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Abstract

We consider dynamic motions of two elastic systems undergoing frictional slip. The first one is the classical model of the
frictional slider loaded through an elastic spring. The second one is an infinite elastic slab bounded by two planes which is in
contract with a rigid body and submitted to shearing. Slip weakening and slip rate weakening friction laws are both
considered. The two simple systems show very different qualitative behaviors. In the case of the slip dependent friction a
slider moves with a single slip event when a critical stress level is reached. Under the same conditions, a series of slip events
occur for the infinite slab. This difference between the behavior of the two systems is due to the important part played by
inertia in the mass concentrated block slider model. In the case of slip rate weakening, the analysis of the problem for the
infinite slab indicates a major difficulty: this problem has no unique solution if the rate of weakening exceeds a limit that is
explicitly given. Whatever is the selection rule chosen to discriminate the solution, shocks will occur. The slip history
obtained for the slab is very different from the one obtained with a block slider. For the infinite elastic slab the slip velocity
exhibits sharp variations (shocks). On the contrary, a block slider does not exhibit this behavior. It is a clear example of the
limitation of the use of such a simple analogy to describe the actual properties of the relative motions of two media in
contact with friction.

1. Introduction

Since the moment release during earthquakes oc-
curs essentially at depth, our knowledge of rupture
process is limited by the poor resolution of the
models deduced from seismological observations.
Nevertheless the progress of inversion techniques
makes it possible to reveal the main characteristics
of the rupture such as duration or spatial heterogene-
ity (Hartzell and Heaton, 1983; Archuleta, 1984;
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Beroza and Spudich, 1988; Cotton and Campillo,
1995). With these developments, there is a greater
need for simple fault models which could account
for the main features of fault behavior. Indeed, these
last years these models were of crucial importance
for the development of our understanding of the
basic physical processes at work during an earth-
quake or a series of earthquakes. Two main classes
of models played a central part in this discussion of
how stresses accumulate, redistribute and dissipate
during earthquakes. The first class of models follows
the pioneering work of Burridge and Knopoff (1967).
The elementary unit in this model consists of a
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totally concentrated mass sliding on a frictional sur-
face and pulled by a spring. A series of such sliders
linked by springs has shown a very rich and complex
behavior similar by several ways to the one of
observed seismicity (Burridge and Knopoff, 1967;
Cao and Aki, 1986; Carlson and Langer, 1989). On
the other hand, a single block slider has been used as
an analog of a fault for the discussion of the effect of
the non-linear friction laws deduced from laboratory
experiments (Li, 1987; Scholz, 1990).

Indeed, the same problem of non-linear friction
can be adressed from the point of view of a model
based on the equation of elasticity, i.e. the contact
problem at the boundary of an elastic body. Such
crack models form a second class of models and
were studied numerically in the dynamic 2D case
(Andrews, 1985; Okubo, 1989; Harris and Day, 1993;
Cochard and Madariaga, 1994) as well as in the
guasi-static 3D case (Rice, 1993). We intend here to
compare these two approaches in the simplest geo-
metrical cases: a single block and an infinite elastic
slab sliding on a frictional surface. Our aim is to
understand the importance of the friction law for the
1D problem and to identify the theoretical problems
associated with non-linearity. Specifically, we shall
examine the existence and unicity of the solutions.
Our discussion will be limited to the case of simple
extreme cases of slip weakening and slip rate weak-
ening behaviors.

2. Description of the models

Let us consider {1 a body which is in contact with
a rigid foundation along a contact surface [, We
denote by o the stress tensor, u the displacement, i
the velocity, n the unit vector outward on { and

L4
Slider u(t) G

m

normal to I, o, = o n - n the normal stress, o, = on
— o,n the tangential stress, i, =i — (i-n)n the
tangential velocity (slip rate) and p > 0 the friction
coefficient.

The contact interface condition on I'; reads:

(u-n)on=0, (n
(I, 1=l )i, 1 =0. (2)
there exists y>=0 suchthat &, = —vyo.. (3)

In our systems we deal with the special case
where o, o,, u,, u,, u, and i, are scalar and, for
simplicity, we have o, <0, #, >0, 4, =0and u, >
0.

u-n<o0,

lo, | <ula, |,

In the first system we consider a rigid block
called the slider which is in contact with friction on a
rigid foundation and which is submitted to a traction
force by means of a spring pulled at velocity V (see
Fig. 1). Consequently the mass is concentrated on
the contact surface and from the balance law we get
the equations

mii(1) ~ G( Dy + Vt — u(1))

= —uS, if a(1)>0 (4)
GIDy+Vt—u(t) <puS, if a(t)=0 (5)
#W(0)=0,  u(0) =u,. (6)

where m is the mass of the slider, —S§<0 is a
prescribed normal force applied on the top of the
slider, u, is the initial position and G(Dy — u,) is
the initial tension of the spring whose elastic modu-
lus is G.

In the second system we consider the one dimen-
sional shearing of an infinite linear elastic slab (with
elastic coefficients A and G) bounded by the planes
x=0and x=h (as in Fig. 1). On the plane x=0
the slab i1s in contact with friction with a rigid

Fig. 1. Description of the two systems, the slider and the slab, in contact with friction on a rigid foundation.
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foundation. At x=h the slab is dragged with a
tangential velocity V from an initial position D, and
it is pushed with a uniform normal stress —S. We
assume that the displacement field vanishes in the
z-direction (perpendicular to the x and y axes) and
has the value —Sx/(A +2G) with respect to the
x-direction, following Hