

)
= k(θ, T̄ ). (1.2)

Reaction steps (1), (2), and (4) from Table 1.1 describe adsorption and desorption of CO and

oxygen. The rates are defined in Table 1.2.

If the adsorption rate of CO is taken to be proportional to 1 − u as here (or 1 − uξ

as in Krischer et al. (1992)) independent of the oxygen coverage, one implicitly drops the
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(1) CO adsorption:

K1(u, θ,Λ) = k1pusu (1− u)

k1 impingement rate of CO 3.135× 105 mbar−1 s−1

pu CO partial pressure in the gas phase [mbar]

su sticking coefficient of CO 1.0

(2) CO desorption:

K2(u, θ,Λ) = k2(θ, T̄ )u

k2 Arrhenius rate

ν2 frequency 5× 1015 s−1

E2 energy 135 kJ/mol

(4) Adsorption of O2:

K4(u, θ,Λ) = k4pv

(
svw + s̃v(1− w)

)(
(1− u)(1− v)

)2

k4 impingement rate of O2 2.929× 105 mbar−1 s−1

sv sticking coefficient of O2 on (1× 1) phase 0.6

s̃v sticking coefficient of O2 on (rec) phase 0.3

Table 1.2: Rate terms for adsorption and desorption of CO and oxygen (steps (1), (2), and

(4) from Table 1.1.)

conservation constraint imposed by a strict Langmuir-Hinshelwood mechanism on the number

of adsorbed oxygen atoms, adsorbed CO molecules and vacant sites. On the other hand, it has

been observed experimentally that the presence of oxygen on the surface does not noticeably

influence the adsorption of CO (Imbihl & Ertl, 1995; Rotermund, 1997a). Consequently, we

assume that CO molecules may be adsorbed both at empty and at O-covered sites, whereas

the dissociative adsorption of an oxygen molecule can only take place at two neighbouring

empty sites. The probability that two adjacent sites are occupied neither by CO nor by O

is then ((1 − u)(1 − v))2 instead of (1 − u − v)2, the inhibition term used in Krischer et al.

(1992). Since the former term is larger only by uv, the difference is negligible if u or v is small,

which is typically the case at low pressures. At intermediate pressures the new term is in

better agreement with experiments (Reichert et al., 2001). Note that the sticking coefficient

of oxygen on the 1× 1 phase is considerably higher than on the reconstructed phase, which

can lead to oscillatory, doubly metastable, and excitable behaviour of the reaction kinetics.

The rate of desorption of CO molecules from the Pt(110) surface is modelled by a product

of the CO concentration and an Arrhenius rate. In the case of Pt(100) the desorption of CO

molecules from the reconstructed and the 1× 1 phase has to be distinguished because of the

strong difference in the binding energies on the two phases.
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(3) Reaction:

K3(u, θ,Λ) = k3(θ, T̄ )uv

k3 Arrhenius rate

ν3 frequency 5× 107 s−1

E3 energy 34 kJ/mol

Table 1.3: Rate term for reaction (step (3) from Table 1.1).

For the reaction rate we use (in lack of better knowledge) mass action kinetics, i.e., we

assume that the reaction rate is given by the product of the concentrations multiplied with

an Arrhenius rate (cf. Table 1.3).

A major change, as compared to previous work, concerns the rate term for the structural

phase transition. In Krischer et al. (1992) it was assumed that, in the absence of oxygen in

the gas phase, the equilibrium fraction of 1×1 surface w̄ can be expressed as a function of the

equilibrium CO coverage ū, i.e., w̄ = f(ū), which is true for Pt(110). In the nonequilibrium

case, the dynamics of w was modelled by ẇ ∝ f(u) − w. However, this relaxation ansatz

cannot be carried over to Pt(100) because hysteresis in the phase transition is observed

experimentally, and thus w̄ cannot be expressed as a function of ū. This can be remedied by

assuming ū = g(w̄) and taking ẇ ∝ u − g(w) as in Krömker (1997), but such an approach

is hard to justify in physical terms. Our ansatz is motivated by the fact that the phase

transition proceeds via nucleation and growth. The probability for nucleation is determined

solely by the CO coverage, but the growth of a phase is to some extent autocatalytic, which

leads to a dependence of the rate of growth on the concentration of the phase itself. Therefore

the growth rate of 1×1 phase on a reconstructed surface, for instance, is chosen proportional

to a weighted sum of u and w, each to some power ε. A highly nonlinear dependence of this

rate on the local CO coverage has been observed experimentally by Hopkinson et al. (1993).

They measured the growth rate of 1× 1 phase on a hex-R reconstructed Pt(100) surface to

depend on the CO concentration on the hex-R phase to a power of about 4.5. It is plausible

that the exponent for w should have approximately the same value. The reverse transition

is modelled in an analogous way. In order not to introduce too many parameters, the same

weight and exponent are used; the rate constants, however, are allowed to be different. The

rate terms and parameters are defined in Table 1.4. Two additional important constants are

listed in Table 1.5 for convenience.

Surface diffusion of CO

We assume simple Fickian diffusion of the CO molecules with a diffusion coefficient Du

of about 10−12 m2/s. In other words, the diffusive flux of CO molecules is given by

Ju = −Du∇u.
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(5) Reverse structural phase transition:

K5(u, θ,Λ) = k5(θ, T̄ )
(
(1− α)uε + αwε

)
(1− w)

k5 Arrhenius

ν5 frequency 103 s−1

E5 energy 29 kJ/mol

α weight 0.1

ε exponent 4.0

(6) Structural phase transition:

K6(u, θ,Λ) = k6(θ, T̄ )
(
(1− α)(1− u)ε + α(1− w)ε

)
w

k6 Arrhenius rate

ν6 frequency 2× 102 s−1

E6 energy 29 kJ/mol

α weight 0.1

ε exponent 4.0

Table 1.4: Parameters for surface reconstruction and lifting of the reconstruction (steps (5)

and (6) from Table 1.1).

R gas constant 8.314 J/mol kg

NA Avogadro number 6.0221× 1023

Table 1.5: Additional important constants.

1.2.2 Mass balance

A mass balance yields the following system of differential equations for CO oxidation on

Pt(110):

∂tu+∇·Ju = K1 −K2 −K3

∂tv = 2K4 −K3

∂tw = K5 −K6,

(1.3)

or, explicitly,

∂tu = k1pusu (1− u)− k2(θ, T̄ )u− k3(θ, T̄ )uv +Du∆u

∂tv = 2 k4pv (svw + s̃v(1− w))
(
(1− u)(1− v)

)2 − k3(θ, T̄ )uv

∂tw = k5(θ, T̄ )
(
(1− α)uε + αwε

)
(1− w)

− k6(θ, T̄ )
(
(1− α)(1− u)ε + α(1− w)ε

)
w.

(1.4)
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Bifurcation Co-dimension Abbreviation

Hopf bifurcation (supercritical) 1 h

Hopf bifurcation (subcritical) 1 h′

saddle-node 1 sn

saddle loop 1 sl

homoclinic bifurcation

saddle-node/infinite period 1 sniper

saddle-node on a loop

saddle node of periodic orbits 1 snp

cusp 2 C

Takens-Bogdanov bifurcation 2 TB

degenerate Hopf bifurcation 2 DH

saddle-node loop 2 SNL

neutral saddle loop 2 NSL

trace 0 saddle loop

Takens-Bogdanov-cusp 3 TBC

Table 1.6: Commonly used denotations of bifurcations and their abbreviations. By a degen-

erate Hopf bifurcation we mean the one described in Guckenheimer (1986).

1.2.3 Numerical bifurcation analysis

In the following we present some aspects of the bifurcation structure of the kinetic part of

system (1.4) with the parameters specified above for Pt(110). For more details and additional

computations for Pt(100) see Reichert (2000); Reichert et al. (2001). The computations were

performed using algorithms from the AUTO 97 package by Doedel et al. (1998). Abbrevi-

ations of the bifurcations found are listed in Table 1.6; for details see, e.g., Hale & Koçak

(1991); Wiggins (1990); Guckenheimer (1986).

For Pt(110), bifurcation diagrams in pu and pv have been computed for several fixed crys-

tal temperatures. At higher temperatures (500 – 560 K) the bifurcation diagram is organised

by a cusp and two Takens-Bogdanov points. In total there are 12 parameter regions with

different dynamical behaviour (cf. Fig. 1.10), but only regions 1–5 are physically relevant

because the others are too small to be detected in experiments. In regions 1, 2, and 3 there

is only one attractor, a stable node or an asymptotically stable periodic orbit, respectively.

The maximal width of the oscillatory region 2 at 540 K amounts to about 10% of the value

of pu at the supercritical Hopf bifurcation. It decreases towards higher as well as lower tem-

peratures. In 4 and 5 two attractors coexist; in 5 there are two stable nodes, while in 4

the system asymptotically approaches either a stable node or a small asymptotically stable

periodic orbit. The maximal width of region 4 is about 1% of pu at 540 K, so it could possi-
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bly be detected experimentally. The regions with nontrivial dynamics, such as bistability or

oscillations, move towards higher partial pressures as temperature is increased.

Phase portraits of the dynamics in the different parameter regions are sketched in Fig.

1.10. In the pictures containing three fixed points the lower one can always be identified

with a reactive, mainly reconstructed surface with a relatively high oxygen coverage (reactive

state) and the upper one with a predominantly CO-covered 1 × 1 surface (poisoned state).

From a physical point of view the model presented here yields almost the same results as the

one proposed by Krischer et al. (1992). The most important distinction is that here the two

curves of saddle-node bifurcations do, for the investigated parameter region, not merge in

a second cusp when pu and pv are increased, rather bistability persists even at atmospheric

pressures, in accordance with experiment. In fact, this is due to the change of the adsorption

kinetics of oxygen, as was checked by repeating the computation of the saddle-node curves

with the term that was used in the model of Krischer et al. (1992). As in Krischer et al.

(1992), the dynamics seems to be essentially two-dimensional; period doubling transitions to

chaos that have been observed experimentally (Eiswirth, 1987) could not be found.

1.2.4 Heat production and transfer

In this section we derive an evolution equation for the surface temperature from an energy

balance. To this end, we assume that below an infinitesimal surface area dx1 dx2 around

a point x on the surface the crystal has temperature T (x) in a cube of Volume lT dx1 dx2,

where lT is a characteristic depth. Furthermore, we assume that the bulk below such a cube

has temperature Tb[T ], i.e., the bulk temperature is a functional of the surface temperature

field. This assumption is due to the fact that the bulk temperature is regulated by a feedback

mechanism according to the surface temperature in order to heat or cool the surface. The

ambient gas phase is assumed to have constant temperature Tg. The energy balance of the

cube can be written (U denoting internal energy)

dU

dt
=
dQchem

dt
+
dQrad

dt
+
dQcond

dt
. (1.5)

Here dQchem, dQrad and dQcond denote the changes of internal energy through production

and transfer of heat by chemical reactions, radiation and heat conduction, respectively.

Heat production through chemical reactions

Heat is produced by the chemical processes with rate

dQchem

dt
= ρs

(
H1K1 −H2K2 +H3K3 +H4K4

)
dx1 dx2. (1.6)

The energies H1 – H4 and ρs are defined in Table 1.8. The units of the Hi and ρs have to be

chosen such that [ρs][Hi] = J/m2. The energies gained by adsorption and lost by desorption
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Figure 1.10: Sketches of the complete bifurcation diagram at 500 – 560 K (top) and phase

portraits in different parameter regions (bottom) for Pt(110). Hopf bifurcations, and

saddle-node bifurcations involving a stable node and a saddle with a one-dimensional

unstable manifold are drawn with solid lines, saddle-node bifurcations involving a saddle

with a one-dimensional and another with a two-dimensional unstable manifold are drawn

with dash-dotted lines. The dashed curves indicate global bifurcations (cf. Table 1.6). In

the phase portraits stable nodes are represented by filled circles, saddle points with a two-

dimensional unstable manifold by empty circles, and saddle points with a one-dimensional

unstable manifold by half-filled circles. Asymptotically stable periodic orbits are indicated

by solid lines, unstable ones by dashed lines.
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λ heat conduction coefficient of Pt 72 W/m K

lT characteristic thickness of surface layer ≈ 5× 10−5 m

Table 1.7: Parameters for heat conduction.

are assumed to cancel each other approximately; the heat of reaction can be estimated by

thermodynamic considerations. Note that in the case of Pt(100) we would have to distinguish

between desorption from the 1 × 1 and the reconstructed phase. The density ρs has been

calculated with a grid constant a ≈ 0.4 nm and an average area occupied by a surface atom

of (
√

2 a2)/2. If we assume for simplicity that each atom occupies a square, the ‘effective’

grid constant is 0.34 nm.

Heat transfer by radiation

In order to calculate the contribution of radiation to the heat balance we assume that, in

a first approximation, it is allowed to use integral emissivities and absorptivities, i.e., an

integral version of Planck’s formula. Hence,

dQrad

dt
= σ

(
as(T ) eg(Tg)T 4

g − es(T )T 4
)
dx1 dx2. (1.7)

(See Table 1.9 for the definition of the coefficients σ, as(T ), es(T ) and eg(Tg)). It will turn

out that in a first approximation we do not need to know the values of eg and as.

Heat conduction

Heat can be transferred from a cube below the surface to the bulk and to adjacent cubes

parallel to the surface:

dQcond

dt
= λ

(
lT

(
∂2

x1
T + ∂2

x2
T

)− (
T − Tb[T ]

)
/lT

)
dx1 dx2, (1.8)

where λ and lT are defined in Table 1.7. The notation Tb[T ] indicates that we think of the

bulk temperature as a functional of the surface temperature because, in principle, it may be

regulated according to the full detailed surface temperature field. In practice, of course, it

depends only on an averaged surface temperature.

1.2.5 Energy balance

Gathering together the different contributions yields

dU

dt
= ρs

(
H1K1 −H2K2 +H3K3 +H4K4

)
dx1 dx2

+ σ
(
as(T ) eg(Tg)T 4

g − es(T )T 4
)
dx1 dx2

+ λ
(
lT (∂2

x1
T + ∂2

x2
T )− (

T − Tb[T ]
)
/lT

)
dx1 dx2.

(1.9)
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H1 heat of adsorption of CO ≈ 135 kJ/mol

H2 heat loss by desorption of CO ≈ H1

H3 heat of reaction ≈ 20 – 30 kJ/mol

H4 heat of adsorption of an oxygen molecule ≈ 230 kJ/mol

ρs density of surface atoms 8.84× 1018 atoms/m2

Table 1.8: Parameters for heat production through chemical processes.

σ Stefan-Boltzmann constant 5.6705× 10−8 J/m2 K s

es integral emissivity of platinum ≈ 0.05 – 0.1

eg integral emissivity of gas unknown

as integral absorptivity of platinum unknown

Table 1.9: Parameters for heat transfer by radiation.

Substituting

dU

dt
=
∂T

∂t
CρblT dx1 dx2 (1.10)

in the equation above and dividing by CρblT dx1 dx2 yields an evolution equation for the

surface temperature field T (x). The parameters C and ρb are defined in Table 1.10. We

assume now that the equilibrium temperature field without chemical reactions is given by

T ≡ T̄ . We linearise the non-chemical contributions around T ≡ T̄ , assuming that the

emissivity es and the absorptivity as depend only weakly on T . We have, up to first order,

T − Tb[T ] = T − T̄ + T̄ − Tb[T ≡ T̄ ]−
∫

G

δTb

δT

∣∣∣
T≡T̄

(T − T̄ ) dx1 dx2. (1.11)

Hence,

∂(T − T̄ )
∂t

= −4σes(T̄ ) T̄ 3

CρblT
(T − T̄ ) +

λ

Cρb
∆(T − T̄ )

− λ

Cρbl
2
T

(T − T̄ ) +
λ

CρblT

∫

G

δTb

δT

∣∣∣
T≡T̄

(T − T̄ ) dx1 dx2 + h.o.t.,
(1.12)

where ∆ = ∂2
x1

+ ∂2
x2

, and the two-dimensional domain representing the surface has been de-

noted by G. Thus the equation for the rescaled temperature θ = (T−T̄ )/T̄ reads (reincluding

the chemical terms)

∂θ

∂t
=

ρs

CρblT T̄

(
H1K1 −H2K2 +H3K3 +H4K4

)

−
(

4σes(T̄ ) T̄ 3

CρblT
+

λ

Cρbl
2
T

)
θ +Dθ∆θ +

Dθ

lT

∫

G

δTb

δT

∣∣∣
T≡T̄

θ dx1 dx2,

(1.13)

where Dθ = λ/(Cρb). Next, we define

β(T̄ ) =
ρs

CρblT T̄
. (1.14)
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C specific heat capacity of Pt 130 J/kg K

ρb bulk mass density of Pt 21.09× 103 kg/m3

Table 1.10: Additional parameters for the energy balance.

Note that the units have to be chosen such that [β] = [Hi]−1. Furthermore we set

γ(T̄ ) =
4σes(T̄ ) T̄ 3

CρblT
+

λ

Cρbl
2
T

. (1.15)

Neglecting the integral term, we finally get the following equation for the rescaled surface

temperature:

∂tθ = β(T̄ )
(
H1K1 −H2K2 +H3K3 +H4K4

)− γ(T̄ ) θ +Dθ∆θ, (1.16)

or, explicitly,

∂tθ = β(T̄ )
(
H1 k1pusu (1− u)−H2 k2(θ, T̄ )u+H3 k3(θ, T̄ )uv

+H4 k4pv

(
svw + s̃v(1− w)

)(
(1− u)(1− v)

)2
)

− γ(T̄ ) θ +Dθ∆θ.

(1.17)

1.2.6 Summary

Finally, the full system of reaction-diffusion equations coupled to an equation for the surface

temperature field reads

∂tu = k1pusu (1− u)− k2(θ, T̄ )u− k3(θ, T̄ )uv +Du∆u (1.18a)

∂tv = 2 k4pv

(
svw + s̃v(1− w)

)(
(1− u)(1− v)

)2 − k3(θ, T̄ )uv (1.18b)

∂tw = k5(θ, T̄ )
(
(1− α)uε + αwε

)
(1− w) (1.18c)

− k6(θ, T̄ )
(
(1− α)(1− u)ε + α(1− w)ε

)
w

∂tθ = β(T̄ )
(
H1 k1pusu (1− u)−H2 k2(θ, T̄ )u+H3 k3(θ, T̄ )uv (1.18d)

+H4 2 k4pv

(
svw + s̃v(1− w)

)(
(1− u)(1− v)

)2
)

− γ(T̄ ) θ +Dθ∆θ.

1.3 Mesoscopic stochastic modelling

The PDE model introduced in the previous section obviously does not account for fluctuations

due to the discrete nature of the underlying reaction steps. On the other hand, at low

pressures in the gas phase (≈ 10−4 mbar) each adsorbed CO molecule changes its site about

106 times before the next particle impinges. This implies that the surface can be regarded
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Mesoscopic stochastic model ≈ 10−2

PDE model ≈ 10−4

ODE model / 10−6

6

pressure [mbar]

l ≈ 0.1 µm, 1/
√
n ≈ 10−2

l ≈ 1 µm, 1/
√
n ≈ 10−3

l ≈ 10 µm, 1/
√
n ≈ 10−4

Figure 1.11: Range of validity of different types of models for CO oxidation on Pt.

as well mixed on a length scale of about 1 µm so that fluctuations are averaged out. With

increasing pressure, however, smaller and smaller patches of the surface can be regarded as

well mixed and the size of a critical nucleus (a minimal perturbation that would trigger a

pulse or a front) decreases. The deterministic PDE models are expected to fail and stochastic

effects may become relevant.

To estimate the size of a well-mixed patch we assume the diffusion coefficient Du of CO to

be known by measurement. A characteristic time scale for the mixing on the surface is given

by τ = 1/(k1pu +2 k4pv), the average time required for the impingement of one monolayer of

molecules from the gas phase. (Recall that k1 and k4 are the impingement rates of CO and O2,

respectively, cf. Table 1.2.) The relationship l2 = 4Duτ defines a characteristic length scale l

on which the surface may be regarded as well mixed. The number n of sites in such a well-

mixed patch is then about l2/a2 = (4Duτ)/a2, where a is the ‘effective’ lattice constant. At

a pressure of about 10−4 mbar, for instance, the calculation above (with Du ≈ 10−12 m2/s)

yields l ≈ 1 µm and n ≈ 106, values that correspond well to experimental observations.

Heuristically, 1/
√
n is a measure for the strength of local coverage fluctuations. While at low

pressures the strength of fluctuations is less than 10−3 (cf. Fig. 1.11), it reaches the order of

1% at 10−2 mbar, the pressure range where raindrop patterns are observed. This suggests

that the formation of raindrops is, at least partially, a stochastic effect. Thus a stochastic

model is needed to complement the deterministic differential equations model introduced in

the previous section.

The appropriate type of stochastic model is a mesoscopic stochastic particle model of

the sort described, e.g., in Nicolis & Prigogine (1977); Haken (1983); van Kampen (1992);

Gardiner (2004). In order to set up the mesoscopic stochastic particle model, we think of the

Pt surface, which for simplicity is assumed to be quadratic, as being divided into N2 cells

of mesoscopic size l2. Here l should be chosen smaller than the characteristic length scale
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Process δ ε

(1) Adsorption of CO χu,i
1
nβ(T̄ )H1 χθ,i

(2) Desorption of CO −χu,i − 1
nβ(T̄ )H2 χθ,i

(3) Reaction of CO(ad) and O(ad) −χu,i − χv,i
1
nβ(T̄ )H3 χθ,i

(4) Adsorption of O2 2χv,i
1
nβ(T̄ )H4 χθ,i

(5) Inverse structural phase transition χw,i 0

(6) Structural phase transition −χw,i 0

Table 1.11: Jumps caused by reaction events in a particular cell i.

discussed above. Each cell is supposed to contain n adsorption sites. The state of the surface

is, as far as the occupation by adsorbed particles is concerned, described by the vector

U(i, t) = (U(i, t), V (i, t),W (i, t)), i = (i1, i2) ∈ G. (1.19)

Here U(i, t) denotes the number of CO molecules in cell i at time t, V (i, t) the number of

oxygen atoms, W (i, t) the number of sites in a 1× 1 surface structure, and G = {1, . . . , N}2.

If the surface temperature is to be included in the model, we denote by θ(i, t) the rescaled

temperature in the volume lT l2 below the cell with index i. The random dynamics of (U , θ)

is characterised by intensities (probabilities per unit time) q((U , θ), (Ũ , θ̃)) for jumps in the

state space S = (N3
0 × R)N2

from the present state (U , θ) to another state (Ũ , θ̃) and a rate

for the deterministic change of the temperature θ. Let χu,i be the state which corresponds

to one CO molecule in cell i, and χv,i, χw,i the corresponding states for oxygen atoms and

1×1 sites, respectively. Moreover, let χθ,i be the discrete temperature field with temperature

1 below cell i and temperature 0 below all other cells.

1.3.1 Jumps caused by reaction and diffusion events

All possible transitions due to reaction and diffusion events can be written as

(U , θ) → (Ũ , θ̃) = (U + δ, θ + ε), (1.20)

where (δ, ε) is taken from a finite set of possible transitions T .

Jumps caused by reaction events

All jumps due to a reaction event in a particular cell i are listed in Table 1.11. These

transitions are assumed to occur with rates that correspond to the reaction rates of the
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deterministic model. We suppose, for instance, that the deterministic adsorption rate and

the intensity for an adsorption event in cell i in the stochastic model are related by

q((U , θ), (U + χu,i, θ + 1
nβ(T̄ )H1 χθ,i)) = nK1( 1

nU(i, t), θ(i, t),Λ). (1.21)

The same kind of relationship is assumed to hold for all other reaction steps.

In the isothermal case, i.e., at sufficiently low pressures, the temperature θ and its changes

ε may be omitted. Instead of distinguishing the temperature below each cell we may, for

sufficiently small surfaces, assume that heat diffusion is infinitely fast. The release of heat

due to a reaction process in a particular cell i then leads to a change of the global surface

temperature θ. The adsorption of a CO molecule somewhere on the surface, for instance,

causes a temperature change by ε = β(T̄ )H1/(N2 n).

Jumps caused by diffusion of CO

The diffusion of CO molecules is modelled by the following transitions. Let e1 = (1, 0) and

e2 = (0, 1). Then, if cell i is not a boundary cell,

q((U , θ), (U − χu,i + χu,(i±ek), θ)) = n
d

4
U(i)
n

, k = 1, 2, (1.22)

where d is the hopping rate of a CO molecule to a neighbouring cell. Transitions involving the

boundary cells have to be specified separately according to the desired boundary conditions.

In the simulations in Chapter 4, for instance, we use periodic boundary conditions and thus

q((U , θ), (U − χu,i + χu,(i±ek mod N), θ)) = n
d

4
U(i)
n

, k = 1, 2, (1.23)

for all i ∈ G = {1, . . . , N}2.

1.3.2 Temperature drift

Recall that l denotes the edge length of a cell. Between two jumps caused by reaction or

diffusion events the temperature variables θ(i, t) move ‘deterministically’ with rate

bi(θ(t)) = −γ(T̄ ) θ(i, t) +Dθ

∑

k=1,2

1
l2

(
θ(i− ek, t)− 2θ(i, t) + θ(i+ ek, t)

)
. (1.24)

Again the rates for the boundary cells have to be specified according to the desired boundary

conditions. If heat diffusion is assumed infinitely fast, the second term is omitted. Such a

deterministic motion is in probabilistic language called a drift.

1.3.3 Summary

The existence of a stochastic process that corresponds to the transition intensities above is

discussed for the isothermal case in a more general setting in Chapters 2 and 3. A mathemat-

ically rigorous discussion of the existence of the process including the temperature drift is left
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aside here but should cause no principal problems. We only remark that the Markov process

corresponding to the transition intensities and drift terms specified above is characterised, at

least heuristically, by its generator L. The generator of a Markov process is an operator that

contains all information about the infinitesimal behaviour of the process in condensed form.

In our case, it describes for all real-valued functions g on the state space S in its domain of

definition how the conditional expectations

E
[
g(U(t+ h), θ(t+ h))− g(U(t), θ(t))

∣∣U(t), θ(t)
]

(1.25)

behave for small h. That is,

E
[
g(U(t+ h), θ(t+ h))− g(U(t), θ(t))

∣∣U(t), θ(t)
]

= Lg(U(t), θ(t))h+ o(h). (1.26)

To write down the generator in compact form we first construct from the transition intensities

an intensity function c and a transition kernel µ by setting

c(U , θ) =
∑

(δ,ε)∈T :
(U+δ,θ+ε)∈S

q((U , θ), (U + δ, θ + ε)), (1.27)

and

µ(U , θ;B) = c(U , θ)−1
∑

(δ,ε)∈T :
(U+δ,θ+ε)∈B

q((U , θ), (U + δ, θ + ε)) (1.28)

for subsets B ⊂ S. The probabilistic interpretation of c and µ is that the stochastic process

leaves the state (U , θ) by a jump with rate c(U , θ), and the jump terminates with probability

µ(U , θ;B) in the subset B of the state space S. In the isothermal case θ and ε are of course

omitted. Hence, if we assume constant temperature, the generator is given by

Lg(U) = c(U)
∫

S

(
g(Ũ)− g(U)

)
µ(U ; dŨ)

=
∑

δ∈T :
U+δ∈S

q(U ,U + δ)
(
g(U + δ)− g(U)

)
.

(1.29)

It has the typical form of a generator of a pure jump Markov process (see, e.g., Revuz & Yor

(2005)). In the case of nonconstant temperature we have

Lg(U , θ) = c(U , θ)
∫

S

(
g(Ũ , θ̃)− g(U , θ)

)
µ(U , θ; d(Ũ , θ̃))

+
∑

i∈G
bi(θ)

∂g

∂θ(i)
(U , θ)

=
∑

(δ,ε)∈T :
(U+δ,θ+ε)∈S

q((U , θ), (U + δ, θ + ε))
(
g(U + δ, θ + ε)− g(U , θ)

)

+
∑

i∈G
bi(θ)

∂g

∂θ(i)
(U , θ).

(1.30)

A generator of this type characterises a Markov jump process with inter-jump drift.
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Discussion

In the present chapter we have introduced, after a discussion of the experimental background,

a deterministic macroscopic PDE model and a complementary mesoscopic stochastic particle

model for CO oxidation on Pt surfaces. A numerical bifurcation analysis for the kinetic part

of the deterministic model shows good agreement with experimental results. The stochastic

model will be used in Chapter 4 for the simulation of raindrop patterns (Figs. 1.8 and 1.9).

Various spatio-temporal patterns (fronts, travelling pulses, spirals and chemical turbulence)

have been investigated numerically by Bär (1993) in his thesis and related work on the basis

of the model by Krischer et al. (1992). Since the bifurcation structure of our model is similar,

we expect that it is capable of reproducing these patterns as well. However, this has not been

checked systematically.

The standing wave patterns (Fig. 1.7b) have been simulated with a model including a

subsurface oxygen species (oxygen atoms below the surface) and a global coupling via the gas

phase by von Oertzen et al. (2000). However, it is not fully clarified if a gas phase coupling is

really necessary, since the formation of standing waves could be explained in the framework

of reaction-diffusion equations by a Turing-Hopf instability (Krömker, 1997). So far there

exists (to our knowledge) no realistic model that reproduces the slow sinusoidal oscillations

at low pressures or the period-doubling transition to chaos.

So far we have looked at CO oxidation on platinum exclusively from the complex systems

point of view. Apart from its role as standard system for the study of pattern formation,

CO oxidation on Pt is of great practical importance, since the oxidation of CO is one of the

objectives of automobile exhaust catalysts, so-called three-way catalytic converters (TWCs).

The other objectives are oxidation of unburnt hydrocarbons (CxHy) and reduction of nitrogen

oxides (NOx). Both oxidation reactions are known to be catalysed by platinum, while the

reduction of NOx is catalysed by rhodium. Current TWCs consist of a honeycomb-shaped

ceramic body with channels axially orientated in the direction of flow of the exhaust gas

(Hayes & Kolaczkowski, 1997; Thomas & Thomas, 1996). The channel walls are covered by

a thin layer of porous material (the washcoat). Small crystallites of platinum and rhodium,

on the surfaces of which the reactions take place, adhere to the interior surfaces of the

porous washcoat. Owing to the complex geometry of the TWC, its performance cannot be

deduced directly from knowledge about the reactions on single crystal surfaces. A thorough

understanding of single crystal experiments is, however, mandatory for understanding how

the TWC works and for optimisation. The simulation of pattern formation on single crystal

surfaces provides a good means for testing and validating different models.

The introduction of two models, a macroscopic deterministic model and a mesoscopic

stochastic particle model, naturally raises the question whether these two models are con-

sistent. This problem shall be dealt with in a more general setting in the following two

chapters.
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Chapter 2

Law of large numbers for linear

models

Overview

In the previous chapter we have modelled the CO oxidation reaction on Pt single crystal

surfaces both with a system of partial differential equations (PDEs) and a corresponding

mesoscopic stochastic particle model. In this chapter we start to investigate in a general set-

ting how macroscopic deterministic PDE models and mesoscopic stochastic particle models

are related. Our aim is to prove rigorously that the PDE models approximate the corre-

sponding stochastic particle models in the limit of large particle numbers.

The stochastic particle models we call mesoscopic are, in essence, a combination of a

continuous-time version of the classical urn model by P. and T. Ehrenfest for diffusion through

a membrane (see, e.g., Karlin & Taylor (1975)) and the standard stochastic model for chem-

ical reactions (see, e.g., van Kampen (1992)). They have been described since the early sev-

enties by many authors in physics (Nicolis & Prigogine, 1977; Gillespie, 1977; Haken, 1983;

Gardiner, 2004; van Kampen, 1992) and mathematics (Kurtz, 1981; Arnold & Theodosopulu,

1980; Kotelenez, 1986, 1988; Blount, 1991, 1993, 1994; Guiaş, 2002). In the physical literature

the model is often simply called ‘the’ stochastic model for chemical reactions; in mathematics

models of this type are also known as ‘density-dependent population processes’. Similar mod-

els for coupled waiting lines, so-called queueing networks, are dealt with in communication

theory (Brémaud, 1999).

By terming those particle models ‘mesoscopic’ we wish to point out that they are set up

at mesoscopic time and length scales. In particular, as could be seen in the preceding chapter,

we do not take into account explicitly the interactions between individual particles; rather

the intensities for births and deaths of particles depend on the local densities. The presence

of a mechanism that ensures a rapid local stirring is assumed.

Our method for deriving laws of large numbers generally proceeds in two steps. We first
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study the convergence of a semi-discrete finite-difference approximation of the limit equa-

tion where the spatial derivatives are replaced by finite differences. Having established the

convergence of the semi-discrete approximation, the second step in the proof consists in es-

timating the distance between the approximation and a particle density associated to the

stochastic particle model in an appropriate norm. This procedure is motivated by the obser-

vation that the particle density generally satisfies a stochastic differential equation that can

be regarded as a spatially semi-discretised finite-difference approximation of the macroscopic

PDE perturbed by a martingale noise term. In previous treatments (Kotelenez, 1986, 1988;

Blount, 1991, 1993, 1994; Guiaş, 2002) laws of large numbers have been shown for linear and

certain nonlinear models by means of semigroup methods. In particular, the solutions of

the limit equations are characterised as the mild solutions that one obtains from the semi-

group approach to linear and semilinear parabolic PDEs. Our method, which is inspired by

Oelschläger’s treatment of ‘moderately’ interacting particle systems (Oelschläger, 1989), is

related to the variational approach to parabolic PDEs. The solution of the limit equation

is an appropriately defined weak solution the existence of which is usually established with

Hilbert-space methods. (See also the discussion in the introduction.)

One major obstacle that has to be overcome in our approach is, as already mentioned,

the approximation of such weak solutions with a semi-discrete finite-difference method. Al-

though at first sight spatial semi-discretisation with finite-differences seems to be a legitimate

approach to solving parabolic equations that appears natural in our context, it is rarely used

in the literature. (See however Lions (1969), Chapter 4, for an example.) The reason is, of

course, that the Faedo-Galerkin method or semi-discretisation in time (Rothe’s method) are

usually much more convenient. Nevertheless we have at our disposal the methodology that

has been developed for the analysis of fully discrete finite-difference schemes (Raviart, 1967;

Temam, 1973, 2001; Zeidler, 1990c).

For didactic purposes we restrict the discussion in the present chapter to linear models.

Nonlinearities will be treated in Chapter 3. In the first part of the following section we

introduce the general type of macroscopic PDE model that will later appear as deterministic

limit of the mesoscopic stochastic particle models. The macroscopic model is, at this point,

introduced only on the grounds of thermodynamical arguments. In the second part we give a

detailed description of the linear stochastic particle models and associated particle densities

that are obtained by rescaling the original model. In order not to obscure the simple main

ideas by too much notation, we always work in parallel with an example model involving only

one species and a general linear model. To prepare the first step of the derivation of the law

of large numbers we then discuss in some detail the solution of the limit PDE in Section 2.2

and introduce an approximation in terms of an analogous equation with discretised spatial

derivatives. In Section 2.3 we carry out the proof of the law of large numbers for the example

model, and in Section 2.4 the general linear model is treated in a similar way.
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2.1 Macroscopic PDE models and mesoscopic stochastic

particle models

In ordinary language a chemical reactor is described by specifying its geometry and a system

of chemical equations for the reaction under consideration:

0 + n1,1 C1 + · · · + n1,ns Cns → 0 + ñ1,1 C1 + · · · + ñ1,ns Cns

...
...

0 + nnr,1 C1 + · · · + nnr,ns Cns → 0 + ñnr,1 C1 + · · · + ñnr,ns Cns .

(2.1)

Here ns ∈ N denotes the number of different species present in the reactor, nr ∈ N the

number of reactions and nij , ñij ∈ Z, i = 1, . . . , nr, j = 1, . . . , ns, are the stoichiometric

coefficients. We denote by ‘0’ all particles coming from or going to one or several reservoirs

coupled to the reactor. Note that we count reverse reactions separately. Throughout this

work we shall understand the term ‘chemical reaction’ in a broad sense. That is, the reactions

under consideration are not supposed to be ‘elementary’ reactions in a dilute solution.

For CO oxidation on platinum the scheme that has been proposed in the previous chapter

reads

CO(g) À CO(ad)

O2(g) → 2 O(ad)

CO(ad) + O(ad) → CO2(g)

?(rec) À ?(1×1),

(2.2)

where (g) denotes a molecule from the gas phase which is considered as a reservoir; ?(rec)

and ?(1×1) denote adsorption sites in different structural phases. We can easily cast this

scheme in the abstract form above by setting C1 = CO(ad), C2 = O(ad), C3 = ?(1×1) and

C4 = ?(rec). In abstract form it reads

0 → C1

C1 → 0

C1 + C2 → 0

0 → 2 C2

C3 → C4

C4 → C3.

(2.3)

The geometry of a chemical reactor is mathematically represented by a bounded domain

G ⊂ Rm, m = 1, 2, 3. We generally assume that mass is transferred in the reactor only

by diffusion. In addition, we take into account inflow and outflow of mass from and to the

reservoirs.
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2.1.1 The macroscopic PDE model

In a continuum approach the reactions (2.1) are assumed to proceed locally with rates Ki :

Rns → R, i = 1, . . . , nr, that are functions of the local concentrations [Cj ] of the species

Cj , j = 1, . . . , ns. The reaction rate of a bimolecular reaction

A + B → AB,

for instance, is typically modelled by

K = k [A][B].

Here the product [A][B] is a measure for the probability to find a molecule of species A close

to a molecule of species B. The constant k is the reaction rate constant which, unfortunately,

is also called reaction rate by some authors. In the general case the rate of reaction i is often

modelled by

Ki = ki

ns∏

j=1

[Cj ]nij . (2.4)

However, this ansatz is not universal if we allow chemical reactions in a broad sense. For

example, it does not cover the adsorption of CO or oxygen molecules on a platinum surface.

The range of validity of the ansatz (2.4) is discussed in van Kampen (1992).

On the macroscopic level the dynamics of the concentrations uj = [Cj ] is described by a

system of ns mass-balance equations on the space-time domain QT = G× (0, T ), T > 0 being

the time of observation:

∂tuj +∇·Jj(x,u,∇u) = fj(x,u), j = 1, . . . , ns. (2.5)

Here u = (u1, . . . , uns), and ∇u =
(
(∇u1)T , . . . , (∇uns)T

)T . In addition, appropriate bound-

ary and initial conditions have to be specified. We assume that the reaction functions fj

and the fluxes Jj do not depend explicitly on the space variable x. The reaction functions

fj : Rns → R are obtained from the (appropriately rescaled) reaction rates Ki in the following

way. We first define the matrix (νij) ∈ Znr×ns by νij = ñij − nij . Then

fj(u) =
nr∑

i=1

νijKi(u). (2.6)

The vector functions Jj : Rns × Rns×m → Rm, j = 1, . . . , ns, are appropriate ‘constitutive

laws’ for the diffusive mass flux.

The reaction functions fj and the fluxes Jj have to be chosen appropriately by the modeller

for the specific system under consideration. In principle, the choice is limited for physical

reasons by a condition of positive entropy production (see, e.g., Hutter & Jöhnk (2004)), but

(to our knowledge) there is no generally accepted and easily applicable condition available.
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Above we have introduced the reaction rates Ki as functions mapping Rns to R. This is

convenient mathematically, e.g., for proving the existence of solutions of special cases of Eq.

(2.5). However, common sense tells us that the Ki should simply be defined as mappings

from (R+
0 )ns to R+

0 . Throughout this work we assume that the reaction rates Ki (and hence

the reaction functions fj) are defined on Rns , but that their restrictions to (R+
0 )ns (or a subset

thereof) satisfy certain physically reasonable conditions (cf. conditions (C1) and (C2) below).

Sometimes the number of equations can be reduced further by making use of conservation

constraints. In the CO oxidation scheme (2.2) above, for instance, [?(1× 1)]+ [?(rec)] should

obviously be conserved. Thus one of the two phase variables can be eliminated.

In general, the reaction functions fj(u) and the diffusion operators ∇·Jj(u,∇u) are

nonlinear. However, as already announced, we concentrate in the present chapter on linear

models.

A simple example model

In order to introduce our method of proving laws of large numbers with a minimum of

technical and notational difficulties, we treat in Section 2.3 a simple system involving only

one species in a one-dimensional reactor which is represented by the interval (0, L). Particles

of the species are born and die with linear rates, and thus the reaction function reads

f(u) = k1u− k2u, k1, k2 > 0. (2.7)

Moreover, we assume simple Fickian diffusion, i.e,

J = −D∇u, (2.8)

where D > 0 is the diffusion coefficient. The reaction function f may be thought of as being

derived from the scheme

C → 2C

C → 0,
(2.9)

assuming that the first reaction proceeds with rate K1(u) = k1u and the second reaction with

rate K2(u) = k2u. The macroscopic PDE is thus given by

∂tu−D∆u = k1u− k2u on QT = (0, L)× (0, T ). (2.10)

The general linear model

In the general case the nr reactions proceed with rates Ki : Rns → R that are in this chapter

assumed to be linear functions of the concentrations u, i.e.,

Ki(u) = ki,1u1 + . . .+ ki,nsuns (2.11)
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with constants kij ∈ R, i = 1, . . . , nr, j = 1, . . . , ns. Furthermore, we make the following

assumptions (for i = 1, . . . , nr, j = 1, . . . , ns).

Ki(w) ≥ 0 for all w ∈ (R+
0 )ns . (C1)

If νij < 0 then Ki(w) = 0 for all w ∈ (R+
0 )ns with wj = 0. (C2)

Conditions (C1) and (C2) are obvious from a physical point of view and considerably restrict

the class of admissible linear reaction rates. For the example model they were automatically

satisfied. Condition (C1) implies that all kij are greater than or equal to zero. The second

condition implies that if for a particular reaction i there is a j such that νij is negative, then

the rate Ki is either identically zero (i.e., the reaction can be deleted from the scheme) or

proportional to uj . The reaction functions fj are given by Eq. (2.6). Furthermore we assume

that the particles of each species perform a simple Fickian diffusion with diffusion coefficient

Dj > 0, j = 1, . . . , ns. The system of PDEs for the concentrations that describes the time

evolution of the system on the macroscopic level is thus given by

∂tuj −Dj∆uj = fj(u) on QT = G× (0, T ), (2.12)

j = 1, . . . , ns, where G ⊂ Rm is the bounded domain representing the chemical reactor.

2.1.2 The mesoscopic stochastic particle model

The mesoscopic stochastic particle models for reaction-diffusion systems we aim to study are

motivated by the stochastic model for CO oxidation on platinum from the previous chapter

(Section 1.3). Thus, for physical motivation and heuristic discussions we shall keep to the

terminology of catalytic surface reactions. If we think of a surface reaction the ‘reactor’

consists of a metal surface, and molecules from a gaseous or liquid phase are adsorbed at

certain adsorption sites that form a two-dimensional lattice. The adsorbed atoms or molecules

may perform a diffusive hopping from site to site on the surface and take part in chemical

reactions. Two types of particle models are commonly used for a quantitative description

of such systems. For the following discussion we shall refer to them as ‘mesoscopic’ and

‘microscopic’ particle models.

Mesoscopic versus microscopic particle models

The state space of a model we would call microscopic is, roughly speaking, a subset of CZm
,

where a grid point of Zm is identified with an adsorption site, and the set C contains all

configurations a site may attain. In the simplest case C = {0, 1} where 1 stands for occupied

and 0 for empty. Hence, the state contains information about each individual site; we know if

it is occupied at a certain moment in time or not and by which sort of particles. If a particle

changes its position on the lattice or is transformed by a chemical reaction, one or several
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sites change their configuration. The rates of change may, in principle, depend on the state

of the whole system, i.e., on the configuration of each individual site. In practice, of course, a

particular site is only influenced by sites in a certain neighbourhood. Models of this type are

known in the physical literature as ‘lattice-gas models’ or (dynamic) ‘Monte-Carlo models’

and in mathematics as ‘interacting particle systems’ (Kipnis & Landim, 1999; de Masi &

Presutti, 1991; Liggett, 2005) or ‘stochastic spatial models’ (Durrett, 1999).

Heuristically, a macroscopic description of the evolution of a many-particle system in

terms of a PDE always requires a rapid stirring mechanism to ensure a ‘local equilibrium’.

While in the mathematical treatment of microscopic particle models it is a major problem to

define precisely the meaning of local equilibrium, an equilibrium assumption enters already

in the formulation of the mesoscopic models. The state space of a mesoscopic particle model

may again be defined as subset of a set of the form CZm
. However, here a grid point in

Zm represents a cell or compartment of mesoscopic size, and the set C is the set of possible

particle numbers in a cell for each species. That is, C = Nns
0 or a subset thereof. Such

cells may contain a relatively large number of sites in the sense of the microscopic models.

They are assumed to be always well-mixed due to a sufficiently rapid stirring mechanism

(e.g., fast diffusion of one or several species). The rates at which particles are created or

destroyed in a particular cell are assumed to be functions of the particle densities in the cell

(which corresponds to a local equilibrium assumption). Roughly speaking, this corresponds

to the assumption that the probability to find a particle of a certain species at a particular

site inside a cell is equal to the density of that species. Thus, information about the detailed

configuration of particles is not available if one uses the mesoscopic approach; one only knows

how many particles of each species are at a certain moment in time located in a certain cell.

The mathematical structure of both model types is the same. Technically, both models

are Markov chains in continuous time with a finite or countable state space (assuming that

we consider only a finite array of cells or sites). The main difference between both model

types is that a certain site of a microscopic model can typically attain only a few different

configurations, whereas the number of possible configurations of a cell of a mesoscopic model

may be large or infinite.

At the present stage a derivation from first principles (i.e., quantum mechanics) seems

to be out of reach for either of the stochastic models for surface reactions discussed above.

Yet an appropriate particle model of the microscopic type may be considered as a satisfac-

tory mathematical description of a surface reaction on the molecular level. However, the

microscopic models generally bear two disadvantages. The first one is that their analysis is

notoriously difficult. Although considerable progress has been made during the past decades,

the derivation of macroscopic limit equations by a law of large numbers still doesn’t seem

feasible for most ‘realistic’ models. The second disadvantage is computational: even with

today’s compute power only relatively small patches of a surface can be simulated.
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Mesoscopic models, in contrast, are generally easier to analyse and allow for the derivation

of results of a more general nature. Although they do not describe the system in detail on

the molecular level, they provide plausible models for the fluctuations caused by the discrete

nature of the reaction processes occurring on the surface. Furthermore, the simulation of

mesoscopic models is not limited to small surface areas.

In the present work we thus follow the mesoscopic approach. In summary, we think of the

surface (or any other chemical reactor) as being divided into well-mixed cells of mesoscopic

size each containing a possibly large number of sites. The chemical reactions inside the cells

and the exchange of particles between adjacent cells is random and modelled by jump (birth-

death) processes. The intensities of births and deaths are supposed to depend only on the

particle densities in the cells, neglecting any details about the particle configuration inside

the cell.

Conceptually related to the mesoscopic stochastic particle models discussed above are

so-called ‘moderately’ interacting particle systems (Oelschläger, 1989).

The scales

In order to set up the model, a careful discussion of the characteristic length and time

scales that can be identified in the physical system is required. These scales will appear as

parameters in the mathematical model and are varied in the course of the derivation of the

law of large numbers.

In a reaction-diffusion system typically three different characteristic length scales can

be identified: the total size of the system L, a ‘diffusion length’ l which corresponds to

the cell size (a length scale on which the system can be considered as well mixed) and the

distance between two neighbouring sites λ (or another typical scale for the mean inter-particle

distance). We postulate

λ << l << L,

which is certainly a reasonable assumption for many systems. The micro-scale λ will not

appear explicitly in the mesoscopic models. These three length scales lead in a natural way

to two ratios,

N = L/l >> 1 and n = l/λ >> 1,

which in one space dimension correspond to the number of cells and the number of sites

per cell, respectively. The law of large numbers we are aiming at can be regarded as an

idealisation obtained by letting both ratios tend to infinity. In our approach we keep the

system size L fixed. Hence, the cell size l and the distance between two sites λ must go

to zero because otherwise the number of cells and the number of particles per cell cannot

become infinite. Alternatively, we could fix λ and let l and L tend to infinity.
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In a similar way one can identify three different time scales: a time scale which corresponds

to the hopping rate from site to site δ and does not appear explicitly in the mesoscopic model,

a time scale which corresponds to the ‘hopping rate’ d from cell to cell, and, finally, the time

of observation T . We assume

1/δ << 1/d << T.

Later in this section we shall introduce families of stochastic particle models with associ-

ated particle densities ul that are labelled by the scale parameter l. The law of large numbers

says that ul approaches the solution of a limit PDE for l → 0. In view of the discussion

above, the parameters that may independently be varied to achieve this aim are l (l = L/N ,

L being fixed), n and d. Thus, we shall consider sequences of particle models with varying

parameters l, n, and d.

The question now arises whether these scale parameters are independent or if there exist

relations among them that have to be satisfied to get a reasonable limit. We shall see that it

is necessary to assume the familiar relation

d l2 ∼ d/N2 ∼ D (2.13)

between d and l, where D denotes the macroscopic diffusion coefficient. It will become

apparent in the course of the derivation of the law of large numbers that it is convenient to

postulate a second scaling relation concerning the coupling of d and n (or l and n, in view of

(2.13)).

We remark that one may also consider the situation λ . l. This amounts to deriving a

law of large numbers for N →∞ while keeping n constant. A result of this type is proved in

Blount (1994).

The stochastic example model

We now introduce the mesoscopic stochastic particle model that corresponds to the macro-

scopic PDE (2.10). We take the occasion to recall some definitions and important results

from the theory of stochastic processes that will be required later.

In the mesoscopic picture the state U(t) of the system at time t ≥ 0 is given by the

collection of particle numbers U(i, t) in the cells i = 1, . . . , N , N ∈ N being the total number

of cells:

U(t) = (U(i, t))i=1,...,N ∈ S = NN
0 . (2.14)

The infinitesimal characteristics of the dynamics of the stochastic process (U(t))t≥0 are the

transition intensities q(U, Ũ) from U ∈ S to other states Ũ . The so-called Q-matrix q( · , · ) is

real-valued and nonnegative if Ũ 6= U , and q(U, Ũ)h is interpreted as the probability to jump
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from U to Ũ in a small time interval h. Let χi, i = 2, . . . , N − 1, be the ith ‘unit vector’, the

state corresponding to one particle in cell i and zero particles in all remaining cells, and let

χ1 = χN ≡ 0, the state corresponding to zero particles in all cells. For the sake of simplicity

we shall impose ‘Dirichlet’ boundary conditions, i.e., the particle numbers in cells 1 and N

are always zero: U(1, · ) = U(N, · ) ≡ 0. The following transitions may occur.

I A particle may leave cell i = 2, . . . , N − 1 and jump to cell i− 1 or i+ 1.

q(U,U − χi + χi−1) = n
d

2
U(i)
n

,

q(U,U − χi + χi+1) = n
d

2
U(i)
n

,

(2.15)

where d > 0 is the ‘hopping rate’ of a particle to a neighbouring cell.

I A particle in cell i = 2, . . . , N − 1 may give birth to another one.

q(U,U + χi) = nk1
U(i)
n

. (2.16)

I A particle in cell i = 2, . . . , N − 1 may die.

q(U,U − χi) = nk2
U(k)
n

. (2.17)

Here the constants k1 and k2 are the same as in the PDE model.

The intensity for all other possible transitions is zero.

Note that all transitions with intensity nonzero are of the form U → Ũ = U +δ for δ from

a finite set T ⊂ ZN . Moreover, there is a constant C such that

q(U,U + δ) ≤ C ‖U‖RN for all δ ∈ T , (2.18)

where ‖ · ‖RN denotes the Euclidian norm in RN . The Euclidian norm of the ambient space

RN induces a metric on the countable state space S = NN
0 . This metric, in turn, induces

the discrete topology on S and of course makes it a locally compact, separable, metric space,

the conditions required by the semigroup approach to the construction of Markov processes.

It follows from a general theorem (Theorem 3.1 in Chapter 8 of Ethier & Kurtz (1986),

cf. Corollary 2) that there exists a stochastic process with state space S having transition

intensities as specified above. More precisely, given an initial distribution for U(0) on the

measurable space
(
S, 2S

)
there exists a probability space (Ω,A , P ) (the probability measure

P depending on the initial distribution) and a family of random variables

(U(t))t≥0 =
(
U(1, t), . . . , U(N, t)

)
t≥0

(2.19)

with values in S = NN
0 such that the process (U(t)) has the prescribed infinitesimal behaviour.

To make this statement more precise, let Ft = σ (U(s), s ≤ t) ⊂ A be the σ-field induced
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by the random variables U(s), s ≤ t, i.e., the σ-field generated by subsets of Ω of the form

{U(t1) ∈ B1, . . . , U(tk) ∈ Bk}, where 0 ≤ t1 ≤ · · · ≤ tk ≤ t, B1, . . . , Bk ⊂ S, and k ∈ N. In

other words, (Ft)t≥0 is the filtration (nondecreasing family of σ-fields of sets in A ) induced

by (U(t))t≥0. Then the probability for a diffusive jump to the left, for instance, behaves as

P
[
U(t+ h) = U(t)− χi + χi−1

∣∣Ft

]
= q(U(t), U(t)− χi + χi−1)h+ o(h) (h→ 0),

i = 2, . . . , N − 1. Furthermore, (U(t)) has the Markov property, i.e., for t, s > 0, B ⊂ S,

P
[
U(t+ s) ∈ B∣∣Ft

]
= P

[
U(t+ s) ∈ B∣∣U(t)

]
. (2.20)

The process (U(t)) may be constructed having right-continuous paths with left limits. This

implies that (U(t)) is progressively measurable, which means that the function (s, ω) 7→
U(s, ω) regarded as mapping from [0, t]×Ω to S is measurable B[0, t]×Ft/ 2S for all t > 0.

Here B[0, t] denotes the Borel σ-field on the interval [0, t], and B[0, t] ×Ft is the product

σ-field. In particular, we are allowed to work with double integrals over [0, t]× Ω.

Let Ĉ(S) be the space of continuous real-valued functions on S vanishing at infinity

equipped with the supremum norm. (In our case, since the state space S is endowed with the

discrete topology, the continuity assumption is not a restriction.) The Markov process (U(t))

corresponds to a Feller semigroup (see, e.g., Ethier & Kurtz (1986), pp. 162) of operators on

Ĉ(S) with generator L given by

Lg(U) =
∑

Ũ 6=U

q(U, Ũ) (g(Ũ)− g(U)), g ∈ Ĉ(S). (2.21)

This means that there is a strongly continuous, positive, contraction semigroup of bounded

linear operators (T (t))t≥0 on Ĉ(S) with (conservative) generator L such that

E
[
g(U(t+ s))

∣∣Ft

]
= T (s)g(U(t)), g ∈ Ĉ(S), t, s ≥ 0. (2.22)

In general, the generator L is defined only on a subset of Ĉ(S).

Recall that a real-valued stochastic process (X(t))t≥0 with E
[ |X(t)| ] < ∞ for all t ≥ 0

is called a martingale with respect to a filtration (Ft)t≥0 if it is adapted (i.e., X(t) is Ft-

measurable for all t ≥ 0) and satisfies

E
[
X(t+ s)

∣∣Ft

]
= X(t) for all t, s ≥ 0. (2.23)

A nonnegative real-valued random variable τ is called a stopping time (with respect to the

filtration (Ft)) if {τ ≤ t} ∈ Ft for all t ≥ 0. Equation (2.24) below, also known as Dynkin’s

formula, is an essential ingredient in the proof of the law of large numbers. It identifies

martingales related to a Markov process and holds generally for ((Ft)-) Markov processes

corresponding to a Feller semigroup with generator L. Let g be a function in Ĉ(S) (or, in

the general case, from the domain of L). Then the process

Mg(t) = g(U(t))− g(U(0))−
∫ t

0
Lg(U(s)) ds, t ≥ 0, (2.24)
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is a ((Ft)-) martingale. Moreover, the stopped process (Mg(t ∧ τ))t≥0 is a martingale for

each ((Ft)-) stopping time τ . For more details on these topics see the relevant chapters of

Ethier & Kurtz (1986); Kallenberg (2002); Revuz & Yor (2005).

In order to obtain a particle density, we now rescale the stochastic process (U(t)). Let

l = L/N and set zi = (i − 1/2) l, i = 1, . . . , N . We denote by cl(zi) the open interval of

length l with zi as midpoint, i.e., cl(zi) =
(
zi − l/2, zi + l/2

)
. The union of the intervals

cl(zi) is, except for a finite number of points, the interval G = (0, L) which represents the

chemical reactor. Let 1cl(zi)( · ) be the indicator function of the interval cl(zi). It is natural

to associate to U(t) the step-function valued particle density ul( · , t) : Rm → 1
nN0 given by

x 7→ ul(x, t) =
N∑

i=1

U(i, t)
n

1cl(zi)(x). (2.25)

(Recall that n represents the number of sites per cell.) That is, the particle number in each

cell is scaled by 1/n and the index i numbering the cells is ‘scaled’ by l. Here we have labelled

the particle density by the parameter l, but keep in mind that it depends on the parameters

l = L/N , n, and d.

In order to specify precisely the state space of the particle density process (ul(t))t≥0, we

now introduce a few notions the utility of which will become clearer during the derivation of

the law of large numbers. They are useful also for the discussion of the general linear model

in the next paragraph.

It seems natural to consider the step-function valued particle density defined above as an

element of the space L2 (or any other Lp). In fact, it will turn out to be useful to regard it

as an element of a discrete version L2(Gl) of the Lebesgue space L2(G). Let for the following

discussion (cf. Zeidler (1990c), Chapter 35) G be a bounded domain in Rm. In order to

define the discrete Lebesgue space L2(Gl), we choose a cubic lattice in Rm with grid mesh

h ∈ I = (0, h0] ⊂ R+. More precisely, for some fixed z0 ∈ Rm we define the set of vertices

Zh(z0) by

Zh(z0) =
{
z ∈ Rm : z = h z0 + i1h e1 + . . .+ imh em, (i1, . . . , im) ∈ Zm

}
, (2.26)

where ek denotes the kth unit vector in Rm. The kth coordinate of a vertex is thus an integer

multiple of h shifted by h z0,k. To each vertex z ∈ Zh(z0) we assign an open cube ch(z) ⊂ Rm

with edges parallel to the coordinate axis having edge length h and z as midpoint.

Definition 2.1.1. The set Gh of interior lattice points of G generated by the lattice Zh(z0)

is defined as

Gh =
{
z ∈ Zh(z0) : ch(z) ⊂ G

}
.

Definition 2.1.2. By a lattice function we understand a function uh : Zh(z0) → R, i.e., a

function that assigns a real number to each vertex z ∈ Zh(z0). The extended version of a
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lattice function is the step function uh : Rm → R, x 7→ ∑
z∈Zh(z0) uh(z) 1ch(z)(x), where 1ch(z)

is the indicator function of the open cube ch(z).

Next, we endow the space of lattice functions that vanish outside Gh with a scalar product.

Definition 2.1.3. The discrete Lebesgue space L2(Gh) is the space of lattice functions that

are zero outside Gh equipped with the scalar product

(
uh, vh

)
L2(Gh)

= hm
∑

z∈Gh

uh(z) vh(z) =
∫

Rm

uh(x) vh(x) dx =
∫

G
uh(x) vh(x) dx. (2.27)

Remark 2.1.4. Note that a lattice function in L2(Gh), its extended version and the re-

striction of the extended version to the domain G are, in principle, three different objects.

However, to keep our notation reasonably simple, we usually do not use different symbols.

We now come back to the stochastic example model. By taking z0 = 1/2 and grid mesh

l we see that the midpoints zi, i = 1, . . . , N, of the cells introduced above constitute the set

Gl of interior lattice points of the interval G = (0, L) generated by the lattice Zl(z0). Hence,

we can identify the particle density ul defined above as extended version of a lattice function

from the space L2(Gl). Finally, we choose as state space Sl of the particle density process

(ul(t))t≥0 the discrete subset of lattice functions in L2(Gl) that take values in 1
nN0. The

norm in L2(Gl) induces a metric on Sl which obviously makes it a locally compact, separable,

metric space as well. The particle density process (ul(t)) is a Markov process in its own right

with respect to the filtration (Fl,t) induced by itself, and we denote its transition intensities

by ql( · , · ). They are related to the transition intensities of the unscaled particle model by

ql(ul, ũl) = q(nul, n ũl), (2.28)

where n ul and n ũl are interpreted as elements of NN
0 . Furthermore, (ul(t)) corresponds to

a Feller semigroup generated by

Llg(ul) =
∑

ũl 6=ul

ql(ul, ũl)
(
g(ũl)− g(ul)

)
, g ∈ Ĉ(Sl), (2.29)

and all properties of the unscaled process (U(t)) discussed above (regularity of paths, mea-

surability, Dynkin’s formula, etc.) carry over to the particle density process.

The general linear model

We immediately formulate the particle density process, i.e., the rescaled version of the meso-

scopic stochastic particle model for the general linear case. We now assume that the chemical

reactor is represented by a bounded domain G ⊂ Rm. Let us choose as above a family of

cubic lattices Zh(z0) in Rm with grid mesh h ∈ I = (0, h0] ⊂ R+, and let Gh be the set of
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interior lattice points of G generated by Zh(z0). The cells now correspond to open cubes in

Rm with edge length l around the points z ∈ Gl. The state space Sl of the particle density

process ul(t) = (ul,1(t), . . . , ul,ns(t)), t ≥ 0, is the set of vector-valued lattice functions from

the space (L2(Gl))ns that take values in 1
nN

ns
0 .

Definition 2.1.5. The set of lattice points G1
h is defined as

G1
h =

{
z ∈ Gh : z ± h ek ∈ Gh, k = 1, . . . ,m

}
.

Let, for z ∈ G1
l and j = 1, . . . , ns, χj,z be the state with particle density one of species j

in cell z and zero elsewhere. For z ∈ Gl \ G1
l we define χj,z identically zero. The transition

intensities ql( · , · ) are now the following.

I A particle of species j may leave cell z ∈ G1
l and jump to z ± lek.

ql
(
ul,ul − 1

nχj,z + 1
nχj,(z−lek)

)
= n

dj

2m
ul,j(z),

ql
(
ul,ul − 1

nχj,z + 1
nχj,(z+lek)

)
= n

dj

2m
ul,j(z),

(2.30)

where dj > 0 is the hopping rate of species j.

I The number of particles in cell z ∈ G1
l changes according to reaction i.

ql
(
ul,ul + 1

n

∑ns
j=1νijχj,z

)
= nKi(ul(z)) if ul + 1

n

∑ns
j=1νijχj,z ∈ Sl. (2.31)

The intensity for other possible transitions is zero. As for the example model of the previous

paragraph, the matrix of transition intensities characterises a Markov jump process in Sl that

corresponds to a Feller semigroup generated by

Llg(ul) =
∑

ũl 6=ul

ql(ul, ũl)
(
g(ũl)− g(ul)

)
, g ∈ Ĉ(Sl). (2.32)

This follows again from Theorem 3.1 in Chapter 8 of Ethier & Kurtz (1986).

2.2 The macroscopic PDE and a semi-discrete approximation

2.2.1 Weak formulation of the PDE

Our final aim is to show that the particle density of the example model and the general

linear model defined in the previous section approximate the solutions of the PDEs (2.10)

and (2.12). First of all, however, we have to specify more precisely the notion of solution we

are going to adopt.
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The example model

Let G = (0, L) and recall that QT = G× (0, T ), where T > 0 is the time of observation. The

classical initial-boundary value problem with Dirichlet boundary conditions for Eq. (2.10) is

to seek a sufficiently smooth function u that solves




∂tu−D∂2
xu = k1u− k2u on QT

u = 0 on ∂G× [0, T ]

u( · , 0) = u0( · ) on G.

(2.33)

Since, in general, the classical point of view is too restrictive, we turn to a generalised

formulation of the problem. The weak formulation (also called variational formulation) is

obtained as follows. Assume for the following calculations that u is a sufficiently smooth

classical solution. After multiplying the equation with a test function v ∈ C∞0 (G) and

integrating over G we get by an integration by parts that

d

dt

∫

G
u v dx+D

∫

G
∂xu ∂xv dx = (k1 − k2)

∫

G
u v dx (2.34)

for all v ∈ C∞0 (G) and t ∈ (0, T ). If, in turn, a sufficiently smooth function u solves (2.34),

it is also a solution of (2.33). Note that the integral terms

a(u, v) = D

∫

G
∂xu ∂xv dx (2.35)

and

(
f(u), v

)
L2(G)

= (k1 − k2)
∫

G
u v dx (2.36)

can be viewed as bilinear forms on H1
0 (G)×H1

0 (G). Here H1
0 (G) denotes (also for a general

bounded domain in Rm with Lipschitz boundary) the Sobolev space of functions in L2(G) that

have weak derivatives in L2(G) and vanish on the boundary of G in the trace sense (see, e.g.,

Zeidler (1990b), Chapter 21). Recall that the spaces H1
0 (G), L2(G) and H−1(G) = (H1

0 (G))∗

form a Gelfand triple:

H1
0 (G) ↪→ L2(G) ∼= (L2(G))∗ ↪→ H−1(G) (2.37)

(see, e.g., Zeidler (1990b), Chapter 23). The space H1(0, T ;H1
0 (G), L2(G)) is defined

as the space of functions in L2(0, T ;H1
0 (G)) that have generalised time derivatives in

L2(0, T ;H−1(G)). Here and in the sequel integrals of Banach-space valued functions are al-

ways interpreted in the sense of the Bochner integral (see, e.g., Da Prato & Zabczyk (1992)).

The notation indicates that H1
0 (G) is embedded into H−1(G) via L2(G) as in (2.37). In the

following we often skip the domain G in the notation if there is no risk of ambiguity. The

generalised time derivative of a function u ∈ L2(0, T ;H1
0 ) is defined here as a function u′ in

L2(0, T ;H−1) such that the equation
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∫ T

0

〈
u′(t), v

〉
H1

0
ϕ(t) dt = −

∫ T

0

(
u(t), v

)
L2 ϕ

′(t) dt (2.38)

is satisfied for arbitrary ϕ ∈ C∞0 (0, T ) and v ∈ H1
0 . Let b( · , · ) be the bilinear form given by

b(u, v) = a(u, v)− (
f(u), v

)
L2 , u, v ∈ H1

0 . (2.39)

The weak problem corresponding to (2.33) is then (cf. Eq. (2.34)) to look for a function

u ∈ H1(0, T ;H1
0 , L

2) that satisfies

d

dt

(
u(t), v

)
L2 + b(u(t), v) = 0 (2.40a)

for all v ∈ H1
0 and a.e. t ∈ (0, T ), and

u(0) = u0 ∈ L2. (2.40b)

Here the equation involving the time derivative is supposed to hold in D′(0, T ), i.e., in the

scalar distribution sense. Note that the bilinear form b( · , · ) is bounded and satisfies a

G̊arding inequality:

b(u, u) ≥ α‖u‖2
H1

0
− β ‖u‖2

L2 (2.41)

for constants α, β > 0. This follows from the the linearity of the reaction function f and the

fact that the bilinear form a( · , · ) is bounded and coercive, i.e.,

a(u, v) ≤ C ‖u‖H1
0
‖v‖H1

0
(2.42)

and

a(u, u) ≥ α‖u‖2
H1

0
(2.43)

for constants C,α > 0. These inequalities, in turn, follow immediately from the Poincaré

inequality. Hence a general result on linear first-order evolution equations (see, e.g., Corollary

23.26 to Theorem 23.A in Zeidler (1990b)) ensures that (2.40) has a unique solution. Since the

space H1(0, T ;H1
0 , L

2) is continously embedded in C([0, T ], L2), the initial condition makes

sense.

The weak problem (2.40) can be interpreted as operator equation. To see this note that

the bilinear form a( · , · ) induces a bounded linear operator A : H1
0 → H−1 by

〈
Au, v

〉
H1

0
= a(u, v), u, v ∈ H1

0 . (2.44)

The operator A is (strongly) monotone, i.e.,

〈
Au−Av, u− v

〉
H1

0
≥ α‖u− v‖2

H1
0
≥ 0 for all u, v ∈ H1

0 . (2.45)
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Moreover, the reaction function f induces a bounded linear operator (a so-called Nemyckii

operator, see, e.g., Chapter 26 of Zeidler (1990c)) F : L2 → L2 by (Fu)( · ) = f(u( · )).
Therefore the operator equation

u′ +Au = Fu, u(0) = u0 ∈ L2, (2.46)

in the space H1(0, T ;H1
0 , L

2) is equivalent to the weak formulation (2.40) above. For more

details see Zeidler (1990b), Chapter 23.

The general linear model

We now suppose that G is a bounded domain in Rm with Lipschitz boundary. Recall that

we are dealing with nr equations for ns species and that the initial-boundary value problem

for the PDE system (2.12) with Dirichlet boundary conditions is given by




∂tuj −Dj∆uj = fj(u) on QT

uj = 0 on ∂G× [0, T ]

uj( · , 0) = uj,0 on G,

(2.47)

j = 1, . . . , ns. The weak formulation of (2.47) is completely analogous to the previous

paragraph. To facilitate notation we set

H1
0 (G) = (H1

0 (G))ns , L2(G) = (L2(G))ns , H−1(G) = ((H1
0 (G))ns)∗.

Note that again the spaces H1
0 (G), L2(G) and H−1(G) form a Gelfand triple. We define the

bilinear forms

a(u,v) =
ns∑

j=1

Dj

(∇uj , ∇vj

)
(L2)m =

ns∑

j=1

m∑

k=1

Dj

(
∂xk

uj , ∂xk
vj

)
L2 , u,v ∈ H1

0 , (2.48)

and

b(u,v) = a(u,v)− (
f(u), v

)
L2 , u,v ∈ H1

0 , (2.49)

where f = (f1, . . . , fns). The generalised time derivative of a function u ∈ L2(0, T ;H1
0 ) is,

of course, the element u′ of L2(0, T ;H−1) that satisfies
∫ T

0

〈
u′(t), v

〉
H1

0
ϕ(t) dt = −

∫ T

0

(
u(t), v

)
L2 ϕ

′(t) dt, (2.50)

for arbitrary ϕ ∈ C∞0 (0, T ) and v ∈ H1
0 , and the space H1(0, T ; H1

0 ,L
2) is defined in analogy

to the scalar case. In the weak formulation of the PDE a function u ∈ H1(0, T ; H1
0 ,L

2) is

sought that satisfies

d

dt

(
u(t), v

)
L2 + b(u(t),v) = 0 (2.51a)



56 Law of large numbers for linear models

for all v ∈ H1
0 and a.e. t ∈ (0, T ), and

u(0) = u0 ∈ L2. (2.51b)

In the same way as for the example model, the bilinear form b( · , · ) is bounded and satisfies

a G̊arding inequality, which ensures the existence of a unique solution.

Again the bilinear form a( · , · ) induces a bounded linear and (strongly) monotone op-

erator A : H1
0 → H−1. Since the reaction functions fj , j = 1, . . . , ns, are still linear, the

operator F : L2 → L2 given by (Fu)( · ) = f(u( · )) is linear and bounded, and the equivalent

operator equation in H1(0, T ;H1
0 ,L

2) reads

u′ +Au = Fu, u(0) = u0 ∈ L2. (2.52)

2.2.2 A semi-discrete finite-difference approximation

In this section we discuss spatially semi-discretised approximating equations for the macro-

scopic PDEs (2.33) and (2.12) introduced in the previous section. In Sections 2.3 and 2.4 we

shall show that their solutions are indeed approximations, i.e., that they converge to the solu-

tion of the respective PDE if the grid mesh tends to zero. The solutions of the approximating

equations serve as auxiliary functions and correspond to the expected value of the particle

density regarded as L2-valued random variable. Their introduction allows, as we will see, to

deal separately with the spatial discreteness and the randomness of the particle density.

We have already introduced discrete Lebesgue spaces in Section 2.1.2. The particle densi-

ties introduced there have been identified as elements of the discrete Lebesgue space L2(Gl),

where l was the edge length of a cell. For an appropriate formulation of the approximating

problems we need, in addition, a discrete version of the Sobolev space H1
0 (G). Therefore

we now introduce the discrete Sobolev space H1
0(Gh) and discuss some of its properties (cf.

Chapter 35 of Zeidler (1990c)).

Discrete Sobolev spaces

Let, as in Section 2.1.2, Zh(z0) be a lattice in Rm with grid mesh h ∈ I = (0, h0] ⊂ R+ and

ch(z) the open cube with midpoint z having edge length h. The lattice functions on Zh(z0),

the interior lattice points Gh of a bounded domain G ⊂ Rm, and the discrete Lebesgue space

L2(Gh) have already been defined in Section 2.1.2 as well as the lattice points G1
h. We now

define the discrete derivatives of a lattice function.

Definition 2.2.1. For a lattice function uh the discrete derivatives ∂+
k uh and ∂−k uh are

defined as the lattice functions given by

∂±k uh(z) =
uh(z ± h ek)− uh(z)

±h , k = 1 . . . ,m.

Higher derivatives are obtained by repeated application of ∂±k .
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We are now in a position to define the discrete Sobolev space H1
0(Gh).

Definition 2.2.2. By the discrete Sobolev space H1
0(Gh) we understand the set of all lattice

functions that vanish outside G1
h equipped with the scalar product

(
uh, vh

)
H1

0(Gh)
=

(
uh, vh

)
L2(Gh)

+
m∑

k=1

(
∂+

k uh, ∂
+
k vh

)
L2(Gh)

.

The space H1
0(Gh) has many properties in common with the Sobolev H1

0 (G) defined on a

continuous domain G, e.g., we have a discrete integration by parts formula.

Lemma 2.2.3. For functions uh, vh ∈ H1
0(Gh) we have

(
∂+

k uh, vh

)
L2 = −(

uh, ∂
−
k vh

)
L2 , k = 1, . . . ,m.

Proof. The proof is (really!) straightforward.

Moreover, there is a discrete analogue of Poincaré ’s inequality.

Lemma 2.2.4. For functions uh, vh ∈ H1
0(Gh) we have

(
uh, vh

)
H1

0
≤ C

(∇+uh, ∇+vh

)
(L2)m ,

and the constant C depends only on the domain G.

Proof. Cf. Proposition 3.3 in Chapter 1 of Temam (2001).

Note that, in analogy to the spaces defined on a continuous domain, H1
0(Gh), L2(Gh) and

H−1(Gh) = (H1
0(Gh))∗ form a Gelfand triple:

H1
0(Gh) ↪→ L2(Gh) ∼= (L2(Gh))∗ ↪→ H−1(Gh). (2.53)

It is easily checked that the embedding constants are bounded independent of h. Of course,

since the domain G is supposed to be bounded and thus H1
0(Gh) is finite-dimensional, the

reverse inclusions hold as well. However, the embedding constants of the reverse inclusions

are not uniformly bounded.

We are now going to formulate approximating problems for the macroscopic PDEs of the

example model and the general linear model introduced in Section 2.2.1.

The approximating problem for the example model

Let Gh be the interior lattice points of G = (0, L) as in Section 2.1.2. The discrete analogue

of the initial-boundary value problem (2.33) is to find, for a given lattice function uh,0 and

diffusion coefficient Dh > 0, the functions uh(z, · ) : [0, T ] → R, z ∈ Gh, such that




u′h −Dh∂
−∂+uh = f(uh) on G1

h × (0, T )

uh = 0 on (Gh \ G1
h)× [0, T ]

uh( · , 0) = uh,0 on G1
h.

(2.54)
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This is in fact an initial value problem for a linear finite-dimensional system of ODEs. Con-

sequently, the existence of a unique solution for all times is ensured by the Picard-Lindelöf

theorem. It will turn out to be useful to introduce a ‘discrete weak formulation’ in analogy

to the weak formulation of the original PDE (2.40). Note that the expressions

ah(uh, vh) = Dh

(
∂+uh, ∂

+vh

)
H1

0
, uh, vh ∈ H1

0, (2.55)

and

(
f(uh), vh

)
L2 = (k1 − k2)

(
uh, vh

)
L2 , uh, vh ∈ H1

0, (2.56)

are bilinear forms on H1
0 ×H1

0. Furthermore, we define the bilinear form bh( · , · ) by

bh(uh, vh) = ah(uh, vh)− (
f(uh), vh

)
L2 , uh, vh ∈ H1

0. (2.57)

The solution of the approximating problem (2.54) can be regarded as an element of the space

C1([0, T ],H1
0), and it also solves the following weak formulation:

d

dt

(
uh(t), vh

)
L2 + bh(uh(t), vh) = 0 (2.58)

for all vh ∈ H1
0 and t ∈ (0, T ). This follows from (2.54) by multiplying with hm vh(z),

summing over all z ∈ Gh and a discrete integration by parts.

As a consequence of the discrete Poincaré inequality the bilinear form ah( · , · ) is bounded

and coercive. Therefore, in analogy to the corresponding bilinear form a( · , · ) of the PDE

problem, it induces a bounded linear and (strongly) monotone operator Ah : H1
0 → H−1 by

〈
Ahuh, vh

〉
H1

0
= ah(uh, vh), uh, vh ∈ H1

0. (2.59)

The approximating problem for the general linear model

Let now Gh be the interior lattice points generated by a lattice Zh(z0) of a general bounded

domain G ⊂ Rm with Lipschitz boundary representing the chemical reactor (cf. Section 2.1.2).

Recall that we are dealing with nr equations for ns species. To facilitate notation, we set

H1
0(Gh) = (H1

0(Gh))ns , L2(Gh) = (L2(Gh))ns , H−1(Gh) = ((H1
0(Gh))ns)∗.

The discrete analogue of the PDE system (2.47) is the ODE system




u′h,j −Dh,j ∇− ·∇+uh,j = fj(uh) on G1
h × (0, T )

uh,j = 0 on (Gh \ G1
h)× [0, T ]

uh,j( · , 0) = uh,j,0 on G1
h,

(2.60)

j = 1, . . . , ns, where uh = (uh,1, . . . , uh,ns). This is still an initial-value problem for a lin-

ear finite-dimensional system of ODEs and thus solvability for all times and uniqueness of

solutions is ensured by the Picard-Lindelöf theorem.
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In analogy to the previous paragraph we have on H1
0 ×H1

0 the bilinear forms

ah(uh,vh) =
ns∑

j=1

m∑

k=1

Dh,j

(
∂+

k uh,j , ∂
+
k vh,j

)
L2 , uh,vh ∈ H1

0, (2.61)

and

bh(uh,vh) = ah(uh,vh)− (
f(uh), vh

)
L2 , uh,vh ∈ H1

0. (2.62)

The solution uh of (2.60) can be regarded as a function in C1
(
[0, T ],H1

0

)
, and it also solves

the discrete weak problem

d

dt

(
uh(t), vh

)
L2 + bh(uh(t),vh) = 0 (2.63)

for all vh ∈ H1
0 and t ∈ (0, T ). Note that once more the operator Ah : H1

0 → H−1 given by

〈
Ahuh, vh

〉
H1

0
= ah(uh,vh), uh,vh ∈ H1

0, (2.64)

is bounded, linear and (strongly) monotone due to the discrete Poincaré inequality.

2.2.3 External approximation schemes

In this section we review some important techniques that we need for the first part of the

proof of the law of large numbers, which consists in proving that the approximations discussed

in the previous section actually converge. We introduce the general concept of external

approximation of a normed vector space following Temam (1973, 2001) and Zeidler (1990c).

External approximations are motivated, for instance, by the study of convergence of finite

difference methods for weak solutions of PDEs as introduced in Sections 2.2.1 and 2.2.2.

Recall that the solution uh( · , t) of the approximating problem for the example model and

its discrete spatial derivatives ∂+
k uh( · , t) are step functions. The solution of the original

equation, on the other hand, is at each moment in time a function in the Sobolev space H1
0 .

Therefore it is not obvious how to define and estimate the error between the solution and

its approximation because they do not belong to the same function space. (The same sort

of problem can arise also with finite-element methods if one uses so-called non-conforming

finite elements.) The concept of external approximation provides a framework to handle this

kind of difficulty.

External approximations

In this paragraph we discuss the general concept of external approximation of a normed

vector space denoted by W . Elements of W are approximated by elements from a family of

normed vector spaces Wh, h ∈ I = (0, h0] ⊂ R+, which are finite-dimensional in practice.

The parameter h should be thought of as a grid mesh.
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Definition 2.2.5. An external approximation of W consists of

(i) a normed vector space X and an isometric embedding J : W → X,

(ii) a family of triples
(Wh, Rh, Jh

)
h∈I

, where for each h

– Wh is a normed vector space,

– Rh is an (arbitrary) operator from W to Wh,

– Jh is a bounded linear operator from Wh to X.

The operators Rh and Jh are called the restriction operator and the extension operator,

respectively. This terminology is useful for solving problems of the kind discussed above: the

object we want to approximate, e.g., the solution of a PDE, is an element of the space W ,

whereas the approximation belongs to the space Wh 6⊂W . In order to compare solution and

approximation both have to be mapped to a third space X. If X = W and J = id, we speak

of an internal approximation.

Definition 2.2.6. For u ∈W and uh ∈ Wh we define

(i) ‖Ju− Jhuh‖X as the error between u and uh ,

(ii) ‖Rhu− uh‖Wh
as the discrete error between u and uh ,

(iii) ‖Ju− JhRhu‖X as the truncation error for u.

The following notions are useful for discussions of stability and consistency.

Definition 2.2.7. The family of extension operators (Jh)h∈I is called stable if the norms of

the operators Jh are uniformly bounded, i.e.,

sup
h∈I

‖Jh‖L (Wh,X) <∞.

The external approximation of W consisting of X, J , and
(Wh, Rh, Jh

)
h∈I

is called stable if

the family (Jh)h∈I is stable.

Stability of the restriction operators is defined in the same way and may be useful, but is not

always necessary and thus not part of the definition of a stable external approximation.

Remark 2.2.8. In the following we often sloppily speak of a sequence (uh), h % 0, of elements

of Wh, by which we mean a sequence (uhi)i∈N0 of elements uhi ∈ Whi , where (hi)i∈N0 is a

sequence in I that converges to zero for i→∞.

Definition 2.2.9. An external approximation of a normed vector space W is said to be

convergent if the following conditions hold:
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(i) For all u ∈W the truncation error converges to zero for h→ 0, i.e.,

‖Ju− JhRhu‖X → 0 (h→ 0).

(ii) If (uh), h % 0, is a sequence in Wh such that Jhuh converges weakly to ũ in X, then

ũ ∈ J(W ), i.e., since J is one-to-one, ũ = Ju for a unique u ∈W .

The second condition comes into play if the embedding J is not surjective. For internal

approximations it is apparently superfluous.

Remark 2.2.10. For a stable and convergent external approximation, discrete convergence

implies convergence, i.e., if (uh), h % 0, is a sequence in Wh, and the discrete error between

uh and u ∈W converges to zero, then the error vanishes as well.

Proof. The claim follows immediately from the estimate

‖Ju− Jhuh‖X ≤ ‖Ju− JhRhu‖X + ‖Jh‖L (Wh,X) ‖Rhu− uh‖Wh

and the definitions.

The next lemma is important in connection with evolution problems . We assume in addition

that W , Wh and X are separable Banach spaces.

Lemma 2.2.11. Let
{
X, J, (Wh, Rh, Jh)h∈I

}
be a stable and convergent external approxima-

tion of W , and assume that the sequence of functions uh : [0, T ] →Wh satisfies

Jhuh ⇀ ũ (h % 0)

in L2(0, T ;X). Then there is a function u ∈ L2(0, T ;W ) so that ũ(t) = Ju(t) for a.e. t.

Proof. See Temam (2001), p. 238.

Approximation of Lebesgue and Sobolev spaces by their discrete analogues

Let G ⊂ Rm be a bounded domain with Lipschitz boundary. In this paragraph we discuss

an internal approximation of L2(G) and an external approximation of H1
0 (G) in terms of the

discrete spaces L2(Gh) and H1
0(Gh), where h ∈ I = (0, h0] ⊂ R+. For functions u ∈ L2(G)

we define the lattice function ūh as follows. We first extend u to a function ũ ∈ L2(Rm) by

setting ũ = u on G and ũ ≡ 0 on Rm \G. The lattice function ūh is then defined as

ūh(z) = h−m

∫

ch(z)
u(x) dx, z ∈ Zh(z0). (2.65)

The restriction operator Qh : L2(G) → L2(Gh) is given by

Qhu(z) =




ūh(z) if z ∈ Gh

0 otherwise,
(2.66)
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and the restriction operator Rh : H1
0 (G) → H1

0(Gh) is defined as

Rhu(z) =




ūh(z) if z ∈ G1

h

0 otherwise.
(2.67)

They have the following properties.

Lemma 2.2.12. The restriction operators Qh and Rh are bounded linear operators, i.e.,

they are elements of L (L2(G),L2(Gh)) and L (H1
0 (G),H1

0(Gh)), respectively. Moreover, the

families (Qh)h∈I and (Rh)h∈I are stable, and suph ‖Rh‖L (H1
0 ,H1

0) ≤ 1.

Proof. Let uh = Qhu for an arbitrary function u ∈ L2.

‖uh‖2
L2 = hm

∑

z∈Gh

uh(z)2 = hm
∑

z∈Gh

(
h−m

∫

ch(z)
u(x) dx

)2

≤ hm
∑

z∈Gh

(
h−m

( ∫

ch(z)
u(x)2 dx

)1/2

hm/2

)2

=
∑

z∈Gh

∫

ch(z)
u(x)2 dx ≤ ‖u‖2

L2 .

To finish the proof we may assume that u ∈ C∞0 (G) (because C∞0 (G) is dense in H1
0 (G)),

and we set uh = Rhu. For k = 1, . . . ,m,

‖∂+
k uh‖2

L2 = hm
∑

z∈Gh

1
h2

(
uh(z + h ek)− uh(z)

)2

= hmh−2
∑

z∈Gh

∣∣∣h−m

∫

ch(z)

(
u(x+ h ek)− u(x)

)
dx

∣∣∣
2

= h−2h−m
∑

z∈Gh

∣∣∣
∫

ch(z)

∫ 1

0

d

dt
u(x+ t h ek) dt dx

∣∣∣
2

= h−m
∑

z∈Gh

∣∣∣
∫

ch(z)

∫ 1

0
∂xk

u(x+ t h ek) dt dx
∣∣∣
2

≤
∑

z∈Gh

∫ 1

0

∫

ch(z)
|∂xk

u(x+ t h ek)|2 dx dt ≤ ‖∂xk
u‖2

L2 .

The proofs of the next two theorems, which are rather technical, are omitted. We refer

the reader to Raviart (1967) or Temam (1973, 2001), where similar results are derived for

symmetric difference operators. Note that the restriction to G of the extended version of a

lattice function uh is in L2(G) and

‖uh|G‖L2(G) = ‖uh‖L2(Gh). (2.68)

In this sense L2(Gh) can be regarded as a linear subspace of L2(G), and we define the extension

operators Ph : L2(Gh) → L2(G) by

Phuh = uh|G. (2.69)



2.3: Law of large numbers for the example model 63

Theorem 2.2.13. The internal approximation of L2(G) by
(L2(Gh), Qh, Ph

)
h∈I

is stable and

convergent.

Proof. Cf. Raviart (1967), Chapter 0, or (Temam, 1973), Chapter 9.

We now turn to the announced external approximation of the Sobolev space H1
0 (G). To this

end, we set X = (L2(G))m+1 and endow it with the canonical scalar product. The embedding

J : H1
0 (G) → X is given by

u 7→ Ju = (u, ∂x1u, . . . , ∂xmu), (2.70)

where ∂xk
u denotes the kth weak derivative. Apparently, J is an isometric embedding. The

extension operators Jh : H1
0(Gh) → X are given by

uh 7→ Jhuh =
(
uh|G, ∂+

1 uh|G, . . . , ∂+
muh|G

)
. (2.71)

Theorem 2.2.14. The external approximation of H1
0 (G) by X, J , and

(H1
0(Gh), Rh, Jh

)
h∈I

is stable and convergent.

Proof. Cf. Raviart (1967), Chapter 0, or (Temam, 1973), Chapter 9.

2.3 Law of large numbers for the example model

In the present section we shall eventually put to work all the machinery that has been

introduced so far. As already announced in the introduction to this chapter, the proof of the

law of large numbers proceeds in two steps. We first show convergence of the semi-discrete

approximation to the solution of the PDE and then estimate the difference between the

approximation and the stochastic particle density. This procedure allows to deal separately

with the spatial discreteness and the randomness of the particle density. The first part of

the proof is thus purely analytical; it is only in the second part that probabilistic arguments

come into play.

2.3.1 Convergence of the approximation

We first prove weak convergence of the solutions of the approximating problem (2.54) intro-

duced in Section 2.2.2 to the solution of the weak PDE problem (2.40) from Section 2.2.1.

We shall reuse the notation from Sections 2.1 and 2.2 concerning the example model. (Recall,

in particular, Remark 2.1.4 on lattice functions.) Here G is the interval (0, L) and the space

X is given by (L2(G))2. The following lemma states two consistency conditions that are

necessary to show convergence of the approximations.

Lemma 2.3.1. If (uh) and (vh), h % 0, are sequences in L2(0, T ;H1
0) such that Jhuh converges

weakly to Ju, and Jhvh → Jv strongly in L2(0, T ;X) for functions u, v ∈ L2(0, T ;H1
0 ), then

∫ T

0

(
uh(t), vh(t)

)
L2 dt→

∫ T

0

(
u(t), v(t)

)
L2 dt,
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and
∫ T

0
bh(uh(t), vh(t)) dt→

∫ T

0
b(u(t), v(t)) dt.

Proof. By the definition of the external approximation of the Sobolev space H1
0 in terms

of the discrete spaces H1
0, Jhuh ⇀ Ju in L2(0, T ;X) implies that uh ⇀ u and ∂+uh ⇀ ∂xu

in L2(0, T ;L2). Moreover, vh converges strongly to v, and ∂+vh converges strongly to ∂xv

in L2(0, T ;L2). The claim thus follows from a well-known limit relation for time-integrals of

functions in L2(0, T ;L2) (see, e.g., Zeidler (1990b), Proposition 23.9).

We are now going to prove a first convergence theorem.

Theorem 2.3.2. Let (uh), h % 0, be a sequence of solutions of (2.54) to the initial values

uh,0. Assume that uh,0 converges strongly to u0 in L2 and that Dh → D. Then Jhuh converges

weakly to Ju in L2(0, T ;X), where u is the solution of the weak PDE problem (2.40) to the

initial value u0.

Proof. The proof is similar to the corresponding convergence proof for the Faedo-Galerkin

method.

1. We first derive the a-priori estimates

sup
h

max
0≤t≤T

‖uh‖L2 <∞, (2.72)

sup
h
‖uh‖L2(0,T ;H1

0) <∞, (2.73)

sup
h
‖u′h‖L2(0,T ;H−1) <∞. (2.74)

for the solution of the approximating problem. From the discrete weak formulation (2.58) we

get by substituting uh(t) for vh that

1
2
d

dt
‖uh(t)‖2

L2 + ah(uh(t), uh(t)) =
(
f(uh(t)), uh(t)

)
L2 . (2.75)

By integrating over time and making use of the coerciveness of the bilinear form ah( · , · ) and

the linearity of the reaction function f , we deduce the estimate

‖uh(t)‖2
L2 + 2α

∫ t

0
‖uh(s)‖2

H1
0
ds ≤ ‖uh(0)‖2

L2 + C

∫ t

0
‖uh(s)‖2

L2 ds. (2.76)

Since uh,0 converges strongly to u0 in L2, we have

sup
h
‖uh(0)‖L2 ≤ C . (2.77)

Consequently, by invoking Gronwall’s inequality,

sup
h

max
0≤t≤T

‖uh‖L2 ≤ C . (2.78)
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Thus it follows from (2.76) that

sup
h
‖uh‖L2(0,T ;H1

0) ≤ C . (2.79)

The third a-priori estimate (2.74) follows again from the discrete weak formulation by using

the boundedness of the bilinear form ah( · , · ) and the linearity of the reaction function f .

2. From the stability of the extension operators Jh it follows that

sup
h
‖Jhuh‖L2(0,T ;X) <∞. (2.80)

Owing to the latter estimate we can conclude that there exists a subsequence of (uh) (still

denoted by (uh)) such that Jhuh converges weakly to a limit ũ in X. By Lemma 2.2.11 there

is a function u in L2(0, T ;H1
0 ) with ũ(t) = Ju(t) for a.e. t.

3. It remains to show that u solves the weak PDE problem (2.40) with initial value u0. We

first show that the equation

−(
u0, v

)
L2 ϕ(0)−

∫ T

0

(
u(t), v

)
L2 ϕ

′(t) dt+
∫ T

0
b(u(t), v)ϕ(t) dt = 0 (2.81)

holds for arbitrary v ∈ H1
0 and ϕ ∈ C1[0, T ] with ϕ(T ) = 0. To this end, let vh = Rhv. From

the discrete weak formulation we get by multiplying with ϕ(t) and integrating over time that

−(
uh(0), vh

)
L2 ϕ(0)−

∫ T

0

(
uh(t), vh

)
L2 ϕ

′(t) dt+
∫ T

0
bh(uh(t), vh)ϕ(t) dt = 0. (2.82)

Because the external approximation of H1
0 (G) by the discrete Sobolev spaces H1

0(Gh) is stable

and convergent, Jhvh converges strongly to Jv in X. In particular, vh converges strongly to

v in L2. Moreover, Jh(vhϕ
′) converges strongly to J(vϕ′) in L2(0, T ;X). Since uh(0) → u0

strongly in L2 by hypothesis, Eq. (2.81) follows from Lemma 2.3.1 by passing to the limit in

Eq. (2.82).

Obviously the limit u satisfies Eq. (2.40a). (Take ϕ ∈ C∞0 (0, T ).) Furthermore, since

the operators A : H1
0 → H−1 and F : L2 → L2 induced by the bilinear form a( · , · ) and

the reaction function f are linear and bounded, it follows that u has indeed a generalised

time derivative u′ ∈ L2(0, T ;H−1) given by u′ = Fu − Au. It still remains to show that

u(0) = u0. An integration by parts formula for functions in H1(0, T ;H1
0 , L

2) (Zeidler (1990b),

Proposition 23.23) yields

(
u(T ), v

)
L2 ϕ(T )− (

u(0), v
)
L2 ϕ(0)

=
∫ T

0

〈
u′(t), ϕ(t)v

〉
H1

0
dt+

∫ T

0

〈
(ϕ(t)v)′, u(t)

〉
H1

0
dt

= −
∫ T

0
b(u(t), v)ϕ(t) dt+

∫ T

0

(
u(t), v

)
L2 ϕ

′(t) dt

(2.83)
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for arbitrary v ∈ H1
0 and ϕ ∈ C1[0, T ]. We choose a ϕ ∈ C1[0, T ] with ϕ(0) = 1 and ϕ(T ) = 0

and subtract the above identity from Eq. (2.81) to get
(
u0 − u(0), v

)
L2 = 0 for all v ∈ H1

0 . (2.84)

Hence u0 = u(0) in L2, since H1
0 is dense in L2.

4. It follows from the uniqueness of the solution of (2.40) that in fact the whole sequence

Jhuh converges weakly to Ju in L2(0, T ;X).

After having established the weak convergence of the solutions uh of the approximating

problem (2.54) to the solution u of the weak PDE problem (2.40), we now turn to the question

whether the sequence (uh) also converges in a stronger sense. We should emphasize here that

for the linear problem under consideration convergence of the semi-discrete approximation

can rather easily be proved in L∞(QT ) (even with explicit convergence rates) if one has

sufficient regularity of the solution of (2.40). But, in view of nonlinear problems, especially

problems involving a nonlinear diffusion operator, the required high regularity is not always

available. The ‘porous medium equation’

∂tu = ∆uγ , γ > 1,

for instance, admits (explicit) weak solutions that are not differentiable in the classical sense

(see, e.g., Evans (1998) or Friedman (1982)).

Thus we content ourselves (for the moment) with strong convergence in the space

L2(0, T ;L2) ∼= L2(QT ). A refined result will be presented in the next chapter in Section 3.3.

As for fully discrete finite-difference approximations (Raviart, 1967; Temam, 2001), strong

convergence will follow from a compactness theorem. Since in our case time is a continuous

variable, we can rather easily obtain an appropriate result by adapting the proof from the

PDE literature. Theorem 2.3.4 below, which is crucial also for the treatment of nonlinear

problems, is sufficient for our purposes. For the next two theorems we suppose that G is

a general bounded domain in Rm with Lipschitz boundary, and we adopt the notation of

Section 2.2.2. The following result is a discrete analogue of Rellich’s theorem.

Theorem 2.3.3. Let (uh), h % 0, be a sequence of functions in H1
0(Gh) that satisfies

suph ‖uh‖H1
0
< ∞. Then there is a subsequence (uh′), h′ % 0, that converges strongly to

a limit in L2(G).

Proof. Cf. Temam (2001), Chapter 2.

With the aid of the previous result one can establish the next theorem.

Theorem 2.3.4. Let (uh), h % 0, be a sequence of functions in L2(0, T ;H1
0(Gh)) that have

time derivatives u′h in L2(0, T ;H−1(Gh)) and satisfy

sup
h

∫ T

0

(
‖uh(t)‖2

H1
0
+ ‖u′h(t)‖2

H−1

)
dt <∞.

Then there is a subsequence (uh′), h′ % 0, that converges strongly in L2(0, T ;L2(G)).
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Proof: The proof can be carried out along the lines of the proof of Theorem 12.1 in Chapter

1 of Lions (1969).

The strong convergence of the solutions of the approximating problem for the example model

is an immediate consequence of the above theorem. The required estimates have already been

derived in the proof of Theorem 2.3.2.

Corollary 2.3.5. Under the same hypotheses as in Theorem 2.3.2 the sequence (uh), h % 0,

of solutions of the approximating problem (2.54) converges strongly to the solution u of the

weak PDE problem (2.40) in L2(0, T ;L2(G)).

2.3.2 Convergence of the particle density

We shall now complete the second (and certainly more interesting) step of the program and

estimate the distance between the particle density and the finite-difference approximation in

L2(0, T ;L2) ∼= L2(QT ). Henceforth ul denotes the stochastic particle density of the example

model introduced in Section 2.1.2. (For additional notation see also Section 2.1.2.)

In Section 2.1.2 we have defined the particle density ul as an element of the discrete

Lebesgue space L2(Gl). As state space Sl of the particle density process (ul(t))t≥0 we have

chosen the discrete subset of functions in L2(Gl) that take values in 1
nN0. Recall that Gl ={

(i−1/2) l : i = 1, . . . , N
}

is the set of midpoints zi of the intervals cl(zi) = (zi− l/2, zi+ l/2)

of length l. The union of these interval is, up to a finite number of points, the interval (0, L)

which represents the chemical reactor. The particle density process (ul(t))t≥0 has the Markov

property with respect to the filtration (Fl,t)t≥0 induced by itself. It corresponds to a Feller

semigroup of bounded linear operators on Ĉ(Sl) (the space of continuous real-valued functions

vanishing at infinity) that is generated by

Llg(ul) =
∑

ũl 6=ul

ql(ul, ũl) (g(ũl)− g(ul)), g ∈ Ĉ(Sl). (2.85)

The transition intensities ql( · , · ) have been specified in Section 2.1.2.

In order to prove a limit theorem, we have to consider a sequence of particle density

processes (uli)i∈N0 , where li % 0 for i → ∞, but for notational simplicity the index i is

usually omitted (cf. Remark 2.2.8). We may assume that the whole sequence of density

processes is defined on the same probability space (Ω,A , P ). Furthermore, let us suppose

that ul(0) is non-random and recall that the three parameters l = L/N , n and d are varied (cf.

the discussion in Section 2.1.2). We make the following hypotheses for the scale parameters.

l→ 0, n→∞, (S1)
1
2
d l2 → D, (S2)

d

n
→ 0, (S3)

where D is the macroscopic diffusion coefficient.
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Theorem 2.3.6 (Law of large numbers). Let u be the solution of the weak PDE problem

(2.40) to the initial value u0. Assume that (S1)–(S3) hold and that ul(0) converges strongly

to u0 in L2. Then

E
[
‖ul − u‖2

L2(0,T ;L2)

]
= E

[
‖ul − u‖2

L2(QT )

]
→ 0.

In other words, the particle density converges in L2(Ω;L2(QT )).

In the previous paragraph we have already shown the convergence of the solutions of the

auxiliary approximating problem (2.54) to the solution of the weak PDE problem (2.40).

Therefore the law of large numbers follows immediately from the next result (cf. Remark

2.2.10).

Theorem 2.3.7. Assume (S1)–(S3), and denote by vl the solutions of the approximating

problem (2.54) with Dl = 1
2d l

2 to the initial values vl,0. Moreover, assume that

‖ul(0)− vl,0‖L2 → 0.

Then

sup
t≤T

E
[
‖ul(t)− vl(t)‖2

L2

]
→ 0.

The proof of Theorem 2.3.7 is based on the following lemma which identifies a (local) mar-

tingale associated to the process ‖ul(t)− vl(t)‖2
L2 , t ≤ T . Let, for p ∈ N, τp be the stopping

time

τp = inf
{
t : ‖ul(t)‖L2 > p

}
∧ T, (2.86)

where a ∧ b means min(a, b) for a, b ∈ R. Here, as usual, inf ∅ = ∞. Note that it follows

immediately from the fact that the particle density process (ul(t)) has right-continuous paths

with left limits that τp 1 T almost surely for p→∞.

Lemma 2.3.8. Let (Ml(t))t≤T be the process given by

Ml(t) = ‖ul(t)− vl(t)‖2
L2 − ‖ul(0)− vl(0)‖2

L2

+ 2
∫ t

0
al

(
ul(s)− vl(s), ul(s)− vl(s)

)
ds

− 2
∫ t

0

(
f(ul(s))− f(vl(s)), ul(s)− vl(s)

)
L2 ds−Rl(t),

(2.87)

where

Rl(t) =
1
n

∫ t

0

(
2d

(
ul(s), 1

)
L2 +

(
k1ul(s), 1

)
L2 +

(
k2ul(s), 1

)
L2

)
ds. (2.88)

Then the stopped process (Ml(t ∧ τp))t≤T is a martingale for each p ∈ N.
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Proof. The martingale relationship follows, roughly speaking, from an application of Dynkin’s

formula (2.24) for the process (ul(t), t) with the function (ul, t) 7→ ‖ul − vl(t)‖2
L2 and explicit

calculations. We now give the details of the proof.

1. Let, for i = 2, . . . , N − 1, χi be the lattice function that is equal to one on the interval

cl(zi) and zero elsewhere, and let χ1 = χN ≡ 0 (cf. Section 2.1.2). For any function g ∈ Ĉ(Sl)

we have

Llg(ul) =
∑

ũl 6=ul

ql(ul, ũl)
(
g(ũl)− g(ul)

)

=
N−1∑

i=2

n
d

2
ul(zi)

(
g(ul − 1

nχi + 1
nχi−1)− 2 g(ul) + g(ul − 1

nχi + 1
nχi+1)

)

+
N−1∑

i=2

nk1ul(zi)
(
g(ul + 1

nχi)− g(ul)
)

+
N−1∑

i=2

nk2ul(zi)
(
g(ul − 1

nχi)− g(ul)
)
.

(2.89)

Here the first sum consists of the terms that stem from ‘diffusive’ jumps and the second and

third sum are the contributions coming from the chemical reactions. Thus the generator can

be written as a sum Ll = Ld,l + Lr,l, where

Ld,lg(ul) =
N−1∑

i=2

n
d

2
ul(zi)

(
g(ul − 1

nχi + 1
nχi−1)− 2 g(ul) + g(ul − 1

nχi + 1
nχi+1)

)
, (2.90)

and

Lr,lg(ul) =
N−1∑

i=2

nk1ul(zi)
(
g(ul + 1

nχi)− g(ul)
)

+
N−1∑

i=2

nk2ul(zi)
(
g(ul − 1

nχi)− g(ul)
)
.

(2.91)

2. Next, we consider for arbitrary but fixed wl ∈ H1
0 the function g( · , wl) : Sl → R given by

ul 7→ ‖ul − wl‖2
L2 . The function g( · , wl) is unbounded and thus not in Ĉ(Sl). However, it

makes sense to compute Llg for any real-valued function g on Sl. We shall later handle this

difficulty by a truncation argument. The diffusion part yields

Ld,lg(ul, wl) =
N−1∑

i=2

n
d

2
ul(zi)

(
g(ul − 1

nχi + 1
nχi−1, wl)− 2 g(ul, wl)

+ g(ul − 1
nχi + 1

nχi+1, wl)
)

=
N−1∑

i=2

n
d

2
ul(zi)

(
‖ul − 1

nχi + 1
nχi−1 − wl‖2

L2 − 2 ‖ul − wl‖2
L2

+ ‖ul − 1
nχi + 1

nχi+1 − wl‖2
L2

)
.

(2.92)
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Hence, by explicit calculation, it follows that

Ld,lg(ul, wl) =
N−1∑

i=2

n
d

2
ul(zi)

(
2
n

(
ul − wl, χi−1 − 2χi + χi+1

)
L2

+
1
n2
‖χi−1 − χi‖2

L2 +
1
n2
‖χi+1 − χi‖2

L2

)

=
N−1∑

i=2

n
d

2
ul(zi)

(
2
l

n

(
ul(zi−1)− wl(zi−1)− 2

(
ul(zi)− wl(zi)

)

+ ul(zi+1)− wl(zi+1)
)

+ 4
l

n2

)

= 2
1
2
d l2

(
ul, ∂

−∂+(ul − wl)
)
L2 + 2

d

n

(
ul, 1

)
L2

= −2 al(ul, ul − wl) + 2
d

n

(
ul, 1

)
L2 .

(2.93)

Here the bilinear form al( · , · ) is given by formula (2.55) with Dl = 1
2d l

2. Computing the

reaction terms yields

Lr,lg(ul, wl) =
N−1∑

i=2

nk1ul(zi)
(
g(ul + 1

nχi, wl)− g(ul, wl)
)

+
N−1∑

i=2

nk2ul(zi)
(
g(ul − 1

nχi, wl)− g(ul, wl)
)

=
N−1∑

i=2

nk1ul(zi)
(
‖ul + 1

nχi − wl‖2
L2 − ‖ul − wl‖2

L2

)

+
N−1∑

i=2

nk2ul(zi)
(
‖ul − 1

nχi − wl‖2
L2 − ‖ul − wl‖2

L2

)

=
N−1∑

i=2

nk1ul(zi)
(

2
n

(
ul − wl, χi

)
L2 +

l

n2

)

+
N−1∑

i=2

nk2ul(zi)
(
− 2
n

(
ul − wl, χi

)
L2 +

l

n2

)

=
N−1∑

i=2

nk1ul(zi)
(

2
l

n

(
ul(zi)− wl(zi)

)
+

l

n2

)

+
N−1∑

i=2

nk2ul(zi)
(
− 2

l

n

(
ul(zi)− wl(zi)

)
+

l

n2

)

= 2
(
k1ul − k2ul, ul − wl

)
L2 +

1
n

(
k1ul, 1

)
L2 +

1
n

(
k2ul, 1

)
L2

= 2
(
f(ul), ul − wl

)
L2 +

1
n

(
k1ul, 1

)
L2 +

1
n

(
k2ul, 1

)
L2 .

(2.94)
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By gathering together the different contributions we finally find that

Llg(ul, wl) =− 2 al(ul, ul − wl) + 2
(
f(ul), ul − wl

)
L2

+ 2
d

n

(
ul, 1

)
L2 +

1
n

(
k1ul, 1

)
L2 +

1
n

(
k2ul, 1

)
L2 .

(2.95)

3. Consider now the process (ul(t), t), t ≤ T , with state space Sl × [0, T ]. It follows from

Dynkin’s formula (2.24) and a well-known argument (see, e.g., the proof of Theorem 4.2.1 in

Stroock & Varadhan (1979)) that, for functions Φ : Sl × [0, T ] → R, (ul, t) 7→ Φ(ul, t), which

satisfy Φ( · , t) ∈ Ĉ(Sl) and Φ(ul, · ) ∈ C1[0, T ], the process

Φ(ul(t), t)− Φ(ul(0), 0)−
∫ t

0

(
LlΦ(ul(s), s) + ∂sΦ(ul(s), s)

)
ds, t ≤ T, (2.96)

is a martingale (with respect to (Fl,t)). Recall that the solutions of the approximating

problem (2.33) are denoted by vl and consider for arbitrary but fixed wl ∈ H1
0 the function

h( · , wl) : [0, T ] → R, t 7→ ‖wl − vl(t)‖2
L2 . Observe that

h′(t, wl) = −2
(
v′l(t), wl − vl(t)

)
L2

= 2 al(vl(t), wl − vl(t))− 2
(
f(vl), wl − vl(t)

)
L2 .

Now let Φ(ul, t) = ‖ul − vl(t)‖2
L2 , and

Φ̃(ul, t) =




‖ul − vl(t)‖2

L2 if ‖ul‖L2 ≤ p̃

0 if ‖ul‖L2 > p̃
(2.97)

for p̃ ∈ N. The martingale formula (2.96) holds for Φ̃. If we denote the resulting martingale

by M̃l, then the stopped process M̃l( · ∧ τp) is a martingale as well. That is,

Φ̃(ul(t ∧ τp), t ∧ τp)− Φ̃(ul(0), 0)−
∫ t∧τp

0

(
LlΦ̃(ul(s), s) + ∂sΦ̃(ul(s), s)

)
ds, (2.98)

t ≤ T , is a martingale for each p ∈ N. Recall that ql(ul, ũl) is nonzero only for transitions of

the form ul → ũl = ul +δ for δ from a finite set T ⊂ L2. Hence, if we choose p̃ > p sufficiently

large, we are allowed to replace Φ̃ by Φ, LlΦ̃ by LlΦ and ∂sΦ̃ by ∂sΦ in the formula above.

Note that LlΦ(ul(s), s) = Llg(ul(s), vl(s)), and ∂sΦ(ul(s), s) = h′(s, ul(s)). Consequently, by

substituting the computations above, it follows that

‖ul(t ∧ τp)− vl(t ∧ τp)‖2
L2 = ‖ul(0)− vl(0)‖2

L2

− 2
∫ t∧τp

0
al(ul(s)− vl(s), ul(s)− vl(s)) ds

+ 2
∫ t∧τp

0

(
f(ul(s))− f(vl(s)), ul(s)− vl(s)

)
L2 ds

+
1
n

∫ t∧τp

0

(
2d

(
ul(s), 1

)
L2 +

(
k1ul(s), 1

)
L2 +

(
k2ul(s), 1

)
L2

)
ds,

(2.99)
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t ≤ T , is a martingale for each p ∈ N, and the claim is proved.

Proof of Theorem 2.3.7. The idea is to use the previous lemma to obtain an estimate for

supt≤T E
[
‖ul(t)− vl(t)‖2

L2

]
. To this end, we stop the local martingale (2.87) at τp and take

expectations. Owing to the monotonicity of the operator Al associated to the bilinear form

al( · , · ) and the linearity of the reaction function f , we can deduce the estimate (k̂ denoting

maxi=1,2 ki)

E
[
‖ul(t ∧ τp)− vl(t ∧ τp)‖2

L2

]

≤ ‖ul(0)− vl(0)‖2
L2 + 4k̂ E

∫ t∧τp

0
‖ul(s)− vl(s)‖2

L2 ds

+ E

∫ t∧τp

0
2
√
L

(
d/n+ k̂/n

)‖ul(s)‖L2 ds

≤ ‖ul(0)− vl(0)‖2
L2 + 4k̂ E

∫ t∧τp

0
‖ul(s)− vl(s)‖2

L2 ds

+ 2
√
L

(
(d+ k̂)/n

)
E

∫ t∧τp

0

(
1
2
‖vl(s)‖2

L2 +
1
2

)
ds

+ 2
√
L

(
(d+ k̂)/n

)
E

∫ t∧τp

0

(
1
2
‖ul(s)− vl(s)‖2

L2 +
1
2

)
ds.

(2.100)

Consequently,

E
[
‖ul(t ∧ τp)− vl(t ∧ τp)‖2

L2

]
≤ ‖ul(0)− vl(0)‖2

L2

+
√
L

(
(d+ k̂)/n

)
E

∫ t∧τp

0

(‖vl(s)‖2
L2 + 2

)
ds

+
(√

L
(
(d+ k̂)/n

)
+ 4k̂

)
E

∫ t∧τp

0
‖ul(s)− vl(s)‖2

L2 ds

≤ ‖ul(0)− vl(0)‖2
L2 +

√
L

(
(d+ k̂)/n

)(‖vl‖2
L2(0,T ;L2) + 2T

)

+
(√

L
(
(d+ k̂)/n

)
+ 4k̂

)
E

∫ t∧τp

0
‖ul(s)− vl(s)‖2

L2 ds.

(2.101)

The above inequality is valid even with t ∧ τp replaced by t. To see this, note first that
∫ t

0
E

[
‖ul(s)‖2

L2

]
ds <∞ for t ≤ T. (2.102)

This follows by observing that the growth of the process ‖ul(t)‖L2 , t ≥ 0, can be estimated

by an appropriate pure-birth (Yule) process for which Kolmogorov’s forward system can be

solved explicitly (see, e.g., Karlin & Taylor (1975), p. 122). Hence,

E

∫ t∧τp

0
‖ul(s)− vl(s)‖2

L2 ds→ E

∫ t

0
‖ul(s)− vl(s)‖2

L2 ds

=
∫ t

0
E

[
‖ul(s)− vl(s)‖2

L2

]
ds

(2.103)

for p → ∞ by monotone convergence and Fubini’s theorem. The inequality follows from

Fatou’s lemma. Finally, by invoking Gronwall’s inequality (see, e.g., Theorem 5.1 in the
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appendix of Ethier & Kurtz (1986)),

sup
t≤T

E
[
‖ul(t)− vl(t)‖2

L2

]
≤

(
‖ul(0)− vl(0)‖2

L2

+
√
L

(
(d+ k̂)/n

)(‖vl‖2
L2(0,T ;L2) + 2T

))×

× exp
((√

L
(
(d+ k̂)/n

)
+ 4k̂

)
T

)
.

(2.104)

Because ‖vl(0)−ul(0)‖L2 → 0 for l→ 0 by hypothesis and supl ‖vl‖2
L2(0,T ;L2) <∞ due to the

a-priori estimate (2.72), it follows from the scaling hypotheses (S1)–(S3) that

sup
t≤T

E
[
‖ul(t)− vl(t)‖2

L2

]
→ 0.

2.4 Law of large numbers for the general linear model

For the derivation of the law of large numbers for the general linear model we shall follow

exactly the same strategy as for the example model.

2.4.1 Convergence of the approximation

We use the definitions and notation of Sections 2.1.2 and 2.2.2. The spaceX that is introduced

to compare solution and approximation is defined as X =
∏ns

j=1

∏m+1
k=1 L

2(G). The restriction

operators Qh : L2(G) → L2(Gh) and Rh : H1
0 (G) → H1

0(Gh), the extension operators

Ph : L2(Gh) → L2(G) and Jh : H1
0(Gh) → X, and the embedding J : H1

0 (G) → X have to

be redefined in the obvious way. Clearly,
(L2(Gh), Qh, Ph

)
h∈I

, where I = (0, h0] ⊂ R+, is

a stable and convergent internal approximation of L2(G), and
{
X, J,

(H1
0(Gh), Rh, Jh

)
h∈I

}

is a stable and convergent external approximation of H1
0 (G). The following lemma can be

proved in the same way as Lemma 2.3.1.

Lemma 2.4.1. If (uh), (vh), h % 0, are two sequences in L2(0, T ; H1
0) such that Jhuh

converges weakly to Ju and Jhvh converges strongly to Jv in L2(0, T ;X) for functions u, v ∈
L2(0, T ; H1

0 ), then

∫ T

0

(
uh(t), vh(t)

)
L2 dt→

∫ T

0

(
u(t), v(t)

)
L2 dt,

and
∫ T

0
bh(uh(t),vh(t)) dt→

∫ T

0
b(u(t),v(t)) dt.

In the next theorem we show convergence of the solutions of the approximating problem

(2.60) for the general linear model. As compared to the example model, there are only a few

minor changes in the proof and therefore we shall only sketch it.
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Theorem 2.4.2. Let u be the solution of the weak PDE problem (2.51) for the general

linear model to the initial value u0, and let (uh), h % 0, be a sequence of solutions of the

approximating problem (2.60) to the initial values uh,0. Assume uh,0 → u0 strongly in L2,

and Dh,j → Dj , j = 1, . . . , ns. Then Jhuh converges weakly to Ju in L2(0, T ;X), and uh

converges strongly to u in L2(0, T ; L2).

Proof: 1. We first derive the a-priori estimates

sup
h

max
0≤t≤T

‖uh‖L2 <∞, (2.105)

sup
h
‖uh‖L2(0,T ;H1

0) <∞, (2.106)

sup
h
‖u′h‖L2(0,T ;H−1) <∞. (2.107)

By inserting uh(t) for vh in the discrete weak formulation and making use of the coerciveness

of the bilinear form ah( · , · ) and the linearity of the reaction functions we get the estimate

‖uh(t)‖2
L2 + 2α

∫ t

0
‖uh(s)‖2

H1
0
ds ≤ ‖uh(0)‖2

L2 + 2
∫ t

0

(
f(uh), uh

)
L2

≤ ‖uh(0)‖2
L2 + C

∫ t

0
‖uh(s)‖2

L2 .

Here the constant C is independent of h, and thus Gronwall’s inequality yields

sup
h

max
0≤t≤T

‖uh‖L2 <∞. (2.108)

Consequently, we also have

sup
h
‖uh‖L2(0,T ;H1

0) <∞. (2.109)

The third a-priori estimate follows again from the boundedness of the bilinear form ah( · , · )
and the linearity of f .

2. Because the extension operators Jh : H1
0 → X are stable, we can choose a subsequence

of (uh) (still denoted by (uh)) such that Jhuh converges weakly to Ju in L2(0, T ;X) for a

u ∈ L2(0, T ; H1
0 ). Furthermore, we may assume that uh → u strongly in L2(0, T ; L2) due to

the compactness theorem 2.3.4.

3. From the discrete weak formulation and the previous lemma we deduce that

−(
u0, v

)
L2 ϕ(0)−

∫ T

0

(
u(t), v

)
L2 ϕ

′(t) dt+
∫ T

0
b(u(t),v) ϕ(t) dt = 0 (2.110)

for arbitrary v ∈ H1
0 and ϕ ∈ C1[0, T ] with ϕ(T ) = 0. It follows in the same way as in the

proof for the example model that u is indeed the unique solution of the weak PDE problem

(2.51) with initial value u(0) = u0.

4. Since the limit is unique, the entire sequence converges strongly to u in L2(0, T ; L2).
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2.4.2 Convergence of the particle density

Henceforth we denote the stochastic particle density by ul and the solutions of the approx-

imating problem (2.60) by vl, where l is the edge length of a cell. We assume that ul(0) is

non-random, and the hypotheses for the scale parameters are

l→ 0, n→∞, (S1)

dj

2m
l2 → Dj , (S2)

dj

n
→ 0, (S3)

j = 1, . . . , ns, where the Dj are the macroscopic diffusion coefficients.

Theorem 2.4.3 (Law of large numbers). Let u be the solution of the weak PDE problem

(2.51) to the initial value u0. Assume that (S1)–(S3) hold and that ul(0) converges strongly

to u0 in L2. Then

E
[
‖ul − u‖2

L2(0,T ;L2)

]
= E

[
‖ul − u‖2

(L2(QT ))ns

]
→ 0.

In view of Theorem 2.4.2, the law of large numbers follows directly from the next result.

Theorem 2.4.4. Assume (S1)–(S3) and denote by vl the solutions of the approximating

problem (2.60) with Dl,j = dj

2m l
2, j = 1, . . . , ns, to the initial values vl,0 . Moreover, assume

that

‖ul(0)− vl,0‖L2 → 0.

Then

sup
t≤T

E
[
‖ul(t)− vl(t)‖2

L2

]
→ 0.

The proof of Theorem 2.4.4 is again based on a lemma that identifies a martingale associated

to the process ‖ul(t)− vl(t)‖2
L2 , t ≤ T . We define for p ∈ N the stopping time τp by

τp = inf
{
t : ‖ul(t)‖L2 > p

}
∧ T. (2.111)

As compared to the example model, we have to deal in the general case with the slight

technical difficulty that reactive jumps that would lead out of the state space, i.e., to negative

concentrations, are not ‘automatically’ excluded. It might happen that a Ki(w) is positive

for a certain concentration vector w ∈ 1
nN

ns
0 although the transition from a state ul ∈ Sl with

ul(z) = w for a z ∈ Gl to ũl = ul + 1
n

∑ns
j=1νijχj,z (i.e., ũl,j(z) = wj + 1

nνij for j = 1, . . . , ns)

is not allowed because it would lead to negative concentrations. This might be the case if

wj is close to zero for a certain j and νij is negative, say, wj = 1/n and νij = −2. (For the

example model this situation could not arise because the particle density could only increase
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or decrease by 1/n.) However, we may always assume (by possibly modifying the original Ki)

that there are measurable functions Kl,i : Rns → R, i = 1, . . . , nr, that converge uniformly

to Ki for l → 0 such that the transition intensities are left unchanged and intensity zero is

automatically assigned to jumps that would leave the state space. That is,

Kl,i(w) =




Ki(w) if wj + 1

nνij ≥ 0 for all j = 1, . . . , ns

0 otherwise
(2.112)

for all w ∈ 1
nN

ns
0 , and

sup
Rns

|Ki −Kl,i| → 0 (l→ 0). (2.113)

The vector of reaction functions corresponding to the Kl,i, which is defined as in Eq. (2.6),

is denoted by fl.

Lemma 2.4.5. Let (Ml(t))t≤T be the process given by

Ml(t) = ‖ul(t)− vl(t)‖2
L2 − ‖ul(0)− vl(0)‖2

L2

+ 2
∫ t

0
al(ul(s)− vl(s),ul(s)− vl(s)) ds

− 2
∫ t

0

(
fl(ul(s))− f(vl(s)), ul(s)− vl(s)

)
L2
ds−Rl(t),

(2.114)

where

Rl(t) =
1
n

ns∑

j=1

2dj

∫ t

0

(
ul,j(s), 1

)
L2 ds+

1
n

nr∑

i=1

ns∑

j=1

ν2
ij

∫ t

0

(
Kl,i(ul(s)), 1

)
L2 ds. (2.115)

Then the stopped process Ml(t ∧ τp))t≤T is a martingale for each p ∈ N.

Proof. We follow the same strategy as in the proof for the example model.

1. For arbitrary but fixed wl ∈ H1
0 we define the function g( · ,wl) : Sl → R, ul 7→ g(ul,wl) =

‖ul−wl‖2
L2 , and we are going to compute Llg(ul,wl). The generator Ll can again be written

as Ll = Ld,l +Lr,l if we separate reactive and diffusive jumps. We start with the computation
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of Ld,lg(ul,wl). (Cf. the corresponding calculation (2.93) for the example model.)

Ld,lg(ul,wl) =
ns∑

j=1

∑

z∈G1
l

m∑

k=1

n
dj

2m
ul,j(z)

(
‖ul − 1

nχj,z + 1
nχj,(z−lek) −wl‖2

L2

− 2 ‖ul −wl‖2
L2 + ‖ul − 1

nχj,z + 1
nχj,(z+lek) −wl‖2

L2

)

=
ns∑

j=1

∑

z∈G1
l

m∑

k=1

n
dj

2m
ul,j(z)

(
2
lm+2

n

(
∂−k ∂

+
k ul,j(z)− ∂−k ∂

+
k wl,j(z)

)
+ 4

lm

n2

)

=
ns∑

j=1

m∑

k=1

(
2
dj

2m
l2

(
ul,j , ∂

−
k ∂

+
k (ul,j − wl,j)

)
L2 +

2
m

dj

n

(
ul,j , 1

)
L2

)

= −2
ns∑

j=1

m∑

k=1

dj

2m
l2

(
∂+

k ul,j , ∂
+
k (ul,j − wl,j)

)
L2 + 2

ns∑

j=1

dj

n

(
ul,j , 1

)
L2

= −2 al(ul,ul −wl) +
1
n

ns∑

j=1

2dj

(
ul,j , 1

)
L2 .

(2.116)

Here al( · , · ) is given by (2.61) with Dl,j = dj

2m l2. Computing the reaction part yields

Lr,lg(ul,wl) =
∑

z∈G1
l

nr∑

i=1

nKl,i(ul(z))
(
‖ul + 1

n

∑ns
j=1 νijχj,z −wl‖2

L2 − ‖ul −wl‖2
L2

)

=
∑

z∈G1
l

nr∑

i=1

nKl,i(ul(z))
(

2
lm

n

ns∑

j=1

νij (ul,j(z)− wl,j(z)) +
lm

n2

ns∑

j=1

ν2
ij

)
.

(2.117)

Hence,

Lr,lg(ul,wl) =
nr∑

i=1

ns∑

j=1

∑

z∈G1
l

(
2n

lm

n
νij Kl,i(ul(z))

(
ul,j(z)− wl,j(z)

)
+ n

lm

n2
ν2

ij Kl,i(ul(z))
)

= 2
(
fl(ul), ul −wl

)
L2 +

1
n

nr∑

i=1

ns∑

j=1

ν2
ij

(
Kl,i(ul), 1

)
L2 .

(2.118)

By gathering together the different contributions we finally get

Llg(ul,wl) = −2 al(ul,ul −wl) + 2
(
fl(ul), ul −wl

)
L2

+
1
n

ns∑

j=1

2dj

(
ul,j , 1

)
L2 +

1
n

nr∑

i=1

ns∑

j=1

ν2
ij

(
Kl,i(ul), 1

)
L2 .

(2.119)

Recall that we denote by vl(t) the solutions of the approximating problem (2.60), and consider

the function h( · ,wl) : [0, T ] → R with wl ∈ H1
0 as parameter given by

t 7→ h(t,wl) = ‖wl − vl(t)‖2
L2 . (2.120)
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Note that

h′(t,wl) = −2
(
v′l(t), wl − vl(t)

)
L2

= 2 al

(
vl(t),wl − vl(t)

)− 2
(
f(vl(t)), wl − vl(t)

)
L2 .

(2.121)

2. Consider now the function Φ : Sl × [0, T ] → R given by

(ul, t) 7→ Φ(ul, t) = ‖ul − vl(t)‖2
L2 . (2.122)

It follows by the same arguments as in the proof of Lemma 2.3.8 that the process

Ml(t) = ‖ul(t)− vl(t)‖2
L2 − ‖ul(0)− vl(0)‖2

L2

−
∫ t

0

(
LlΦ(ul(s), s) + ∂sΦ(ul(s), s)

)
ds

= ‖ul(t)− vl(t)‖2
L2 − ‖ul(0)− vl(0)‖2

L2

−
∫ t

0

(
Llg(ul(s),vl(s)) + h′(s,ul(s))

)
ds,

(2.123)

t ≤ T , stopped at τp is a martingale for each p ∈ N. Plugging the explicit computations

above into Eq. (2.123) yields Eq. (2.114).

We are now ready to finish also the proof of the law of large numbers for the general linear

model.

Proof of Theorem 2.4.4. Let d̂ = maxj=1,...,ns dj . By stopping the local martingale (2.114)

and taking expectations we get the estimate

E
[
‖ul(t ∧ τp)− vl(t ∧ τp)‖2

L2

]
+E

∫ t∧τp

0
al

(
ul(s)− vl(s),ul(s)− vl(s)

)
ds

≤ ‖ul(0)− vl(0)‖2
L2 +E

∫ t∧τp

0

∣∣∣
(
fl(ul(s))− f(vl(s)), ul(s)− vl(s)

)
L2

∣∣∣ ds

+
1
n

ns∑

j=1

2dj E

∫ t∧τp

0

(
ul,j(s), 1

)
L2 ds

+
1
n

ns∑

j=1

nr∑

i=1

ν2
ij E

∫ t∧τp

0

(
Ki(ul(s)), 1

)
L2 ds.

(2.124)

From the monotonicity of the operator Al associated to the bilinear form al( · , · ) and a few

elementary estimates it follows that

E
[
‖ul(t ∧ τp)− vl(t ∧ τp)‖2

L2

]
≤ ‖ul(0)− vl(0)‖2

L2 + C sup
RnS

|fl − f |

+ C
(
(d̂+ C )/n

) ∫ T

0

(
‖vl(s)‖2

L2 + 1
)
ds

+ C
(
(d̂+ C )/n+ sup

RnS

|fl − f |+ 1
)
E

∫ t∧τp

0
‖ul(s)− vl(s)‖2

L2 ds,

(2.125)
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where the constant C does not depend on l. Note that again
∫ T

0
E

[
‖ul(s)‖2

L2

]
<∞. (2.126)

By letting p → ∞ we deduce from the monotone convergence theorem and Fatou’s lemma

that the above estimate (2.125) is valid even with t ∧ τp replaced by t. Gronwall’s inequality

yields the estimate

E
[
‖ul(t)− vl(t)‖2

L2

]
≤

(
‖ul(0)− vl(0)‖2

L2 + C sup
RnS

|fl − f |

+ C
(
(d̂+ C )/n

)(‖vl(s)‖2
L2(0,T ;L2)

+ T
))
×

× exp
(
C

(
(d̂+ C )/n+ sup

RnS

|fl − f |+ 1
)
T

)
.

(2.127)

Finally, it follows from the assumptions (S1)–(S3) for the scale parameters and (2.113) that

sup
t≤T

E
[
‖ul(t)− vl(t)‖2

L2

]
→ 0.

Discussion

Nonlinear mesoscopic stochastic particle models that approximate the solutions of certain

semi- and quasilinear parabolic equations will be treated in the next chapter in a similar

fashion.

While the scaling relations (S1) and (S2) for the example model, for instance, appear in

a natural way, condition (S3) is hard to justify in physical terms. It serves to damp out the

fluctuating term in the remainder Rl(t) (Eq. (2.88)) that stems from diffusive jumps. Stated

in terms of n and l, condition (S3) reads (1/n)/l2 → 0. Heuristically, 1/
√
n is a measure for

the size of fluctuations in a single cell. Therefore (1/
√
n)/l may be interpreted as a measure

for the concentration gradients caused by fluctuations. Condition (S3) forces these gradients

to vanish asymptotically. The same discussion applies, of course, to the general linear model.

The scaling relation (S3) also appears in Arnold & Theodosopulu (1980) and Kotelenez

(1986) in their treatment of single-species models with linear reaction kinetics. In addition,

Kotelenez (1986, 1988) is able to prove a law of large numbers in a weaker norm for a

single-species model with linear or polynomial kinetics using only (S1) and (S2). Under the

same hypotheses Blount (1994) has a stronger result for the model with polynomial kinetics

and a law of large numbers for a particular model with constant n. However, all authors

mentioned so far work with particle densities defined on the unit cube in Rm, which has the

advantage that the eigenvalues and eigenfunctions of the Laplacian are explicitly known. This

knowledge is exploited in Blount (1994) to get rid of condition (S3). Guiaş (2002) assumes
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(1/n)/l2+m → 0 for a law of large numbers for a particular nonlinear two-species model on a

general domain.

We have already mentioned in Section 2.3.1 that the main motivation for considering

weak solutions of the limit equation is that certain nonlinear PDEs that appear as limit of a

stochastic particle model admit solutions that are not differentiable in the classical sense. If,

on the other hand, the solution of the limit equations is sufficiently smooth, as is the case for

the linear equations of the present chapter provided the data are sufficiently regular, one can

obtain explicit rates for the convergence of the solution of the approximating problem vl to

the solution of the limit equation u. Let us assume, for instance, that this rate of convergence

is O(l), and suppose that n = O(l−α) and d = O(l−β), where α > β > 0, in order to satisfy

condition (S3). Moreover, assume that ‖ul(0) − vl,0‖L2 = O(l). Then it can easily be seen

from the estimate (2.104) that the rate of convergence in the law of large numbers for the

example model (Theorem 2.3.6) is O(lα−β) if β + 1 > α > β, and O(l) if α ≥ β + 1. In other

words, the rate of convergence is determined by the ratio d/n if α− β < 1.



Chapter 3

Nonlinearities and a refined law of

large numbers

Overview

In the present chapter we study the convergence of certain nonlinear mesoscopic stochastic

particle models. We first consider a model with reaction rates that are nonlinear but Lipschitz

continuous. It turns out that this constitutes only a slight extension of the general linear case

treated in the previous chapter. In Section 3.1.2 we discuss the more realistic case of a vector

of reaction functions f = (f1, . . . , fns) admitting an invariant region. More precisely, we

shall assume that the vector field f points inwards on the boundary of the cube [0, 1]ns . This

generalises the single-species models with polynomial reaction kinetics treated in Kotelenez

(1988) and Blount (1994), and the two-species model discussed in Guiaş (2002). In Section

3.2 we consider two models with a nonlinear diffusion mechanism. For the sake of simplicity,

we restrict the discussion to single-species models in one space dimension without chemical

reactions. In Section 3.2.1 we investigate what happens when the intensity for a jump of a

particle to a neighboring cell depends on the local concentration, i.e., d = d(ul(z)), where

d( · ) is monotonously increasing on R+
0 . Thereafter, in Section 3.2.2, we have a look at the

case where the intensity for a jump to a neighboring cell depends on the absolute value

of the (discrete) concentration gradient (i.e., d = d(|∂+ul(z)|) for a jump to the right and

d = d(|−∂−ul(z)|) for a jump to the left, respectively). The limit behaviour of these models

has (to the best of our knowledge) not been investigated yet. The first one (d = d(ul(z)))

resembles the so-called zero-range process that is extensively investigated in the literature on

interacting particle systems (Kipnis & Landim, 1999). Finally, in Section 3.3, we demonstrate

for the linear example model from the previous chapter how the law of large numbers obtained

there can be refined.
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3.1 Nonlinear reaction kinetics

In this section we focus on nonlinear reaction kinetics; diffusion is still assumed to be linear.

3.1.1 Lipschitz conditions

The macroscopic PDE and its weak formulation

We use the same notation as in Sections 2.1 and 2.2. Recall that we are dealing with nr

reactions involving ns species. The chemical reactions are described by the reaction functions

fj =
nr∑

i=1

νijKi, j = 1, . . . , ns,

where Ki : RnS → R is the rate at which the ith reaction proceeds. In the previous chapter

the rates were assumed to be linear and to satisfy conditions (C1) and (C2) from Section

2.1.1.

As a warm-up for nonlinear problems we treat here the case of possibly nonlinear but

Lipschitz continuous rates Ki, i.e., in addition to (C1) and (C2) they are supposed to satisfy

the condition

|Ki(u)−Ki(v)| ≤ cL |u− v| , u,v ∈ Rns , i = 1, . . . , nr, (L)

for a constant cL > 0. As we shall see, this is only a slight generalisation of the linear case.

The macroscopic PDE system with Dirichlet boundary conditions still reads




∂tuj −Dj∆uj = fj(u) on QT

uj = 0 on ∂G× [0, T ]

uj( · , 0) = uj,0 on G,

(3.1)

j = 1, . . . , ns. Here G ⊂ Rm is a bounded domain with Lipschitz boundary representing the

chemical reactor, and D1, . . . , Dns > 0 are the diffusion coefficients.

The weak formulation of the PDE system (3.1) is obtained as in the previous chapter

by multiplying with a test function v ∈ C∞0 (G), integrating over G and an integration by

parts. We adopt the notation of Sections 2.2 and 2.4 concerning the various continuous and

discrete function spaces and define again the (bounded and coercive) bilinear form a( · , · ) on

H1
0 (G)×H1

0 (G) by

a(u,v) =
ns∑

j=1

m∑

k=1

Dj

(
∂xk

uj , ∂xk
vj

)
L2(G)

, u,v ∈ H1
0 (G).

Observe that the vector of reaction functions f induces a now nonlinear but Lipschitz con-

tinuous operator F : L2(G) → L2(G) by F (u)( · ) = f(u( · )). That is,

‖F (u)− F (v)‖L2 ≤ CL‖u− v‖L2 , u,v ∈ L2, (3.2)
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for a constant CL > 0. In the weak formulation of the PDE a function u ∈ H1(0, T ;H1
0 ,L

2)

is sought such that

d

dt

(
u(t), v

)
L2 + a(u(t),v) =

(
f(u), v

)
L2 (3.3a)

for all v ∈ H1
0 and a.e. t ∈ (0, T ), and

u(0) = u0 ∈ L2. (3.3b)

The equivalent operator equation in the space H1
(
0, T ; H1

0 ,L
2
)

reads

u′ +Au = F (u), u(0) = u0 ∈ L2. (3.4)

The weak problem can be solved with the Faedo-Galerkin method in combination with the

Aubin-Lions compactness theorem, the continuous analogue of Theorem 2.3.4 (see, e.g., Li-

ons (1969), Section 5 of Chapter 1). Alternatively, one can use the existence result for linear

equations together with the Banach fixed-point theorem (Evans, 1998). Moreover, the con-

vergence proof for the solutions of the approximating problem below can easily be extended to

an existence proof. Note that the uniqueness of a solution of (3.3) can readily be established

because the operator F is Lipschitz continuous.

The approximating problem

Let Gh be the interior lattice points of the domain G representing the chemical reactor

generated by a lattice Zh(z0) (cf. Section 2.1.2), and recall that L2(Gh) and H1
0(Gh) are the

discrete versions of L2(G) and H1
0 (G). The discrete analogue of the PDE system is again

given by




u′h,j −Dh,j∇− ·∇+uh,j = fj(uh) on G1
h × (0, T )

uh,j = 0 on (Gh \ G1
h)× [0, T ]

uh,j = uh,j,0 on G1
h,

(3.5)

j = 1, . . . , ns, which is now an initial-value problem for a (nonlinear) finite-dimensional

system of ODEs with Lipschitz continuous right-hand side. Hence, it has a unique local

solution according to the Picard-Lindelöf theorem. Existence of a unique solution on the

entire interval [0, T ] follows from the derivation of the a-priori estimate (3.11) below.

The discrete version ah( · , · ) of the bilinear form a( · , · ) is again

ah(uh,vh) =
ns∑

j=1

m∑

k=1

Dh,j

(
∂+

k uh,j , ∂
+
k vh,j

)
L2 , uh,vh ∈ H1

0, (3.6)

and the solution of (3.5) can be regarded as a function in C1([0, T ],H1
0) that satisfies the

discrete weak formulation
d

dt

(
uh(t), vh

)
L2 + ah(uh(t),vh) =

(
f(uh(t)), vh

)
L2 (3.7)

for all vh ∈ H1
0 and t ∈ (0, T ).
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The mesoscopic stochastic particle model

The state space Sl of the particle density process (ul(t))t≥0 is the same as for the general

linear model from Section 2.1.2. That is, Sl is the set of vector lattice functions in L2(Gl)

taking values in 1
nN

ns
0 . We still assume Dirichlet boundary conditions, i.e., ul(z, · ) ≡ 0 if

z ∈ Gl \ G1
l , and that ul(0) is non-random. The transitions intensities ql( · , · ) are formally

the same as in Section 2.1.2.

I A particle of species j may leave cell z ∈ G1
l and jump to z ± lek.

ql(ul,ul − 1
nχj,z + 1

nχj,(z−lek)) = n
dj

2m
ul,j(z),

ql(ul,ul − 1
nχj,z + 1

nχj,(z+lek)) = n
dj

2m
ul,j(z),

(3.8)

where dj > 0.

I The number of particles in cell z ∈ G1
l changes according to reaction i.

ql(ul,ul + 1
n

∑ns
j=1 νijχj,z) = nKi(ul(z)) if ul + 1

n

∑ns
j=1νijχj,z ∈ Sl. (3.9)

The rates Ki are now nonlinear but satisfy the Lipschitz condition (L).

The existence of a particle density process (ul(t))t≥0 with state space Sl and generator Ll

given by

Llg(ul) =
∑

ũl 6=ul

ql(ul, ũl)
(
g(ũl)− g(ul)

)
, g ∈ Ĉ(Sl), (3.10)

follows as for the general linear model from Theorem 3.1 in Chapter 8 of Ethier & Kurtz

(1986) by making use of the Lipschitz conditions (L).

Law of large numbers

We first show convergence of the semi-discrete approximation. (Recall the definition of the

external approximation of the space H1
0 (G) in terms of the spaces H1

0(Gh) as discussed in

Sections 2.2.3 and 2.4.)

Theorem 3.1.1. Let u be the solution of the weak PDE problem (3.3) to the initial value

u0, and let (uh), h % 0, be a sequence of solutions of the approximating problem (3.5) to the

initial values uh,0. Assume uh,0 → u0 strongly in L2, and Dh,j → Dj , j = 1, . . . , ns. Then

Jhuh converges weakly to Ju in L2(0, T ;X), and uh converges strongly to u in L2(0, T ; L2).

Proof. The proof is similar to the proof for linear reaction rates.

1. We first derive the a-priori estimates

sup
h

max
0≤t≤T

‖uh‖L2 <∞, (3.11)
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sup
h
‖uh‖L2(0,T ;H1

0) <∞, (3.12)

sup
h
‖u′h‖L2(0,T ;H−1) <∞. (3.13)

By inserting uh(t) for vh in the discrete weak formulation, integrating over time and making

use of the coerciveness of the bilinear form ah( · , · ), we get the estimate

‖uh(t)‖2
L2 + 2α

∫ t

0
‖uh(s)‖2

H1
0
ds ≤ ‖uh(0)‖2

L2 + 2
∫ t

0

(
f(uh(s)), uh(s)

)
L2 ds.

Since the operator F : L2 → L2 induced by f is Lipschitz continuous, we can deduce the

estimate

‖uh(t)‖2
L2 + 2α

∫ t

0
‖uh(s)‖2

H1
0
ds ≤ ‖uh(0)‖2

L2 + C

∫ t

0

(
1 + ‖uh(s)‖2

L2

)
ds,

where C > 0 is a constant independent of h. Gronwall’s inequality yields

sup
h

max
0≤t≤T

‖uh‖L2 <∞. (3.14)

Hence,

sup
h
‖uh‖L2(0,T ;H1

0) <∞. (3.15)

The third a-priori estimate follows from the boundedness of the bilinear form ah( · , · ) and

the Lipschitz continuity of the operator F .

2. Owing to the a-priori estimates we can extract a subsequence (still denoted by (uh)) such

that Jhuh ⇀ Ju in L2(0, T ;X) for a u ∈ L2(0, T ; H1
0 ). In addition, we may assume that

uh converges strongly to u in L2(0, T ; L2) due to Theorem 2.3.4. From the discrete weak

formulation it follows by integration by parts that

−(
uh,0, vh

)
L2 ϕ(0)−

∫ T

0

(
uh(t), vh

)
L2 ϕ

′(t) dt

= −
∫ T

0
ah(uh(t),vh)ϕ(t) dt+

∫ T

0

(
f(uh(t), vh

)
L2 ϕ(t) dt

(3.16)

for all v ∈ H1
0 and ϕ ∈ C1[0, T ] with ϕ(T ) = 0, where we have set vh = Rhv. Since the

operator F is Lipschitz continuous as mapping from the space L2(0, T ; L2) to itself, we can

pass to the limit in all the terms (see also Lemma 2.4.1), which yields

−(
u(0), v

)
L2 ϕ(0)−

∫ T

0

(
u(t), v

)
L2 ϕ

′(t) dt

= −
∫ T

0
a(u(t),v)ϕ(t) dt+

∫ T

0

(
f(u(t), v

)
L2 ϕ(t) dt.

(3.17)

Now it follows by the same arguments as in the proof of Theorem 2.3.2 that u is indeed the

solution of (3.3) to the initial condition u0.
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4. Since the solution of (3.3) is unique, the whole sequence converges.

We denote from now on the stochastic particle density by ul and the solutions of the approx-

imating problem (3.5) by vl. (Recall that l is the edge length of a cell.)

As in Section 2.4 we replace the reaction rates Ki by measurable functions Kl,i : Rns → R
that converge uniformly to the Ki so that the transition intensities ql( · , · ) are left unchanged

and forbidden reactive jumps (jumps that would leave the state space) are automatically

excluded. (Cf. the discussion in Section 2.4.2.) We assume the same scaling relations as for

the general linear model.

l→ 0, n→∞, (S1)

dj

2m
l2 → Dj , (S2)

dj

n
→ 0, (S3)

j = 1, . . . , ns, where the Dj > 0 are the macroscopic diffusion coefficients. We obtain the

same type of law of large numbers as for the case of linear reaction rates.

Theorem 3.1.2 (Law of large numbers). Let u be the solution of the weak PDE problem

(3.3) to the initial value u0. Assume that (S1)–(S3) hold and that ul(0) converges strongly

to u0 in L2. Then

E
[
‖ul − u‖2

L2(0,T ;L2)

]
= E

[
‖ul − u‖2

(L2(QT ))ns

]
→ 0.

The law of large numbers follows immediately from the next result.

Theorem 3.1.3. Assume (S1)–(S3), and denote by vl be the solutions of the approximating

problem (3.5) with Dl,j = dj

2m l2, j = 1, . . . , ns, to the initial values vl,0. Moreover, assume

that

‖ul(0)− vl,0‖L2 → 0.

Then

sup
t≤T

E
[
‖ul(t)− vl(t)‖2

L2

]
→ 0.

As in the previous chapter, the proof of Theorem 3.1.3 is based on a lemma that identifies a

local martingale related to the process ‖ul(t) − vl(t)‖2
L2 , t ≤ T . We define again for p ∈ N

the stopping times τp as in (2.111).

Lemma 3.1.4. Let (Ml(t))t≤T be the process given by

Ml(t) = ‖ul(t)− vl(t)‖2
L2 − ‖ul(0)− vl(0)‖2

L2

+ 2
∫ t

0
al(ul(s)− vl(s),ul(s)− vl(s)) ds

− 2
∫ t

0

(
fl(ul(s))− f(vl(s)), ul(s)− vl(s)

)
L2 ds−Rl(t),

(3.18)
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where

Rl(t) =
1
n

ns∑

j=1

2dj

∫ t

0

(
ul,j(s), 1

)
L2 ds+

1
n

nr∑

i=1

ns∑

j=1

ν2
ij

∫ t

0

(
Kl,i(ul(s)), 1

)
L2 ds. (3.19)

Then the stopped process (Ml(t ∧ τp))t≤T is a martingale for each p ∈ N.

Proof. The proof is very similar to the proof of Lemma 2.4.5, since the linearity of f was

not used there.

Proof of Theorem 3.1.3. The proof is almost identical to the proof of Theorem 2.4.4.

Note that, in order to obtain the essential estimate (2.125), it is sufficient that f be Lipschitz

continuous. Moreover, we can still control the growth of the process ‖ul(t)‖L2 , t ≥ 0, by an

appropriate Yule process.

3.1.2 Invariant regions

In this section we treat a class of nonlinear reaction rates that is more often met in practice

than the Lipschitz continuous rates of the previous section. We suppose that the vector

field f = (f1, . . . , fns) admits an invariant region. Let us explain this in more detail. In

practice, the reaction rates Ki are rarely globally Lipschitz continuous functions, since they

are often polynomials in the concentrations of quadratic or even higher order. However, by

the structure of the chemical equations, an explosion of the concentrations is usually avoided,

whatever nonlinear the reaction rates may be. The model for CO oxidation on Pt that has

been developed in Sections 1.2 and 1.3, for instance, involves reaction rates that are not

globally Lipschitz continuous functions, but the concentrations are obviously confined to the

cube [0, 1]3. This motivates assumption (I) below.

We still assume that all reaction rates Ki : Rns → R are locally Lipschitz continuous

functions that satisfy conditions (C1) and (C2) from Section 2.1.1. In addition, we now

assume the following condition (for i = 1, . . . , nr, j = 1, . . . , ns).

If νij > 0 then Ki(w) = 0 for all w ∈ [0, 1]ns with wj = 1. (I)

Hence, the vector field f : Rns → Rns given by

fj =
nr∑

i=1

νij Ki, j = 1, . . . , ns,

points inwards (although, in general, not strictly) everywhere on the boundary of the cube

[0, 1]ns . The physical interpretation of condition (I) is that there exists an upper limit for each

species above of which immigration to a cell from the outside or creation of new particles of

the species by chemical reactions is prohibited due to lack of space. The choice of the upper

bound one is, of course, arbitrary and could be replaced by any other positive constant (or a

different constant for each species).
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In addition, we admit in this section that some of the diffusion coefficients Dj , j =

1, . . . , ns, be zero. We assume that the first nd species do diffuse (have diffusion coefficient

greater than zero) and the remaining ns − nd species are immobile.

The macroscopic PDE and its weak formulation

The system of PDEs (with Dirichlet boundary conditions for the diffusing species) that

describes the dynamics of the concentrations on the macroscopic level is given by




∂tuj −Dj∆uj = fj(u) on QT

uj = 0 on ∂G× [0, T ]

uj( · , 0) = uj,0 on G

(3.20a)

(j = 1, . . . , nd), and




∂tuj = fj(u) on QT

uj( · , 0) = uj,0 on G
(3.20b)

(j = nd + 1, . . . , ns). The PDE system (3.20) is usually not treated with energy methods

because it is not quite obvious how to use the hypothesis on the vector field f to obtain

a-priori estimates. Existence of a solution is proved, e.g., in Smoller (1983), Chapter 14,

in a somewhat different functional setting by showing local existence with a fixed-point ar-

gument and extending the local result to a global one by making use of invariant regions.

Although spatial semi-discretisation with finite differences is usually less convenient than the

Faedo-Galerkin method, we shall see that for the particular case of the present section the

necessary a-priori estimates can easily be obtained and the difficulties that one encounters

with the Faedo-Galerkin method do not arise. We include an existence result in the proof of

convergence of the solution of the approximating problem (3.25) below.

Note that because of condition (I) it only makes sense to look for solutions uj of (3.20)

that take values in the interval [0, 1]. We set

Y =
{
u ∈ L∞(G) : 0 ≤ u ≤ 1 a.e. on G

}
, (3.21)

Z =
{
u ∈ L∞(QT ) : 0 ≤ u ≤ 1 a.e. on QT

}
. (3.22)

In the weak formulation of the PDE system (3.20) we seek functions uj ∈ H1(0, T ;H1
0 , L

2)∩Z
(j = 1, . . . , nd), respectively uj ∈ H1(0, T ;H1, L2) ∩ Z (j = nd + 1, . . . , ns), such that the

following equations are satisfied:

d

dt

(
uj(t), vj

)
L2 +Dj

(∇uj(t), ∇vj

)
(L2)m =

(
fj(u(t)), vj

)
L2 (3.23a)

for all vj ∈ H1
0 and a.e. t ∈ (0, T ), and

uj(0) = uj,0 ∈ L2 ∩ Y (3.23b)
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(j = 1, . . . , nd), respectively

d

dt

(
uj(t), vj

)
L2 =

(
fj(u(t)), vj

)
L2 (3.23c)

for all vj ∈ H1 and a.e. t ∈ (0, T ), and

uj(0) = uj,0 ∈ H1 ∩ Y (3.23d)

(j = nd + 1, . . . , ns). Here, in general, the reaction functions fj do not induce a Lipschitz

continuous operator F : L2 → L2 by F (u)( · ) = f(u( · )), but the operator F thus defined is

Lipschitz continuous as mapping from (L2 ∩ Y )ns to L2 because the reaction rates are still

locally Lipschitz continuous. That is,

‖F (u)− F (v)‖L2 ≤ C ‖u− v‖L2 for all u,v ∈ (L2 ∩ Y )ns . (3.24)

Therefore a solution of (3.23) is unique.

The approximating problem

Let Gh be the interior lattice points of the bounded domain G ⊂ Rm with Lipschitz boundary

generated by the lattice Zh(z0) (cf. Section 2.1.2). Since now some of the functions uj that

solve the PDE system (3.23) are at a fixed time elements of the space H1(G), we have to use

a larger grid to define an appropriate approximation.

Definition 3.1.5. We define the sets of lattice points Ḡh and Ḡ1
h as

Ḡ1
h =

{
z ∈ Zh(z0) : ch(z) ∩G 6= ∅

}
,

Ḡh =
{
z ± h ek : z ∈ Ḡ1

h, k = 1, . . . ,m
}
.

We are now going to define a second internal approximation of L2(G) and an external ap-

proximation of the Sobolev space H1(G) in terms of lattice functions that are defined on the

grid Ḡh. (Recall the definition of internal and external approximation from Section 2.2.3.)

We still do not distinguish in notation between lattice functions, their extended versions and

the restrictions of the extended versions to the domain G (cf. Remark 2.1.4).

Definition 3.1.6. The discrete Lebesgue space L2(Ḡh) is the space of lattice functions that

vanish outside Ḡh equipped with the scalar product

(
uh, vh

)
L2(Ḡh)

= hm
∑

z∈Ḡh

uh(z) vh(z) =
∫

Rm

uh(x) vh(x) dx.

Note that here, in general,

(
uh, vh

)
L2(Ḡh)

6=
∫

G
uh(x) vh(x) dx.

The discrete derivatives ∂±k uh are defined in the same way as before. We are now in a position

to define the discrete Sobolev space H1(Ḡh), the discrete analogue of H1(G).
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Definition 3.1.7. By the discrete Sobolev space H1(Ḡh) we understand the space of lattice

functions that vanish outside Ḡh equipped with the scalar product

(
uh, vh

)
H1(Ḡh)

=
(
uh, vh

)
L2(Ḡh)

+ hm
m∑

k=1

∑

z∈Ḡ1
h

∂+
k uh(z) ∂+

k vh(z).

The approximating problem is given by the following system of ODEs.




u′h,j −Dh,j∇− ·∇+uh,j = fj(uh) on G1
h × (0, T )

uh,j = 0 on (Ḡh \ G1
h)× [0, T ]

uh,j( · , 0) = uh,j,0 on G1
h

(3.25a)

(j = 1, . . . , nd), and



u′h,j = fj(uh) on Ḡh × (0, T )

uh,j = uh,j,0 on Ḡh

(3.25b)

(j = nd +1, . . . , ns). The solutions of (3.25) can, for j = 1, . . . , nd, be regarded as elements of

C1([0, T ],H1
0(Gh)) and, for j = nd + 1, . . . , ns, as elements of C1([0, T ],H1(Ḡh)), respectively.

They also solve the following discrete analogue of the weak PDE problem (3.23).

d

dt

(
uh,j(t), vh,j

)
L2(Gh)

+Dh,j

(∇+uh,j(t), ∇+vh,j

)
(L2(Gh))m =

(
fj(uh(t)), vh,j

)
L2(Gh)

(3.26a)

for all vh,j ∈ H1
0(Gh) and t ∈ (0, T ) (j = 1, . . . , nd), respectively

d

dt

(
uh,j(t), vh,j

)
L2(Ḡh)

=
(
fj(uh(t)), vh,j

)
L2(Ḡh)

(3.26b)

for all vh,j ∈ H1(Ḡh) and t ∈ (0, T ) (j = nd + 1, . . . , ns).

The mesoscopic stochastic particle model

As state space Sl of the particle density process (ul(t))t≥0 we use the discrete subset of vector

lattice functions from L2(Ḡl) = (L2(Ḡl))ns that take values in 1
nN

ns
0 . We assume Dirichlet

boundary conditions for the diffusing species, i.e., ul,j(z, · ) ≡ 0 for z ∈ Ḡl \G1
l (j = 1, . . . , nd).

Furthermore, it is supposed that ul(0) is non-random and that 0 ≤ ul,j(z, 0) ≤ 1 for all z ∈ Ḡl,

j = 1, . . . , ns. Let, for j = 1, . . . , ns and z ∈ G1
l , χj,z be the vector lattice function that has

jth component equal to one in the point z and is equal to zero elsewhere. For z ∈ Ḡl \ G1
l ,

let χj,z ≡ 0. In addition we define, for j = 1, . . . , ns and z ∈ Ḡl, χ̄j,z as the vector lattice

function that is zero everywhere except for the jth component in the point z which is equal

to one.

Here we exclude immigration of particles of a certain species to a cell from the reservoirs

and creation of new particles of the species by chemical reactions if there are already n or

more individuals of the same species present (i.e., the concentration is already greater than
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or equal to one). However, for the sake of simplicity, we do not suppress immigration to a cell

from neighbouring cells by diffusion, even if the particle density in the cell is already greater

than or equal to one. That is, we allow overshooting of the concentration by diffusion. A

particular two-species model that excludes overshooting has been discussed in Guiaş (2002),

and the exclusion condition did not alter the limit equation. From a physical point of view

it should not matter if an exclusion condition is used or not, since the number n of sites per

cell is in practice relatively large (about 103) and not strictly fixed.

As usual, we may assume that (by possibly modifying the original Ki) there are mea-

surable functions Kl,i : Rns → R such that the transition intensities are left unchanged and

intensity zero is automatically assigned to forbidden reactive jumps (i.e., jumps that would

lead to negative concentrations or concentrations greater than one). More precisely, for

w ∈ {
0, 1/n, 2/n, . . . , 1

}ns ,

Kl,i(w) =




Ki(w) if 0 ≤ wj + 1

nνij ≤ 1 for all j = 1, . . . , ns

0 otherwise.
(3.27)

Moreover, we may assume that Kl,i → Ki uniformly on Rns for l→ 0.

The transition intensities are the following.

I A particle of species j may leave cell z ∈ G1
l and jump to z ± lek.

ql
(
ul,ul − 1

nχj,z + 1
nχj,(z−lek)

)
= n

dj

2m
ul,j(z),

ql
(
ul,ul − 1

nχj,z + 1
nχj,(z+lek)

)
= n

dj

2m
ul,j(z),

(3.28)

where dj > 0.

I The number of particles in cell z ∈ G1
l changes according to the ith reaction.

ql
(
ul,ul + 1

n

∑ns
j=1νijχj,z

)
= nKl,i(ul(z) ∧ 1) if ul + 1

n

∑ns
j=1νijχj,z ∈ Sl. (3.29)

Here w ∧ 1 for w ∈ Rns is defined componentwise.

I The number of particles in a boundary cell z ∈ Ḡl \ G1
l changes according to the ith

reaction.

ql
(
ul,ul + 1

n

∑ns
j=nd+1νijχ̄j,z

)
= nKl,i(ul(z) ∧ 1) if ul + 1

n

∑ns
j=nd+1νijχ̄j,z ∈ Sl.

(3.30)

The transition intensities again characterise a Markov jump process with generator

Llg(ul) =
∑

ũl 6=ul

ql(ul, ũl)
(
g(ũl)− g(ul)

)
, g ∈ Ĉ(Sl), (3.31)

according to Theorem 3.1 in Chapter 8 of (Ethier & Kurtz, 1986).
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Law of large numbers

We first show convergence of the semi-discrete approximation, which ensures at the same time

the existence of a solution for the weak PDE problem (3.23). To this end, we first discuss

the approximation properties of the spaces L2(Ḡh) and H1(Ḡh). Let again I = (0, h0] ⊂ R+.

For the proofs of the following theorems we refer to similar results for symmetric difference

operators that can be found in Raviart (1967) and Temam (1973).

We extend a function u ∈ L2(G) to a function ũ ∈ L2(Rm) by setting ũ = u on G and

ũ ≡ 0 on Rm \G. Let the lattice function ūh be defined as in (2.65). The restriction operator

Q̄h : L2(G) → L2(Ḡh) is then defined as

Q̄hu(z) =




ūh(z) if z ∈ Ḡh

0 otherwise.
(3.32)

If u is in H1(G) we can extend it to a function ũ in H1(Rm) such that u is left unchanged on

G by applying a bounded linear prolongation operator (see, e.g., Temam (1973). We define

again ū as in (2.65). The restriction operator R̄h : H1(G) → H1(Ḡh) is then given as above

by setting

R̄hu(z) =




ūh(z) if z ∈ Ḡh

0 otherwise.
(3.33)

The restriction operators have the following properties.

Lemma 3.1.8. The restriction operators Q̄h and R̄h are bounded linear operators, i.e., they

are elements of L (L2(G),L2(Ḡh)) and L (H1(G),H1(Ḡh)), respectively, and the families

(Q̄h)h∈I and (R̄h)h∈I are stable.

Proof. Cf. Raviart (1967), Chapter 0, or Temam (1973), Chapter 9.

We define the extension operators P̄h : L2(Ḡh) → L2(G) by

P̄huh = uh|G, uh ∈ L2(Ḡh). (3.34)

Theorem 3.1.9. The internal approximation of L2(G) by
(L2(Ḡh), Q̄h, P̄h

)
h∈I

is stable and

convergent.

Proof. Cf. Raviart (1967), Chapter 0.

We turn now to an external approximation of the Sobolev space H1(G) in terms of the

spaces H1(Ḡh). To this end, we set again X = (L2(G))m+1. The isometric embedding

J̄ : H1(G) → X is given by

u 7→ J̄u = (u, ∂x1u, . . . , ∂xmu). (3.35)
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The extension operators J̄h : H1(Ḡh) → X are defined as

uh 7→ J̄huh =
(
uh|G, ∂+

1 uh|G, . . . , ∂+
muh|G

)
. (3.36)

Theorem 3.1.10. The external approximation of H1(G) by X, J̄ and
(H1(Ḡh), R̄h, J̄h

)
h∈I

is stable and convergent.

Proof. Cf. Raviart (1967), Chapter 0, or Temam (1973), Chapter 9.

Furthermore we have an analogue of Theorem 2.3.3 (cf. Raviart (1967), Chapter 0) and the

following analogue of the compactness theorem 2.3.4.

Theorem 3.1.11. Let (uh), h % 0, be a sequence of functions in L2(0, T ;H1(Ḡh)) that have

time derivatives u′h in L2(0, T ; (H1(Ḡh))∗) and satisfy

sup
h

∫ T

0

(
‖uh(t)‖2

H1 + ‖u′h(t)‖2
(H1)∗

)
dt <∞.

Then there is a subsequence (uh′), h′ % 0, that converges strongly in L2(0, T ;L2(G)).

Proof. The proof can again be carried out by imitating the proof of Theorem 12.1 in

Chapter 1 of Lions (1969).

We are now going to prove the convergence of the solutions of the approximating problem

(3.25) to the solution of the weak PDE problem (3.23).

Theorem 3.1.12. Suppose that u0 = (u1,0, . . . , uns,0) is as in the weak formulation (3.23).

Let (uh,j), h % 0, be a sequence of solutions of the jth equation of the approximating problem

(3.25) to the initial values Q̄huj,0 (j = 1, . . . , nd), respectively R̄huj,0 (j = nd+1, . . . , ns), and

assume that Dh,j → Dj, j = 1, . . . , nd. Then Jhuh,j ⇀ Juj in L2(0, T ;X) (j = 1, . . . , nd),

respectively J̄huh,j ⇀ Juj in L2(0, T ;X) (j = nd + 1, . . . , ns), where u = (u1, . . . , uns)

is the solution vector of the weak PDE problem (3.23) to the initial value u0. Moreover,

uh = (uh,1, . . . , uh,nS
) converges strongly to u in L2(0, T ; L2(G)).

Proof. 1. From the definition of the restriction operators Q̄h and R̄h it follows that

0 ≤ uh,j(z, 0) ≤ 1 (3.37)

for all z ∈ Ḡh and j = 1, . . . , ns. The local solutions uh(z, · ) of the approximating problem

(3.25) obtained from the Picard-Lindelöf theorem are confined to the cube [0, 1]ns because the

vector field f points inwards on its boundary and the discrete Laplacian ∇− ·∇+ dampens

maxima and minima. Suppose that one of the functions uh,j(z, · ) would leave the interval

[0, 1] for the first time at t0, say, uh,j0(z0, t0) = 1, uh,j0(z0, t) > 1 for t ∈ (t0, t0 + ε), where

ε > 0, and 0 ≤ uh,j(z, t0) ≤ 1 for z 6= z0, j 6= j0. Then u′h,j0
(z0, t0) ≤ 0 because of hypothesis
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(I) and the definition of the discrete Laplacian, a contradiction. This ensures the existence of

a solution of the approximating problem on the whole interval [0, T ] and yields the estimate

0 ≤ uh,j ≤ 1 on Ḡh × [0, T ] (3.38)

for j = 1, . . . , ns. In particular,

sup
h

max
0≤t≤T

‖uh,j‖L2(Ḡh) <∞. (3.39)

Note that the restriction of f to the cube [0, 1]ns is Lipschitz continuous. By inserting uh,j(t)

for vh,j in the discrete weak formulation and summing up the equations, we get

‖uh(t)‖2
L2(Ḡh)

+ 2
nd∑

j=1

m∑

k=1

∫ t

0
Dh,j‖∂+

k uh,j(s)‖2
L2(Gh) ds

≤ ‖uh(0)‖2
L2(Ḡh)

+ C

∫ t

0

(
1 + ‖uh(s)‖2

L2(Ḡh)

)
ds.

(3.40)

By making use of the estimate (3.38) we find (due to the discrete Poincaré inequailty) that

sup
h
‖uh,j‖L2(0,T ;H1

0(Gh)) <∞, j = 1, . . . , nd. (3.41)

The delicate point in the proof is that here the usual procedure doesn’t provide us with

an estimate for ‖uh,j‖L2(0,T ;H1(Ḡh)) for j = nd + 1, . . . , ns. We now exploit that, for j =

nd +1, . . . , ns, we have uj,0 ∈ H1(G) by hypothesis. Note that, for j = nd +1, . . . , ns, z ∈ Ḡ1
h,

k = 1, . . . ,m,

|uh,j(z + h ek, t)− uh,j(z, t)| ≤ exp(CL t) |uh,j(z + h ek, 0)− uh,j(z, 0)| , (3.42)

where CL dentotes the Lipschitz constant of f restricted to [0, 1]ns . Hence,

hm
∑

z∈Ḡ1
h

1
h2
|uh,j(z + h ek, t)− uh,j(z, t)|2

≤ hm
∑

z∈Ḡ1
h

1
h2

exp(2CL t) |uh,j(z + h ek, 0)− uh,j(z, 0)|2

≤ exp(2CL t)‖R̄h‖2
L (H1,H1)‖uj,0‖2

H1 .

(3.43)

Owing to the stability of the family (R̄h) and the estimate (3.39) we obtain

sup
h

max
0≤t≤T

‖uh,j‖H1(Ḡh) <∞, j = nd + 1, . . . , ns. (3.44)

The additional estimates

sup
h
‖u′h,j‖L2(0,T ;H−1) <∞, j = 1, . . . , nd, (3.45)

sup
h
‖u′h,j‖L2(0,T ;(H1)∗) <∞, j = nd + 1, . . . , ns, (3.46)
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are easily obtained from the discrete weak formulation.

2. In view of the a-priori estimates, we can extract a subsequence (still denoted by (uh)) so

that Jhuh,j ⇀ Juj in L2(0, T ;X) (j = 1, . . . , nd) for a uj ∈ L2(0, T ;H1
0 (G)). Furthermore,

for j = nd + 1, . . . , ns, J̄uh,j ⇀ uj in L2(0, T ;X), where uj is an element of L2(0, T ;H1(G)).

In addition, we may assume that uh converges strongly to u in L2(0, T ; L2(G)) due to the

compactness theorems 2.3.4 and 3.1.11.

3. The identification of u as solution of the weak PDE problem (3.23) follows by similar

arguments as in the proof of Theorem 2.3.2.

4. The uniqueness of the limit yields convergence of the whole sequence.

We denote from now on the stochastic particle density by by ul and the solutions of the

approximating problem (3.25) by vl. Let (S1)–(S3) be the scaling relations from the previous

section.

Theorem 3.1.13 (Law of large numbers). Let u be the solution of the weak PDE problem

(3.23) to the initial value u0. Assume that (S1)–(S3) hold and that ul(0) converges strongly

to u0 in L2. Then

E
[
‖ul − u‖2

L2(0,T ;L2)

]
= E

[
‖ul − u‖2

(L2(QT ))ns

]
→ 0.

The law of large numbers follows, as usual, immediately from the next auxiliary theorem.

Theorem 3.1.14. Assume (S1)–(S3), and denote by vl the solution vector of the approxi-

mating problem (3.25) with Dl,j = dj

2m l2 to the initial values vl,j,0 = Q̄luj,0 (j = 1, . . . , nd)

and R̄luj,0 (j = nd + 1, . . . , ns), respectively. Then

sup
t≤T

E
[
‖ul(t)− vl(t)‖2

L2(Ḡl)

]
→ 0.

The proof of the above result rests again on a lemma that identifies a local martingale related

to the process ‖ul(t)−vl(t)‖L2 , t ≤ T . The stopping times τp, p ∈ N, are defined as in (2.111).

Lemma 3.1.15. Let (Ml(t))t≤T be the process given by

Ml(t) = ‖ul(t)− vl(t)‖2
L2(Ḡl)

− ‖ul(0)− vl(0)‖2
L2(Ḡl)

+ 2
nd∑

j=1

m∑

k=1

∫ t

0
Dl,j

(
∂+

k uh,j − ∂+
k vh,j , ∂

+
k uh,j − ∂+

k vh,j

)
L2(Gh)

ds

− 2
∫ t

0

(
fl(ul(s) ∧ 1)− f(vl(s)), ul(s)− vl(s)

)
L2(Ḡl)

ds−Rl(t),

(3.47)

where

Rl(t) =
1
n

nd∑

j=1

2dj

∫ t

0

(
ul,j(s), 1

)
L2(Gl)

ds

+
1
n

nr∑

i=1

ns∑

j=1

ν2
ij

∫ t

0

(
Kl,i(ul(s) ∧ 1), 1

)
L2(Ḡl)

ds.

(3.48)

Then the stopped process (Ml(t ∧ τp))t≤T is a martingale for each p ∈ N.
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Proof. The proof of the lemma above works in the same way as for the general linear case

and the case of Lipschitz conditions. The growth of the process ‖ul(t)‖L2(Ḡh), t ≥ 0, can

again be estimated by an appropriate Yule process.

Proof of Theorem 3.1.14. By stopping the local martingale (3.47), taking expectations,

and observing that the term involving the discrete derivatives is still monotone, we get

E
[
‖ul(t ∧ τp)− vl(t ∧ τp)‖2

L2(Ḡl)

]
≤ ‖ul(0)− vl(0)‖2

L2(Ḡl)

+E

∫ t∧τp

0

∣∣∣
(
fl(ul(s) ∧ 1)− f(vl(s)), ul(s)− vl(s)

)
L2(Ḡl)

∣∣∣ ds

+
1
n

ns∑

j=1

2dj E

∫ t∧τp

0

(
ul,j(s), 1

)
L2(Gl)

ds

+
1
n

ns∑

j=1

nr∑

i=1

ν2
ij E

∫ t∧τp

0

(
Kl,i(ul(s) ∧ 1), 1

)
L2(Ḡl)

ds.

(3.49)

W can derive again the estimate (2.125) (with L2(Gl) replaced by L2(Ḡl)) by making use of

the fact that the reaction rates Ki are locally Lipschitz continuous in the second and fourth

term on the right. The second term, for instance, can be estimated as follows. Let CL be the

Lipschitz constant of the vector field f restricted to [0, 1]ns . The triangle inequality yields

∣∣(fl(ul(s) ∧ 1)− f(vl(s)), ul(s)− vl(s)
)
L2(Ḡl)

∣∣

≤ ∣∣(fl(ul(s) ∧ 1)− f(ul(s) ∧ 1), ul(s)− vl(s)
)
L2(Ḡl)

∣∣

+
∣∣(f(ul(s) ∧ 1)− f(vl(s)), ul(s)− vl(s)

)
L2(Ḡl)

∣∣.
(3.50)

Here the first term on the right is not problematic because fl converges uniformly to f .

(Recall that fl is the vector of reaction functions obtained by using the rates Kl,i instead of

the Ki.) As for the second term, observe that

∣∣(f(ul(s) ∧ 1)− f(vl(s)), ul(s)− vl(s)
)
L2(Ḡl)

∣∣

=
∣∣∣lm

ns∑

j=1

∑

z∈Ḡl

(
fj(ul(z, s) ∧ 1)− fj(vl(z, s))

)
(ul,j(z, s)− vl,j(z, s))

∣∣∣

≤ CL l
m

ns∑

j=1

∑

z∈Ḡl

|ul(z, s) ∧ 1− vl(z, s)| |ul,j(z, s)− vl,j(z, s)|

≤ CL l
m

ns∑

j=1

∑

z∈Ḡl

|ul(z, s)− vl(z, s)| |ul,j(z, s)− vl,j(z, s)|

≤ C lm
∑

z∈Ḡl

|ul(z, s)− vl(z, s)|2 = C ‖ul(s)− vl(s)‖2
L2(Ḡl)

.

(3.51)

With the aid of the estimate (2.125) the proof can be finished as before.
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3.2 Nonlinear diffusion

In this section we study in more detail which kind of limit equation can arise when the

intensities for diffusive jumps depend on the concentration or the concentration gradient. For

the sake of simplicity, we restrict the discussion to single-species models without chemical

reactions. Moreover, in order to save notation, the proof of the law of large numbers is only

carried out for one space dimension, i.e., for a chemical reactor that is represented by an

interval (0, L).

3.2.1 Crowding effects

We are going to study what happens when the intensity for a diffusive jump increases with

the concentration in the cells, i.e., the intensity for a jump to a neighboring cell is d = d(ul),

where d is a monotonously increasing function. This models repulsive interactions between

the particles.

The macroscopic PDE and its weak formulation

For the following discussion G may still be a bounded domain in Rm with Lipschitz boundary.

The PDE that will be approached in the limit of large particle numbers in this section (which

is now perhaps less obvious) is




∂tu−∆(D(u)u) = 0 on QT

u = 0 on ∂G× [0, T ]

u( · , 0) = u0( · ) on G,

(3.52)

where the function D : R→ R+
0 is assumed to satisfy certain conditions that will be specified

below. As before, we look for an appropriate weak formulation. Let us assume for the

following calculations that D is sufficiently smooth and that we have found a smooth solution

u of (3.52). We multiply the equation with a test function v ∈ C∞0 (G) and integrate over G,

which yields

d

dt

∫

G
u v dx−

∫

G
∆(D(u)u) v = 0. (3.53)

By partial integration we get

d

dt

∫

G
u v dx+

∫

G
∇(D(u)u) · ∇v dx−

∫

∂G
v∇(D(u)u) ·~n dS = 0, (3.54)

where ~n denotes the outer normal. The integral over the boundary vanishes because v ∈
C∞0 (G). We notice, however, that the term
∫

G
∇(D(u)u) ·∇v dx
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is in general not monotone (not even for monotoneD), and therefore Eq. (3.54) does not allow

for an immediate interpretation as monotone evolution equation. Therefore we integrate by

parts one more time, which yields

d

dt

∫

G
u v −

∫

G
D(u)u∆v dx+

∫

∂G
D(u)u∇v ·~n dS = 0. (3.55)

The boundary integral vanishes again. By setting −∆v = w we get

d

dt

∫

G
u (−∆)−1w dx+

∫

G
D(u)uw dx = 0. (3.56)

The above equation can be interpreted as monotone evolution equation (cf. Lions (1969),

Section 3 of Chapter 2). To this end, we endow the Hilbert space H1
0 (G) with the equivalent

scalar product
(
u, v

)
H1

0
=

(∇u, ∇v)
L2 , u, v ∈ H1

0 . (3.57)

We interpret −∆ as operator from H1
0 to H−1 in the usual way:

〈−∆u, v
〉
H1

0
=

(∇u, ∇v)
L2 , u, v ∈ H1

0 . (3.58)

Apparently, the operator−∆ defined in this way is identical to the Riesz isomorphism between

the Hilbert space H1
0 and its dual H−1, since the scalar product in H1

0 is given by (3.57). We

define on H−1 the scalar product
(
u, v

)
H−1 =

〈
u, −∆−1v

〉
H1

0
, u, v ∈ H−1, (3.59)

and we denote the corresponding norm by ||| · |||H−1 . The norm ||| · |||H−1 is in fact equal to

the standard norm in H−1 which we denote by ‖ · ‖H−1 . To see this, set w̃ = (−∆)−1w for

w ∈ H−1, and observe that

|||w|||2H−1 =
(
w, w

)
H−1 =

〈
w, w̃

〉
H1

0
=

〈−∆w̃, w̃
〉
H1

0
=

(
w̃, w̃

)
H1

0
= ‖w‖2

H−1 . (3.60)

The spaces L2(G), H−1(G) (endowed with the scalar product (3.59)), and (L2(G))∗ form a

Gelfand triple:

L2(G) ↪→ H−1(G) ∼= (H−1(G))∗ ↪→ (L2(G))∗. (3.61)

We have to take care that here the second embedding j2 : H−1 ↪→ (L2)∗ is given by
〈
j2(u), v

〉
L2 =

(
u, v

)
H−1 =

〈
u, (−∆)−1v

〉
H1

0
, u ∈ H−1, v ∈ L2, (3.62)

while the first embedding is still the usual one.

We make the following hypotheses for the function D : R→ R+
0 .

D is continuous and monotonously increasing on R+
0 . (D1)

D(p) = D(−p) for all p ∈ R. (D2)

There are constants C,α > 0 such that D(p) ≤ C and D(p) p2 ≥ αp2 for all p ∈ R. (D3)
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Lemma 3.2.1. Let the mapping a : L2 × L2 → R be given by

a(u, v) =
∫

G
D(u)u v dx, u, v ∈ L2, (3.63)

and assume that D satisfies (D1)–(D3). Then the mapping a( · , · ) induces a (generally

nonlinear) operator A : L2 → (L2)∗ by

〈
A(u), v

〉
L2 = a(u, v), u, v ∈ L2, (3.64)

which is bounded, coercive, hemicontinuous and monotone.

(For the definition of hemicontinuity see, e.g., Zeidler (1990c).)

Proof. For u, v ∈ L2 we have the estimate

∣∣〈A(u), v
〉
L2

∣∣ =
∣∣∣∣
∫

G
D(u)u v dx

∣∣∣∣ ≤ C ‖u‖L2‖v‖L2 , (3.65)

and thus ‖A(u)‖(L2)∗ ≤ C ‖u‖L2 . Furthermore,

〈
A(u), u

〉
L2 =

∫

G
D(u)u2 dx ≥ α ‖u‖2

L2 . (3.66)

Hence, A is bounded and coercive. As for the hemicontinuity, note that for u, v, w ∈ L2,

∣∣〈A(u+ λv)−A(u), w
〉
L2

∣∣ =
∣∣∣∣
∫

G

(
D(u+ λv)(u+ λv)−D(u)u

)
w dx

∣∣∣∣ (3.67)

converges to zero for λ→ 0 by the dominated convergence theorem. Finally, the monotonicity

condition

〈
A(u)−A(v), u− v

〉
L2 ≥ 0 (3.68)

follows from the properties (D1) and (D2) of the function D.

In the weak interpretation of the PDE (3.52) a function u ∈ H1(0, T ;L2,H−1) is sought such

that

d

dt

(
u, v

)
H−1 + a(u, v) = 0 (3.69a)

for all v ∈ L2 and a.e. t ∈ [0, T ], and

u(0) = u0 ∈ H−1. (3.69b)

It has a unique solution according to a general theorem on monotone first-order evolution

equations (see, e.g., Theorem 30.A in Zeidler (1990c) or Theorem 1.2 in Chapter 2 of Lions

(1969)).
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The approximating problem

We now specialise to one space dimension, i.e., G = (0, L), and ∆h = ∂−∂+ is the discrete

Laplacian. The discrete analogue of the PDE (3.52) on the interior lattice points Gh is given

by




u′h −∆h(Dh(uh)uh) = 0 on G1
h × (0, T )

uh = 0 on (Gh \ G1
h)× [0, T ]

uh( · , 0) = uh,0 on G1
h.

(3.70)

We assume that the functions Dh satisfy the same hypotheses (D1)–(D3) as D and that

supR |Dh −D| → 0 for h → 0. The discretised PDE (3.70) is in fact a system of ODEs

with continuous right-hand side which has a local solution according to the Peano theorem.

Existence of a solution on the whole interval [0, T ] follows from the derivation of the a-priori

estimate (3.82) below.

We endow the discrete Sobolev space H1
0(Gh) with the scalar product

(
uh, vh

)
H1

0
=

(
∂+uh, ∂

+vh

)
L2 , uh, vh ∈ H1

0, (3.71)

which induces a norm equivalent to the original one due to the discrete Poincaré inequality.

In analogy to the treatment of the PDE (3.52) we regard −∆h as operator from H1
0 to H−1

given by
〈−∆huh, vh

〉
H1

0
=

(
∂+uh, ∂

+vh

)
L2 , uh, vh ∈ H1

0, (3.72)

and H−1 is equipped with the scalar product
(
uh, vh

)
H−1 =

〈
uh, −∆−1

h vh

〉
H1

0
, uh, vh ∈ H−1. (3.73)

The corresponding norm is denoted by ||| · |||H−1 . It is equal to the standard norm which we

denote by ‖ · ‖H−1 . The discrete spaces L2(Gh), H−1(Gh) and (L2(Gh))∗ also form a Gelfand

triple:

L2(Gh) ↪→ H−1(Gh) ∼= (H−1(Gh))∗ ↪→ (L2(Gh))∗. (3.74)

The solution of (3.70) can be regarded as a function in C1([0, T ],L2) that satisfies

d

dt

(
uh, vh

)
H−1 + ah(uh, vh) = 0 (3.75)

for all vh ∈ L2 and t ∈ (0, T ), where the mapping ah : L2 × L2 → R is defined as

ah(uh, vh) =
(
Dh(uh)uh, vh

)
L2 , uh, vh ∈ L2. (3.76)

In analogy to a( · , · ), the mapping ah( · , · ) induces a bounded and monotone operator Ah :

L2 → (L2)∗ by
〈
Ah(uh), vh

〉
L2 = ah(uh, vh), uh, vh ∈ L2. (3.77)
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The mesoscopic stochastic particle model

We work in the same setting as for the linear example model from Section 2.1.2, i.e., the

state space Sl of the particle density process (ul(t))t≥0 is the subset of functions in L2(Gl)

that take values in 1
nN0. Moreover, we assume that ul(0) is non-random and that ul satisfies

Dirichlet boundary conditions, i.e., ul(z, · ) ≡ 0 for z ∈ Gl \ G1
l . The possible transitions are

the following.

I A particle may leave cell z ∈ G1
l and jump to z ± l.

ql
(
ul, ul − 1

nχz + 1
nχ(z−l)

)
= n

1
2
d(ul(z))ul(z),

ql
(
ul, ul − 1

nχz + 1
nχ(z+l)

)
= n

1
2
d(ul(z))ul(z),

(3.78)

where l2 d : R→ R+
0 is supposed to satisfy conditions (D1)–(D3).

The existence of a particle density process (ul(t))t≥0 with generator

Llg(ul) =
∑

ũl 6=ul

ql(ul, ũl)
(
g(ũl)− g(ul)

)
, g ∈ Ĉ(Sl), (3.79)

follows again from Theorem 3.1 in Chapter 8 of Ethier & Kurtz (1986). Note that by con-

struction

sup
z∈Gl,t≥0

|ul(z, t)| <∞, (3.80)

and

‖ul(t)‖L1(G) ≤ ‖ul(0)‖L1(G), t ≥ 0, (3.81)

almost surely.

Law of large numbers

Comparing to the rest of our work on laws of large numbers we have introduced in this section

a different functional setting to establish the existence of a unique solution of the macroscopic

PDE. As a consequence we are (without further regularity considerations) only able to show

weak convergence of the approximation in the space L2(0, T ;L2), which, in turn, results in a

weaker law of large numbers.

Theorem 3.2.2. Let u be the solution of the weak PDE problem (3.69) to the initial value

u0. Let (uh), h % 0, be a sequence of solutions of the approximating problem (3.75) to the

initial values uh,0, and assume that uh,0 converges strongly to u0 in L2. Then uh converges

weakly to u in L2(0, T ;L2).
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Proof. 1. The a-priori estimates

sup
h

max
0≤t≤T

‖uh‖H−1 <∞, (3.82)

sup
h
‖uh‖L2(0,T ;L2) <∞ (3.83)

follow immediately from the discrete weak formulation by inserting uh(t) for vh and integrat-

ing over time. Therefore we can extract a subsequence such that uh ⇀ u, and Dh(uh)uh ⇀ ξ

in L2(0, T ;L2). Recall that the restriction operators Rh : H1
0 → H1

0 constitute a stable family

with ‖Rh‖L (H1
0 ,H1

0) ≤ 1 (even with changed scalar products, cf. the proof of Lemma 2.2.12),

and consider the embeddings J∗h : H−1 → H−1 given by

〈
J∗h(uh), v

〉
H1

0
=

〈
uh, Rhv

〉
H1

0
, uh ∈ H−1, v ∈ H1

0 . (3.84)

Observe that

〈
J∗h(uh), v

〉
H1

0
≤ ‖uh‖H−1 ‖Rh‖ ‖v‖H1

0
, (3.85)

and therefore ‖J∗h(uh)‖H−1 ≤ ‖uh‖H−1 . Hence, by possibly passing to a further subsequence,

we may assume that J∗h(uh(T )) ⇀ η in H−1.

2. We claim that the weak limit u satisfies the equation

u′ + ξ = 0 (3.86)

in H1(0, T ;L2,H−1) with u(0) = u0 and u(T ) = η. To see this, consider an arbitrary function

ϕ ∈ C1[0, T ], and set vh = Qhv for an arbitrary v ∈ L2. From the discrete weak formulation

we get by integration by parts that

(
uh(T ), ϕ(T )vh

)
H−1 −

(
uh(0), ϕ(0)vh

)
H−1

=
∫ T

0

(〈
u′h(t), ϕ(t)vh

〉
L2 +

〈
ϕ′(t)vh, uh(t)

〉
L2

)
dt

=
∫ T

0

(
− ah(uh(t), vh)ϕ(t) +

(
uh(t), (−∆h)−1vh

)
L2 ϕ

′(t)
)
dt.

(3.87)

Recall that by definition

(
uh(0), vh

)
H−1 =

〈
uh(0), (−∆h)−1vh

〉
H1

0
=

(
uh(0), (−∆h)−1vh

)
L2 , (3.88)

and

(
uh(T ), vh

)
H−1 =

〈
uh(T ), (−∆h)−1vh

〉
H1

0
. (3.89)

We set ṽ = (−∆)−1v ∈ H1
0 . Note that (−∆h)−1vh → ṽ strongly in L2, and

‖(−∆h)−1vh −Rhṽ‖H1
0
→ 0 (h→ 0). (3.90)
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This follows from Theorem 3.1 in Chapter 1 of Temam (2001) and the fact that vh = Qhv → v

strongly in L2. Passing to the limit in all terms in Eq. (3.87) yields
〈
η, ṽ

〉
H1

0
ϕ(T )− 〈

u0, ṽ
〉
H1

0
ϕ(0)

=
(
η, v

)
H−1 ϕ(T )− (

u0, v
)
H−1 ϕ(0)

=
∫ T

0

(
u(t), v

)
H−1 ϕ

′(t) dt−
∫ T

0

(
ξ, v

)
L2 ϕ(t) dt.

(3.91)

Hence, by taking ϕ ∈ C∞0 (0, T ), we conclude that u is indeed in H1(0, T ;L2,H−1) with

u′ = −ξ. It follows from the integration by parts formula for functions in H1(0, T ;L2,H−1)

by choosing a ϕ with ϕ(T ) = 1 and ϕ(0) = 0, respectively ϕ(T ) = 0 and ϕ(0) = 1, that

u(T ) = η and u(0) = u0.

3. It remains to show that ξ = A(u). This equality would follows from the hemicontinuity

of A by a well-known argument, often called the Minty trick or monotonicity trick (see, e.g.,

Lions (1969), Chapter 2, or Zeidler (1990c)), if we were able to prove that
∫ T

0

〈
ξ(t)−A(v(t)), u(t)− v(t)

〉
L2 dt ≥ 0 for all v ∈ L2(0, T ;L2). (3.92)

It is sufficient to show (3.92) for elements of L2(0, T ;L2) of the form ϕv, where v ∈ L2 and

ϕ ∈ C1[0, T ], because linear combinations of such elements are dense. We set vh(t) = Qhv ϕ(t)

and consider the nonnegative expression

Xh =
∫ T

0

(
Dh(uh(t))uh(t)−Dh(vh(t)) vh(t), uh(t)− vh(t)

)
L2 dt. (3.93)

From the approximating problem it follows that
∫ T

0

(
Dh(uh(t))uh(t), uh(t)

)
L2 dt =

1
2
|||uh(0)|||2H−1 − 1

2
|||uh(T )|||2H−1 . (3.94)

Hence,

Xh =
1
2
|||uh(0)|||2H−1 − 1

2
|||uh(T )|||2H−1 −

∫ T

0

(
Dh(uh(t))uh(t), vh(t)

)
L2 dt

−
∫ T

0

(
Dh(vh(t)) vh(t), uh(t)− vh(t)

)
L2 dt.

(3.95)

Note that (−∆h)−1uh(0) converges strongly to (−∆)−1u0 in L2, since by hypothesis uh(0)

converges strongly to u0 in L2. By taking limits superior we thus get

limXh =
1
2
|||u0|||2H−1 − 1

2
lim |||uh(T )|||2H−1 −

∫ T

0

(
ξ(t), v(t)

)
L2 dt

−
∫ T

0

(
D(v(t)) v(t), u(t)− v(t)

)
L2 .

(3.96)

Observe that

lim |||uh(T )|||H−1 ≥ lim ‖J∗h(uh(T ))‖H−1 ≥ ‖η‖H−1 = ‖u(T )‖H−1 = |||u(T )|||H−1 , (3.97)
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Hence,

limXh ≤ 1
2
|||u0|||2H−1 − 1

2
|||u(T ))|||2H−1 −

∫ T

0

(
ξ(t), v(t)

)
L2 dt

−
∫ T

0

(
D(v(t)) v(t), u(t)− v(t)

)
L2 .

(3.98)

Since, by integration by parts,

1
2
|||u(T ))|||2H−1 − 1

2
|||u0|||2H−1 =

∫ T

0

(
ξ(t), u(t)

)
L2 dt, (3.99)

the estimate (3.92) follows.

4. Since the limit u is unique, the whole sequence (uh) converges weakly to u in L2(0, T ;L2).

Let from now on vl be the solution of the approximating problem and ul the stochastic particle

density. We shall see below that by proceeding as usual we can show that

sup
t≤T

E
[
‖ul(t)− vl(t)‖2

H−1

]
→ 0 (l→ 0). (3.100)

Unfortunately, we do not have a nice compatibility of the norms in H−1 and H−1. If a

sequence of lattice functions converges discretely to zero with respect to the norm in H−1(Gh)

we are (to the best of our knowledge) not able to conclude that the same is true for the

extended versions with respect to the norm in H−1(G). This difficulty is circumvented below

by proving only a weaker law of large numbers.

Note that if we define for a function ψ ∈ C∞0 (QT ) approximating lattice functions ψl( · , t)
simply by setting

ψl(z, t) =




ψ(z, t) for z ∈ G1

l

0 otherwise,
(3.101)

then ψl converges uniformly to ψ on QT for l → 0. Moreover the discrete derivative ∂+ψl

converges uniformly to ∂xψ on QT . Furthermore, observe that for ψ ∈ C∞0 (QT )

∫ T

0

〈
ul(t), ψl(t)

〉
H1

0
dt =

∫ T

0

(
ul(t), ψl(t)

)
L2 dt =

∫ T

0

(
ul(t), ψl(t)

)
L2 dt (3.102)

(cf. (2.53) and (2.27)). We make the following hypotheses for the scale parameters.

l→ 0, n→∞, (S1)

sup
R

∣∣1
2d l

2 −D
∣∣ → 0, (S2)

1
n

sup
R

d→ 0. (S3)
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Theorem 3.2.3 (Law of large numbers). Let u be the solution of the weak PDE problem

(3.69) to the initial value u0. Assume that (S1)–(S3) hold and that ul(0) converges strongly

to u0 in L2(G). Then the particle density ul converges to u in the following sense: For all

ψ ∈ C∞0 (QT ) and ε > 0,

P

[∣∣∣∣
∫ T

0

∫

G
ul ψ dx dt−

∫ T

0

∫

G
uψ dx dt

∣∣∣∣ > ε

]
→ 0.

The proof is based on the following auxiliary result that will be shown below.

Theorem 3.2.4. Assume (S1)–(S3), and denote by vl the solutions of the approximating

problem (3.70) with Dl = 1
2dl

2 to the initial values vl,0 = ul(0). Then

sup
t≤T

E
[
‖ul(t)− vl(t)‖2

H−1

]
→ 0.

Proof of the law of large numbers. Let ψl be the approximating lattice function of an

arbitrary function ψ ∈ C∞0 (QT ) defined above . (Assume that ψ is not identically zero to

avoid trivialities.) Then

P

[∣∣∣∣
∫ T

0

∫

G
ul ψ dx dt−

∫ T

0

∫

G
uψ dx dt

∣∣∣∣ > ε

]

= P

[∣∣∣∣
∫ T

0

∫

G
(ul − vl)ψ dx dt−

∫ T

0

∫

G
(u− vl)ψ dx dt

∣∣∣∣ > ε

]

≤ P

[∣∣∣∣
∫ T

0

∫

G
(ul − vl)ψ dx dt

∣∣∣∣ > ε/2

]
+ P

[∣∣∣∣
∫ T

0

∫

G
(u− vl)ψ dx dt

∣∣∣∣ > ε/2

]
.

(3.103)

The second term in the sum vanishes for l → 0 because vl ⇀ u in L2(0, T ;L2). As for the

first term, observe that

P

[∣∣∣∣
∫ T

0

∫

G
(ul − vl)ψ dx dt

∣∣∣∣ > ε/2

]
≤ P

[∣∣∣∣
∫ T

0

∫

G
(ul − vl)ψl dx dt

∣∣∣∣ > ε/4

]

+ P

[∣∣∣∣
∫ T

0

∫

G
(ul − vl) (ψ − ψl) dx dt

∣∣∣∣ > ε/4

]
.

(3.104)

Again the second term in the sum tends to zero for l → 0, since supl ‖ul − vl‖L1(QT ) ≤ C

because of (3.81), and ‖ψ − ψl‖L∞(QT ) → 0. Let now C > 0 be a constant such that
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‖ψl‖L2(0,T ;H1
0) ≥ C for sufficiently small l. Then

P

[∣∣∣∣
∫ T

0

∫

G
(ul − vl)ψl dx dt

∣∣∣∣ > ε/4

]

= P

[∣∣∣∣
∫ T

0

〈
ul(t)− vl(t), ψl(t)

〉
H1

0
dt

∣∣∣∣ > ε/4

]

≤ P

[( ∫ T

0
‖ul(t)− vl(t)‖2

H−1 dt

)1/2 ( ∫ T

0
‖ψl(t)‖2

H1
0
dt

)1/2

> ε/4

]

≤ P

[( ∫ T

0
‖ul(t)− vl(t)‖2

H−1 dt

)1/2

> ε/(4C)

]

≤ (4C)2

ε2
E

[∫ T

0
‖ul(t)− vl(t)‖2

H−1 dt

]
→ 0.

(3.105)

It remains to prove the auxiliary theorem 3.2.4. The proof is based on the next lemma that

identifies a martingale related to the process ‖ul(t)− vl(t)‖2
H−1 , t ≤ T .

Lemma 3.2.5. The process (Ml(t))t≤T given by

Ml(t) = ‖ul(t)− vl(t)‖2
H−1 − ‖ul(0)− vl(0)‖2

H−1

+ 2
∫ t

0

〈
Al(ul(s))−Al(vl(s)), ul(s)− vl(s)

〉
L2 ds−Rl(t),

(3.106)

where

Rl(t) =
1
n

∫ t

0

(
d(ul(s))ul(s), βl

)
L2 , (3.107)

is a martingale. Here the βl are lattice functions that satisfy

max
z∈Gl

|βl(z)| ≤ C

independent of l.

Proof. Consider for fixed wl ∈ L2 the function g( · , wl) : Sl → R given by

ul 7→ g(ul, wl) = ‖ul − wl‖2
H−1 ,

and recall that

‖ul − wl‖2
H−1 = |||ul − wl|||2H−1 =

(
ul − wl, (−∆l)−1(ul − wl)

)
L2 . (3.108)
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We are going to compute Llg(ul, wl).

Llg(ul, wl) =
∑

z∈G1
l

n
1
2
d(ul(z))u(z)

( ∣∣∣∣∣∣u− 1
nχz + 1

nχ(z+l) − w
∣∣∣∣∣∣2
H−1

− 2 |||u− w|||2H−1 +
∣∣∣∣∣∣u− 1

nχz + 1
nχ(z−l) − w

∣∣∣∣∣∣2
H−1

)

=
∑

z∈G1
l

n
1
2
d(ul(z))u(z)

(
2
n

(
u− w, χ(z−l) − 2χz + χ(z+l)

)
H−1

+
1
n2
‖χ(z−l) − χz‖2

H−1 +
1
n2
‖χ(z+l) − χz‖2

H−1

)
.

(3.109)

We set ũl = (−∆l)−1ul, and w̃l = (−∆l)−1wl. Hence, we get

Llg(ul, wl) =
∑

z∈G1
l

n
1
2
d(ul(z))u(z)

(
2
n
l l2

(
∆lũl(z)−∆lw̃l(z)

)
+

1
n2
β̃l(z)

)
, (3.110)

where

β̃l(z) =
(
χ(z−l) − χz, (−∆l)−1(χ(z−l) − χz)

)
L2

+
(
χ(z+l) − χz, (−∆l)−1(χ(z+l) − χz)

)
L2 .

(3.111)

Note that
∣∣∣β̃l(z)

∣∣∣ ≤ C
(
‖χ(z−l) − χz‖2

L2 + ‖χ(z+l) − χz‖2
L2

)
≤ C l, (3.112)

since the discrete Laplacian, as its continuous analogue, has a bounded inverse. We set

βl = β̃l/(2 l). Finally, we get

Llg(ul, wl) = −2
1
2
l2

(
d(ul)ul, ul − wl

)
L2 +

1
n

(
d(ul)ul, βl

)
L2

= −2 al(ul, ul − wl) +
1
n

(
d(ul)ul, βl

)
L2 .

(3.113)

Consider now for fixed wl ∈ L2 the function h( · , wl) : [0, T ] → R,

t 7→ h(t, wl) = ‖wl − vl(t)‖2
H−1 ,

and observe that

h′(t, wl) = −2
(
v′l(t), wl − vl(t)

)
H−1 = 2 al(vl(t), wl − vl(t)). (3.114)

Let Φ : Sl × [0, T ], (ul, t) 7→ Φ(ul, t) = ‖ul − vl(t)‖2
H−1 . It follows from Dynkin’s formula that

the process (Ml(t))t≤T given by

Ml(t) = Φ(ul(t), t)− Φ(ul(0), 0)−
∫ t

0

(
LlΦ(ul(s), s) + ∂sΦ(ul(s), s)

)
ds

= ‖ul(t)− vl(t)‖2
H−1 − ‖ul(0)− vl(0)‖2

H−1

−
∫ t

0

(
Llg(ul(s), vl(s)) + h′(s, ul(s))

)
ds

(3.115)
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is a martingale. (Here we do not have to worry about Φ being unbounded, since the particle

density process is, for fixed l, bounded by construction.) Substituting the explicit computa-

tions in the equation above yields formula (3.106).

Proof of Theorem 3.2.4. We set d̂ = supR d. By taking expectations in the martingale

formula (3.106) and making use of the monotonicity of Al we get the estimate

E
[
‖ul(t)− vl(t)‖2

H−1

]
≤ ‖ul(0)− vl(0)‖2

H−1 + C E

∫ t

0

d̂

n

(
ul(s), 1

)
L2 ds

≤ ‖ul(0)− vl(0)‖2
H−1 + C

d̂

n
‖ul(0)‖L2 → 0.

(3.116)

Here the second inequality is due to the fact that by construction

0 ≤ (
ul(t), 1

)
L2 ≤

(
ul(0), 1

)
L2 , t ≥ 0.

3.2.2 Gradient-activated diffusion

In the present section we are going to study an example for nonlinear diffusion where the

intensity for a diffusive jump to a neighboring cell increases with the concentration gradient.

That is, the intensity for a jump to the left or right is d(∂+u) or d(−∂−u), respectively. To

save notation we again restrict the discussion to a single-species model in a one-dimensional

reactor represented by an interval G = (0, L). For the function d we again assume that

d(p) = d(−p) for p ∈ R, i.e., the jump intensity changes according to the absolute value of

the concentration gradient. We call this behaviour gradient-activated diffusion.

The macroscopic PDE and its weak formulation

The macroscopic PDE that will be approached in the limit of large particle numbers reads,

in one space dimension,




∂tu− ∂x (D(∂xu) ∂xu) = 0 on QT

u = 0 on ∂G× [0, T ]

u(0) = u0 on G.

(3.117)

In order to discuss existence of a solution, we return here to our standard functional set-

ting, i.e., we look for a function in H1(0, T ;H1
0 (G), L2(G)) that solves an appropriate weak

formulation of (3.117). Again a monotonicity property plays a crucial role.

Lemma 3.2.6. Let the mapping a : H1
0 ×H1

0 → R be given by

a(u, v) =
∫

G
D(∂xu) ∂xu ∂xv dx, u, v ∈ H1

0 , (3.118)

and assume that D satisfies conditions (D1)–(D3) of the previous section. Then the mapping

a( · , · ) induces a (generally nonlinear) operator A : H1
0 → H−1 by

〈
A(u), v

〉
H1

0
= a(u, v), u, v ∈ H1

0 , (3.119)



3.2: Nonlinear diffusion 109

which is bounded, coercive, hemicontinuous and monotone.

Proof. The proof is similar to the proof of Lemma 3.2.1.

The weak formulation of the PDE is obtained in the usual way by multiplying with a test

function and integrating by parts:

d

dt

(
u(t), v

)
L2 + a(u(t), v) = 0 (3.120a)

for all v ∈ H1
0 and a.e. t ∈ (0, T ), and

u(0) = u0 ∈ L2. (3.120b)

By a general theorem on first-order monotone evolution equations (see, e.g., Theorem 30.A

in Zeidler (1990c) or Theorem 1.2 in Chapter 2 of Lions (1969)), the weak problem (3.120)

has a unique solution.

The approximating problem

The approximating problem on the interior lattice points Gh is given by





u′h − ∂−Dh(∂+uh) ∂+uh = 0 on G1
h × (0, T )

uh = 0 on (Gh \ G1
h)× [0, T ]

uh( · , 0) = uh,0 on G1
h.

(3.121)

The functions Dh are supposed to satisfy conditions (D1)–(D3). Moreover, we assume that

supR |Dh −D| → 0 for h→ 0. This is again a finite-dimensional ODE system with continuous

right-hand side, which has a local solution according to the Peano theorem. The existence

of a solution on the entire interval [0, T ] follows from the derivation of the a-priori estimate

(3.127) below. We define the mapping ah : H1
0 ×H1

0 → R by

ah(uh, vh) =
(
Dh(∂+uh) ∂+uh, ∂

+vh

)
L2 , uh, vh ∈ H1

0. (3.122)

Note that ah( · , · ) induces again a bounded monotone operator Ah : H1
0 → H−1 by

〈
Ah(uh), vh

〉
H1

0
= ah(uh, vh), uh, vh ∈ H1

0. (3.123)

A solution of (3.121) can be regarded as a function in C1([0, T ],H1
0) that solves the discrete

weak problem

d

dt

(
uh(t), vh

)
L2 + ah(uh(t), vh) = 0 (3.124)

for all vh ∈ H1
0 and t ∈ (0, T ).
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The mesoscopic stochastic particle model

We work in the same setting as for the linear example model, i.e., the state space Sl of

the particle density process (ul(t))t≥0 is the subset of functions in L2(Gl) taking values in
1
nN0. Moreover, we assume that ul(0) is non-random and that ul satisfies Dirichlet boundary

conditions, i.e., ul(z, · ) ≡ 0 for z ∈ Gl \ G1
l . The possible transitions are the following.

I A particle may leave cell z ∈ G1
l and jump to z ± l.

ql
(
ul, ul − 1

nχz + 1
nχ(z+l)

)
= nd(∂+ul(z))ul(z),

ql
(
ul, ul − 1

nχz + 1
nχ(z−l)

)
= nd(−∂−ul(z))ul(z),

(3.125)

where it is assumed that l2 d : R→ R+
0 satisfies conditions (D1)–(D3) from the previous

section.

The existence of a particle density process (ul(t))t≥0 with state space Sl and generator

Llg(ul) =
∑

ũl 6=ul

ql(ul, ũl)
(
g(ũl)− g(ul)

)
, g ∈ Ĉ(Sl), (3.126)

follows from Theorem 3.1 in Chapter 8 of Ethier & Kurtz (1986).

Law of large numbers

Here, as usual, we first show strong convergence of the solutions of the approximating problem

(3.121) in L2(0, T ;L2).

Theorem 3.2.7. Let u be the solution of the weak PDE problem (3.120) to the initial value

u0. Let (uh), h % 0, be a sequence of solutions of the approximating problem (3.124) to the

initial values uh,0, and assume that uh,0 converges strongly to u0 in L2. Then Jhuh converges

weakly to Ju in L2(0, T ;X), and uh converges strongly to u in L2(0, T ;L2).

Proof. 1. As usual, the a-priori estimates

sup
h

max
0≤t≤T

‖uh‖L2 <∞, (3.127)

sup
h
‖uh‖L2(0,T ;H1

0) <∞, (3.128)

sup
h
‖u′h‖L2(0,T ;H−1) <∞, (3.129)

follow immediately from the weak formulation of the approximating problem by inserting

uh(t) for vh and integrating over time. Thus, we can conclude that there is a subsequence

(still denoted by (uh)) such that Jhuh ⇀ Ju for a u ∈ L2(0, T ;H1
0 ) andDh(∂+uh) ∂+uh ⇀ ξ in

L2(0, T ;L2). Moreover, by passing to a further subsequence if necessary, we have uh(T ) ⇀ η

in L2.
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2. We are going to prove that the limit u satisfies

u′ + ξ = 0, u(0) = u0, u(T ) = η, (3.130)

in the space H1(0, T ;H1
0 , L

2). To this end, consider arbitrary functions v ∈ H1
0 , ϕ ∈ C1[0, T ],

and set vh = Rhv. From the discrete weak formulation it follows that
(
uh(T ), ϕ(T )vh

)
L2 −

(
uh(0), ϕ(0)vh

)
L2

=
∫ T

0

(〈
u′h(t), ϕ(t)vh

〉
H1

0
+

〈
ϕ′(t)vh, uh(t)

〉
H1

0

)
dt

(3.131)

by integration by parts. Passing to the limit in all terms yields
(
η, v

)
L2 ϕ(T )− (

u0, v
)
L2 ϕ(0)

=
∫ T

0

〈
u(t), v

〉
H1

0
ϕ′(t) dt−

∫ T

0

〈
ξ(t), v

〉
H1

0
ϕ(t) dt.

(3.132)

Hence, by taking ϕ ∈ C∞0 (0, T ), we deduce that u is indeed in the space H1(0, T ;H1
0 , L

2) and

has the time derivative u′ = −ξ. It follows from the integration by parts formula for functions

in H1(0, T ;H1
0 , L

2) by choosing a ϕ with ϕ(T ) = 1 and ϕ(0) = 0, respectively ϕ(T ) = 0 and

ϕ(0) = 1, that u(T ) = η and u(0) = u0.

3. It remains to show that A(u) = ξ. This would follow from the hemicontinuity of A with

the Minty trick if we were able to prove that
∫ T

0

〈
ξ(t)−A(v(t)), u(t)− v(t)

〉
H1

0
dt ≥ 0 for all v ∈ L2(0, T ;H1

0 ). (3.133)

It is again sufficient to show the estimate (3.133) for functions of the form v ϕ, where v ∈ H1
0

and ϕ ∈ C1[0, T ], because linear combinations of such functions are dense. Let therefore

vh(t) = Rhv ϕ(t) and consider the non-negative expression

Xh =
∫ T

0

(
Dh(∂+uh(t)) ∂+uh(t)−Dh(∂+vh(t)) ∂+vh(t), ∂+uh(t)− ∂+vh(t)

)
L2 dt. (3.134)

From the weak form of the approximating problem we get
∫ T

0

(
Dh(∂+uh(t)) ∂+uh(t), ∂+uh(t)

)
L2 dt =

1
2
‖uh(0)‖2

L2 − 1
2
‖uh(T )‖2

L2 . (3.135)

Hence,

Xh =
1
2
‖uh(0)‖2

L2 − 1
2
‖uh(T )‖2

L2 −
∫ T

0

(
Dh(∂+uh(t)) ∂+uh(t), ∂+vh(t)

)
L2
dt

−
∫ T

0

(
Dh(∂+vh(t)) ∂+vh(t), ∂+uh(t)− ∂+vh(t)

)
L2
dt.

(3.136)

By taking limits superior we get

limXh =
1
2
‖u0‖2

L2 − 1
2

lim ‖uh(T )‖2
L2 −

∫ T

0

(
ξ(t), ∂xv(t)

)
L2 dt

−
∫ T

0

(
D(∂xv(t)) ∂xv(t), ∂xu(t)− ∂xv(t)

)
L2
.

(3.137)
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Note that

lim ‖uh(T )‖L2 = lim ‖uh(T )‖L2 ≥ ‖η‖L2 = ‖u(T )‖L2 . (3.138)

Therefore

limXh ≤ 1
2
‖u0‖2

L2 − 1
2
‖u(T ))‖2

L2 −
∫ T

0

(
ξ(t), ∂xv(t)

)
L2 dt

−
∫ T

0

(
D(∂xv(t)) ∂xv(t), ∂xu(t)− ∂xv(t)

)
L2 .

(3.139)

Since

1
2
‖u(T ))‖2

L2 − 1
2
‖u0‖2

L2 =
∫ T

0

(
ξ(t), u(t)

)
L2 dt (3.140)

by integration by parts, inequality (3.133) follows.

4. By possibly passing to a further subsequence we may assume that uh converges even

strongly to u in L2(0, T ;L2) due to the compactness theorem 2.3.4. Convergence of the

whole sequence follows from the uniqueness of the limit u.

Let from now on vl be the solution of the approximating problem (3.117) and ul the particle

density. We assume the following scaling relations:

l→ 0, n→∞, (S1)

sup
R

∣∣l2 d−D
∣∣ → 0, (S2)

1
n

sup
R
d→ 0. (S3)

Theorem 3.2.8 (Law of large numbers). Let u be the solution of the weak PDE problem

(3.120) to the initial value u0. Assume that (S1)–(S3) hold and that ul(0) converges strongly

to u0 in L2. Then

E
[
‖ul − u‖2

L2(0,T ;L2)

]
= E

[
‖ul − u‖2

L2(QT )

]
→ 0.

In view of Theorem 3.2.7, the law of large numbers follows immediately from the next auxiliary

result.

Theorem 3.2.9. Assume (S1)–(S3), and denote by vl the solutions of the approximating

problem (3.121) with Dl = l2 d to the initial values vl,0 = ul(0). Then

sup
t≤T

E
[
‖ul(t)− vl(t)‖2

L2

]
→ 0.

The next lemma identifies a martingale related to the process ‖ul(t)− vl(t)‖2
L2 , t ≤ T .
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Lemma 3.2.10. The process (Ml(t))t≤T given by

Ml(t) = ‖ul(t)− vl(t)‖2
L2 − ‖ul(0)− vl(0)‖2

L2

+
∫ t

0

〈
Al(ul(s))−Al(vl(s)), ul(s)− vl(s)

〉
H1

0
ds−Rl(t),

(3.141)

where

Rl(t) =
1
n

∫ t

0

(
(d(∂+ul(s)) + d(∂−ul(s)))ul(s), 1

)
L2 ds, (3.142)

is a martingale.

Proof. Consider for fixed wl ∈ H1
0 the function g( · , wl) : Sl → R given by

ul 7→ g(ul, wl) = ‖ul − wl‖2
L2 .

We compute Llg(ul, wl).

Llg(ul, wl) =
∑

z∈G1
l

nd(∂+ul(z))ul(z)
(
‖ul − 1

nχz + 1
nχ(z+l) − wl‖2

L2 − ‖ul − wl‖2
L2

)

+
∑

z∈G1
l

nd(−∂−ul(z))ul(z)
(
‖ul − 1

nχz + 1
nχ(z−l) − wl‖2

L2 − ‖ul − wl‖2
L2

)

=
∑

z∈G1
l

nd(∂+ul(z))ul(z)
(

2
n

(
ul − wl, χ(z+l) − χz

)
L2 +

1
n2
‖χ(z+l) − χz‖2

L2

)

+
∑

z∈G1
l

nd(−∂+ul(z − l))ul(z)×

×
(

2
n

(
ul − wl, χ(z−l) − χz

)
L2 +

1
n2
‖χ(z−l) − χz‖2

L2

)

=
∑

z∈G1
l

nd(∂+ul(z)) 2
l

n

(
ul(z + l)− wl(z + l)− (

ul(z)− wl(z)
))

+
∑

z∈G1
l

nd(−∂+ul(z − l))ul(z)×

× 2
l

n

(
ul(z − l)− wl(z − l)− (

ul(z)− wl(z)
))

+
∑

z∈G1
l

nul(z)
(
d(∂+ul(z)) + d(−∂+ul(z − l))

)
2
l

n2
.

(3.143)
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By introducing discrete derivatives and making use of assumption (D2) it follows that

Llg(ul, wl) = 2
∑

z∈G1
l

l2 d(∂+ul(z))ul(z)
(
∂+ul(z)− ∂+wl(z)

)

− 2
∑

z∈G1
l

l2 d(∂+ul(z − l))ul(z)
(
∂+ul(z − l)− ∂+wl(z − l)

)

+ 2
∑

z∈G1
l

l

n
ul(z)

(
d(∂+ul(z)) + d(∂−ul(z))

)

= 2 l
∑

z∈G1
l

ul(z) ∂−
(
l2d(∂+ul)(∂+ul − ∂+wl)

)
(z)

+ 2
∑

z∈G1
l

l

n
ul(z)

(
d(∂+ul(z)) + d(∂−ul(z))

)

(3.144)

Hence, by a discrete integration by parts,

Llg(ul, wl) = −2
(
l2 d(∂+ul) ∂+ul, ∂

+ul − ∂+wl

)
L2

+
2
n

((
d(∂+ul) + d(∂−ul)

)
ul, 1

)
L2

= −2 al(ul, ul − wl) +
2
n

(
(d(∂+ul) + d(∂−ul))ul, 1

)
L2 .

(3.145)

We now consider for arbitrary but fixed wl ∈ H1
0 the function h( · , wl) : [0, T ] → R,

t 7→ h(t, wl) = ‖wl − vl(t)‖2
L2 . (3.146)

Note that

h′(t, wl) = −2
(
v′l(t), wl − vl(t)

)
L2 = 2 al(vl(t), wl − vl(t)). (3.147)

Let Φ : Sl × [0, T ] → R be given by (ul, t) 7→ Φ(ul, t) = ‖ul(t) − vl(t)‖2
L2 , and recall that

the process (ul(t)) is (for fixed l) bounded by construction. Thus it follows from Dynkin’s

formula that the process

Ml(t) = Φ(ul(t), t)− Φ(ul(0), 0)−
∫ t

0

(
LlΦ(ul(s), s) + ∂sΦ(ul(s), s)

)
ds

= ‖ul(t)− vl(t)‖2
L2 − ‖ul(0)− vl(0)‖2

L2

−
∫ t

0

(
Llg(ul(s), vl(s)) + h′(s, ul(s))

)
ds,

(3.148)

t ≤ T , is a martingale. Substituting the explicit computations above yields Eq. (3.141).

Proof of Theorem 3.2.9. By taking expectations in Eq. (3.141) and making use of the

monotonicity of Al we get the estimate

E
[
‖ul(t)− vl(t)‖L2

]
≤ ‖ul(0)− vl(0)‖L2 + 2E

∫ t

0

d̂

n

(
ul(s), 1

)
L2 ds

≤ ‖ul(0)− vl(0)‖L2 + C
d̂

n
‖ul(0)‖L2 ,

(3.149)

where d̂ = supR d. In view of the hypotheses we can conclude that the right hand side tends

to zero, which finishes the proof.
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3.3 A refined law of large numbers

In this section we discuss how some of the laws of large numbers obtained so far may (in a

certain sense) be refined. However, we restrict the discussion to the linear example model

(cf. Section 2.3). We first show stronger convergence of the solutions uh of the approximating

problem (2.54).

Theorem 3.3.1. We make the same hypotheses as in Theorem 2.3.2. If, in addition, u0 ∈
H1

0 , and ∂+uh,0 → ∂xu0 strongly in L2, then the solutions uh of the approximating problem

(2.58) converge strongly to the solution u of the weak problem (2.40) in C([0, T ], L2). That

is,

sup
0≤t≤T

‖uh(t)− u(t)‖L2 → 0 (h→ 0).

Proof. We multiply the discretised PDE (2.54) by u′h(z, t) and sum over z, which yields,

after a discrete integration by parts,

‖u′h(t)‖2
L2 +

1
2
d

dt
‖∂+uh(z, t)‖2

L2 =
(
f(uh(t)), u′h(t)

)
L2

≤ 1
2ε
‖f(uh(t))‖2

L2 + 2ε ‖u′h(t)‖2
L2 .

(3.150)

We choose ε = 1/4 and make use of the linearity of f to get the estimate

1
2
‖u′h(t)‖2

L2 +
1
2
d

dt
‖∂+uh(z, t)‖2

L2 ≤ C ‖uh(t)‖2
L2 . (3.151)

By recalling the a-priori estimate (2.72), we have

d

dt
‖∂+u(z, t)‖2

L2 ≤ C max
0≤t≤T

‖uh(t)‖2
L2 ≤ C, (3.152)

where the constant C is independent of h. Thus it follows from the discrete Poincaré inequal-

ity that the solutions uh constitute an equicontinuous family of functions in C([0, T ], L2).

Moreover,

sup
h

max
0≤t≤T

‖uh(t)‖H1
0
≤ C . (3.153)

Because of the compactness theorem 2.3.3 there is, for each t ∈ [0, T ], a subsequence of

(uh(t)) that converges strongly in L2. Hence, we can apply an appropriate version of the

Arzéla-Ascoli theorem (see, e.g., Zeidler (1990a)) from which the claim follows.

Denote from now on the solutions of the approximating problem by vl and the stochastic

particle density by ul.

Theorem 3.3.2 (Refined law of large numbers). We make the same assumptions as in

Theorem 2.3.6. If, in addition, u0 ∈ H1
0 , and ∂+ul(0) → ∂xu0 strongly in L2, then ul
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converges to the solution u of the weak PDE problem (2.40) to the initial value u0 in the

following sense:

P

[
sup
t≤T

‖ul(t)− u(t)‖L2 > ε

]
→ 0 for all ε > 0.

Proof. Recall that the process

Ml(t) = ‖ul(t)− vl(t)‖2
L2 − ‖ul(0)− vl(0)‖2

L2

+ 2
∫ t

0
al

(
ul(s)− vl(s), ul(s)− vl(s)

)
ds

− 2
∫ t

0

(
f(ul(s))− f(vl(s)), ul(s)− vl(s)

)
L2 ds−Rl(t),

t ≤ T , where

Rl(t) =
1
n

∫ t

0

(
2d

(
ul(s), 1

)
L2 +

(
k1ul(s), 1

)
L2 +

(
k2ul(s), 1

)
L2

)
ds,

is a local martingale (cf. Lemma 2.3.8). From the monotonicity of the bilinear form al( · , · )
we deduce that

Xl(t) = ‖ul(t)− vl(t)‖2
L2 − 2

∫ t

0

(
f(ul(s))− f(vl(s)), ul(s)− vl(s)

)
L2 ds−Rl(t), (3.154)

t ≤ T , is a (local) supermartingale. We denote the two latter terms on the right by Yl(t) and

Zl(t). By stopping at τp and letting p→∞, it follows from a well-known maximal inequality

(see, e.g., Kallenberg (2002), Chapter 7) that, for arbitrary ε > 0,

ε P

[
sup
t≤T

|Xl(t)| > ε

]
≤ 3 sup

t≤T
E

[
|Xl(t)|

]
. (3.155)

With the aid of Theorem 2.3.7 we can conclude that supt≤T E
[
|Xl(T )|

]
→ 0. Moreover,

P

[
sup
t≤T

|Xl(t)| > ε

]
≥

P

[
sup
t≤T

|Yl(t)| < ε/2, sup
t≤T

|Zl(t)| < ε/2, sup
t≤T

‖ul(t)− vl(t)‖2
L2 > 2ε

]
.

(3.156)

Therefore

P

[
sup
t≤T

|Xl(t)| > ε

]
≥ P

[
sup
t≤T

‖ul(t)− vl(t)‖2
L2 > 2ε

]

− P

[
sup
t≤T

|Yl(t)| ≥ ε/2
]
− P

[
sup
t≤T

|Zl(t)| ≥ ε/2
]
.

(3.157)

It follows again from Theorem 2.3.7 that each of the two latter terms converges to zero, which

finishes the proof.
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Discussion

In this chapter we have seen how the ideas introduced in Chapter 2 can be extended to treat

certain nonlinear particle models. Moreover, we have indicated for the example model how the

laws of large numbers may be refined. (Note, however, that Theorem 3.3.1 does not contain

Theorem 2.3.6.) Again we have to postulate scaling relations that are the same or similar to

those used in the previous chapter. If the jump intensities depend on the local concentration

(d = d(u)) we get the same limit equation as in the context of scaling limits for the zero-range

process (see, e.g., Kipnis & Landim (1999)). There the limit is obtained by rescaling space

and time variables. Nonconstant diffusion coefficients play a role in the modelling of self-

organisation of microorganisms (Ben-Jacob et al., 2000) and surface reactions (Naumovets,

2005).

In the present chapter and the previous one we have always imposed homogeneous Dirich-

let boundary conditions, but other boundary conditions can probably be handled with similar

techniques. However, we have not carried out the proofs. Although we were able to treat

quite general classes of reaction-diffusion systems, the cases considered in the present work

are by no means exhaustive. The same or similar techniques may perhaps be applied to

models that include convection, cross-diffusion of different species, or ‘freezing’ of particles

(Stefan problems).
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Chapter 4

Stochastic simulations

Overview

In this chapter we turn to the more practical question of simulating paths of the particle

density processes (the rescaled versions of the mesoscopic stochastic particle model, cf. Section

2.1.2) for the models discussed in the previous chapters. The discussion applies, in particular,

to the particle density process associated to the model for CO oxidation on Pt(110) presented

in Section 1.3. In the absence of drift terms it is, in principle, possible to perform ‘exact’

simulations in the sense that the probability distribution of the simulated paths is exactly

the same as for the paths of the original process. The simulation method is, however, very

time-consuming and thus often not applicable in practice. In the next section we therefore

introduce an algorithm for the approximate simulation of the paths of the particle density

processes. In Section 4.2 we use this algorithm for the simulation of raindrop patterns (cf.

Figs. 1.8 and 1.9) with the mesoscopic stochastic particle model for CO oxidation on Pt(110)

from Section 1.3.

4.1 The simulation algorithm

We present here a simple algorithm for the approximate simulation of the density processes

associated to mesoscopic stochastic particle models of the kind introduced in Chapters 2 and

3. The simulation method we propose is not exact, but the simulated approximating process

converges in distribution to the original one if the time step h tends to zero. Exact simulation

of spatial models does not seem feasible at the present stage, since the well-known ‘direct

method’ (Gillespie, 1977) is far too slow, and the faster ‘next reaction method’ (Gibson &

Bruck, 2000) needs too much memory. Therefore we have to resort to an approximate method.

A spatially homogeneous variant of the algorithm given below has been described in Gillespie

(2001) as the ‘τ -leap method’.
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A basic algorithm without temperature variable

Generally, if we neglect temperature effects, the density process (ul(t)) jumps from a state

ul = (ul,1, . . . , ul,ns) to another state ũl in its state space Sl =
∏|Gl|

k=1
1
nN

ns
0 with a certain

intensity ql(ul, ũl). Here n denotes the number of sites per cell, Gl is the set of midpoints of

the cells with edge length l, and |Gl| is the number of cells. In the isothermal case such jumps

are the only possible transitions; the process (ul(t)) is a pure jump process. In this chapter

we henceforth skip the subscript l, since we are only interested in simulating paths of (ul(t))

for fixed l. The transition intensities q(u, ũ) are non-zero only for a certain finite number of

ũ of the form ũ = u + δ, where δ is taken from a finite set T .

Although it is, in principle, possible to simulate the paths of the process (u(t)) directly,

the complexity of the spatial models forces us to use an approximate simulation method. We

shall simulate paths of an approximating process (uh(t)), where the parameter h > 0 is the

size of a time step. The process (uh(t)) is an approximation of (u(t)) in so far as it converges

in distribution to (u(t)) for h % 0.

Let Yδ, δ ∈ T , be mutually independent standard Poisson processes. We define iteratively

the process in discrete time (uh(k))k∈N0 as follows.

(0) Let uh(0) = u(0). (We assume that u(0) is deterministic.)

(1) Next, set for each δ ∈ T

τδ(0) =




q(uh(0),uh(0) + δ)h if uh(0) + δ ∈ S
0 otherwise,

(4.1)

and let

Nδ(0) = Yδ(τδ(0)). (4.2)

Then we compute uh(1) as

uh(1) =
(

uh(0) +
∑

δ∈T
δNδ(0)

)
∨ 0. (4.3)

Here, for w ∈ S, w ∨ 0 is the state w̃ ∈ S with w̃j(z) = max(wj(z), 0), z ∈ G, j =

1, . . . , ns. (Recall that ns is the number of species.) This is necessary to avoid unphysical

concentrations.

(2) For the second time step we define for each δ ∈ T

τδ(1) =




q(uh(1),uh(1) + δ)h if uh(1) + δ ∈ S
0 otherwise.

(4.4)
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Furthermore, let ϑ(s) be the time shift by s, i.e., ϑ(s)Yδ( · ) = Yδ(s+ · ). We set

Nδ(1) = ϑ(τδ(0))Yδ(τδ(1))− ϑ(τδ(0))Yδ(0) (4.5)

and compute uh(2) as

uh(2) =
(

uh(1) +
∑

δ∈T
δNδ(1)

)
∨ 0. (4.6)

(k) For the general time step from k to k + 1 we define for each δ ∈ T

τδ(k) =




q(uh(k),uh(k) + δ)h if uh(k) + δ ∈ S
0 otherwise

(4.7)

and set

Nδ(k) = ϑ(τδ(k − 1))ϑ(τδ(k − 2)) · · · ϑ(τδ(0))Yδ(τδ(k))

− ϑ(τδ(k − 1))ϑ(τδ(k − 2)) · · · ϑ(τδ(0))Yδ(0).

We again compute uh(k + 1) as

uh(k + 1) =
(

uh(k) +
∑

δ∈T
δNδ(k)

)
∨ 0. (4.8)

The algorithm introduced above obviously defines a Markov chain (uh(k))k∈N0 in discrete

time in the same state space as the density process (u(t)). In order to simulate its paths, we

have to produce at each time step samples of the random variables Nδ(k), δ ∈ T . Clearly,

conditional on uh(k), the Nδ(k) are independent and distributed according to a Poisson law

with parameter τδ(k).

Consider now the process
(
uh([t/h])

)
as approximation of the particle density process

(u(t)). (Here [x] denotes the largest integer smaller than or equal to x.) As the size of the

time step h converges to 0, the process
(
uh([t/h])

)
converges in distribution to the original

particle density process (u(t)). This follows from a convergence theorem in Kallenberg (2002)

(Theorem 19.28), for instance, and the properties of the Poisson process. Loosely speaking,

one has to show that the generator of the approximating process converges for h % 0 to the

generator of the original one which is given by

Lg(u) =
∑

δ∈T :
u+δ∈S

q(u,u + δ)
(
g(u + δ)− g(u)

)
. (4.9)

An algorithm including temperature effects

The basic algorithm of the previous paragraph can easily be adapted for the simulation of the

stochastic model from Section 1.3 including temperature variables θ(z, t). Let (u(t), θ(t)) be
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a Markov jump process with inter-jump drift in the state space Sl =
∏|Gl|

k=1

(
1
nN

ns
0 × R

)
with

generator of the same form as in Section 1.3. Here Gl denotes the set of midpoints of the cells

of width l. We shall again skip the subscript l, since we are interested only in simulating the

process corresponding to a certain fixed l. As before, for each state (u, θ) ∈ S there is only a

finite number of other states
(
ũ, θ̃

)
=

(
u + δ, θ+ ε

)
that are reachable through a jump, i.e.,

(δ, ε) ranges over a finite set T .

We define again auxiliary Poisson processes Y(δ,ε) on some probability space. Let bz(u, θ)

be the rate at which the temperature changes ‘deterministically’ in cell z if the system is in

the state (u, θ). The approximating process is then constructed as follows.

(0) First, let (uh(0), θh(0)) = (u(0), θ(0)). (We assume that (u(0), θ(0)) is deterministic.)

(1) Next, set for each (δ, ε) ∈ T

τ(δ,ε)(0) =




q
(
(uh(0), θh(0)), (uh(0) + δ, θh(0) + ε)

)
h if (uh(0) + δ, θh(0) + ε) ∈ S

0 otherwise,

(4.10)

and let

N(δ,ε)(0) = Y(δ,ε)(τ(δ,ε)(0)). (4.11)

We set

uh(1) =
(

uh(0) +
∑

(δ,ε)∈T
δN(δ,ε)(0)

)
∨ 0,

θh(z, 1) = θh(z, 0) +
∑

(δ,ε)∈T
ε(z)N(δ,ε)(0) + bz(uh(0), θh(0))h, z ∈ G.

(4.12)

(k) For the general time step from k to k + 1 we define

τ(δ,ε)(k) =




q
(
(uh(k), θh(k)), (uh(k) + δ, θh(k) + ε)

)
h if (uh(k) + δ, θh(k) + ε) ∈ S

0 otherwise,

(4.13)

and we set

N(δ,ε)(k) = ϑ(τ(δ,ε)(k − 1))ϑ(τ(δ,ε)(k − 2)) · · · ϑ(τ(δ,ε)(0))Y(δ,ε)(τ(δ,ε)(k))

− ϑ(τ(δ,ε)(k − 1))ϑ(τ(δ,ε)(k − 2)) · · · ϑ(τ(δ,ε)(0))Y(δ,ε)(0).
(4.14)

Finally,

uh(k + 1) =
(

uh(k) +
∑

(δ,ε)∈T
δN(δ,ε)(k)

)
∨ 0,

θh(z, k + 1) = θh(z, k) +
∑

(δ,ε)∈T
ε(z)N(δ,ε)(k) + bz(uh(k), θh(k))h, z ∈ G.

(4.15)
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The process (uh(k), θh(k))k∈N0 constructed in this way is still a discrete time Markov chain.

In order to simulate its paths, we have to produce at each time step samples of the ran-

dom variables N(δ,ε)(k) and compute the drift velocities bz(uh(k), θh(k)). Conditional on

(uh(k), θh(k)), the N(δ,ε)(k) are again independent and distributed according to a Poisson

law with parameter τ(δ,ε)(k).

The approximating process in continuous time corresponding to (uh(k), θh(k)) is(
uh([t/h]), θh([t/h])

)
t≥0

. Under suitable hypothesis on q( · , · ) and bz it should not be too

difficult to show convergence in distribution of the approximating process to the original one

for h % 0. However, we shall not attempt to give a precise proof.

Implementation

The two algorithms introduced above can conveniently be implemented in the C++ program-

ming language if a physical cell is represented by an appropriate cell class object. (To get

a copy of the code spatCat write an e-mail to the author.) For the simulation of Poisson

random variables we have used the algorithm proposed in Press et al. (1992).

4.2 Simulation of raindrop patterns

Here the stochastic model for CO oxidation on Pt(110) from Section 1.3 is employed to

simulate the raindrop patterns described in Section 1.1.3 (cf. Figs. 1.8 and 1.9). Since the

simulated patch of Pt(110) surface is relatively small, heat diffusion is assumed infinitely

fast. At low pressures the model behaves practically isothermally and follows the deter-

ministic path very closely. In particular, no spontaneous nucleation in bistable or excitable

parameter regions is observed. At intermediate pressures, however, significant fluctuations

become visible (with n = 103 adsorption sites per cell, transition rate d of CO molecules

from cell to cell corresponding to Du = 1.4× 10−14 m2/s) and critical nuclei do form spon-

taneously. A computer simulation for oxygen partial pressure pv = 10−2 mbar of nucleation,

pulse formation and subsequent propagation failure is reproduced in Fig. 4.2. A correspond-

ing simulation with the PDE system (1.18a)–(1.18d) is depicted in Fig. 4.1. In order to

match the time scale of the experiments, we had to increase the pre-exponential factors

for desorption, reaction and structural phase transition by two orders of magnitude. That

is, the simulations were performed with parameters ν2 = 5× 1017 s−1, ν3 = 5× 109 s−1,

ν5 = 105 s−1 and ν6 = 2× 104 s−1 (cf. Tables 1.2, 1.3 and 1.4). This can be rationalised by

taking into account that at higher pressures interactions between adparticles become more

important due to increased overall coverages. Nevertheless, the situation is not satisfactory

and careful parameter estimation experiments would be highly desirable. Another slight flaw

of the simulations is that, in order to limit computation time, CO diffusion was chosen about

one to two orders of magnitude too slow. Consequently, the simulated raindrops are about
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Figure 4.1: Simulation of pulse propagation performed with the thermo-kinetic model equa-

tions (1.18a)–(1.18d) in one space dimension with no-flux boundary conditions. A CO

nucleus was put in the initial conditions on a reactive surface. (a) For γ = 103 s−1

pulses form and propagate, but finally die due to rising temperature. (b) For γ = 10 s−1

pulses can still be formed but die quickly. The parameters are pu = 5.0× 10−3 mbar,

pv = 1.55× 10−2 mbar, Du = 10−12 m2/s, and T̄ = 520 K. In the depicted simulations

heat conduction was chosen unrealistically slow, in order to visualise where heat produc-

tion takes place. The effect of nucleation and propagation failure, however, persists even

with realistic heat diffusion.

on order of magnitude smaller than those observed experimentally.

The role of thermal effects can be analysed using γ as bifurcation parameter (cf. Eq.

(1.18d)), since for large γ and not too high reaction rates the system would remain isothermal.

Thermokinetic effects are a consequence of the asymmetric inhibition of adsorption and the

strong temperature dependence of CO desorption. A reactive surface with relatively high

oxygen coverage exhibits a high reaction rate and therefore becomes hot, whereas a high

CO coverage keeps the catalyst cool. Since, in turn, a lower temperature favours a high CO

coverage through reduced desorption, the effect is autocatalytic.

A partial bifurcation analysis of the thermo-kinetic model without CO diffusion is repro-

duced in Fig. 4.3. For large γ and pu close to the Hopf bifurcation CO pulses propagate on

the O-covered surface for relatively long times. With decreasing γ this bifurcation shifts to

slightly higher pu, which moves the O-covered branch away from the region of excitability such

that the pulses shrink faster (see Fig. 4.1). From a physical point of view this can be readily

explained by temperature effects due to changes in the reaction rate. The rate drops sharply
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Figure 4.2: Two-dimensional stochastic simulation of raindrop patterns on a reactive Pt(110)

surface using the stochastic model with periodic boundary conditions and thermo-kinetic

effects included (cf. Fig. 4.1a). Spontaneous nucleation of a CO pulse occurs due to cover-

age fluctuations. The simulation was performed with 200× 200 cells, n = 103 adsorption

sites per cell, and pu = 5.22× 10−3 mbar, pv = 1.55× 10−2 mbar, CO diffusion corre-

sponding to Du = 1.4× 10−14 m2/s, T̄ = 520 K, γ = 103 s−1.

on predominantly CO-covered areas because oxygen adsorption is blocked there. Behind the

CO pulses, however, the reconstruction has been lifted and the reaction rate increases to

values even higher than on the original O-covered 1×2 surface because of the higher sticking

coefficient of oxygen on the 1 × 1 surface. Consequently, the temperature locally rises to

values even higher than at the beginning. Since heat conduction is fast, the CO pulses are

overrun from the inside (because a hotter surface cannot maintain a high CO coverage due

to increased desorption). In contrast, for slightly higher CO pressure (pu ' 5.5× 10−3 mbar)

the whole surface ends up in the CO-covered (cooler) state.

The rate at which critical nuclei are formed on an ideal surface can heuristically be

estimated from the theory of large-deviations (see, e.g., (Durrett, 1996)). We assume that in

an equilibrium situation the sites in a patch of critical size ncr are CO-covered independently

with probability ū, where ū is the deterministic equilibrium CO coverage. We speak of a

critical nucleus if the CO coverage in the patch is greater than a critical coverage u∗. For

given ū, u∗ and ncr we can calculate an approximate value for the probability that the

coverage is greater than or equal to u∗, assuming that ncr is not too small. This probability

can be interpreted as the fraction of time the patch has CO coverage u ≥ u∗. It is given by
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Figure 4.3: (a) Continuation of equilibrium CO coverage ū in pu for the thermo-kinetic model,

γ = 103 s−1. There is a Hopf bifurcation point (h) between two saddle-node bifurcation

points (sn). (b) Continuation of Hopf and sn bifurcations in pu and γ.

the expression
((
ū/u∗

)u∗((1− ū)/(1− u∗)
)1−u∗

)ncr

. (4.16)

The values of ū and u∗ can be taken from the null-clines of the deterministic model. The rate

of nucleation events can then be estimated by multiplying expression (4.16) with the density

of adsorption sites and dividing by the characteristic time scale τ (the time required for the

impingement of one monolayer, cf. Section 1.3). The resulting function is obviously very

sensitive to ncr, but it also depends crucially on the excitation threshold u∗ − ū. Reasonable

values of 1 – 100 mm2−1 s−1 (Rotermund, 1997b) are obtained with ncr = 3000− 4000, u∗ =

0.41 and 0.33 < ū < 0.35. Increasing ncr by one order of magnitude (which would correspond

to a pressure decrease by one order) results in values indistinguishable from zero.

Discussion

Spatio-temporal pattern formation in CO oxidation on Pt has been studied experimentally

over a wide range of parameters. The observed phenomena mostly appear deterministic,

except for very small catalyst areas or at sufficiently high pressure where also temperature

variations become observable. Stochastic effects at intermediate pressures such as random

nucleation can be reproduced in simulations with a mesoscopic stochastic particle model.

Obviously, surface inhomogeneities always play a role on real catalysts. Nevertheless, the

experimental observations and their close correspondence to a realistic model clearly suggest

that at least a significant fraction of the observed nuclei form uniformly distributed over the

surface. The presented effect therefore constitutes the first example of mesoscopic pattern

formation (1 – 100 µm) in a surface reaction that is initiated by internal fluctuations and

cannot be captured in a deterministic description.
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Hale, J. & Koçak, H. (1991), Dynamics and Bifurcations, Springer, New York.

Hayes, R. E. & Kolaczkowski, S. T. (1997), Introduction to catalytic combustion, Gordon &

Breach, Amsterdam.

Hopkinson, A., Bradley, J., Guo, X.-C. & King, D. A. (1993), ‘Nonlinear Island Growth

Dynamics in Adsorbate-Induced Restructuring of Quasihexagonal Reconstructed Pt(100)

by CO,’ Physical Review Letters, vol. 71(10), pp. 1597–1600.
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‘[...] before her was another long passage, and the White Rabbit was still in sight,

hurrying down it. There was not a moment to be lost: away went Alice like the

wind, and was just in time to hear it say, as it turned a corner, “Oh my ears

and whiskers, how late it’s getting!” She was close behind it when she turned the

corner, but the Rabbit was no longer to be seen [...]’

Lewis Carroll
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First of all I thank Prof. Willi Jäger for his willingness to supervise such a truly interdisci-

plinary research project, for his confidence, and for his constant support.

I thank my co-operation partners Dr. Jens Starke, who has now left to DTU in Copen-

hagen, and Dr. Markus Eiswirth from the Fritz-Haber-Institut in Berlin for many fruitful

discussions about modelling CO oxidation on Pt. A special thanks goes to Markus for host-

ing Jens and me in his office at home (full board) during a one-week stay at Fritz-Haber in

June 2002.

Furthermore, I am indebted to Dr. Karl Oelschläger and Dr. Mariya Ptashnyk, who
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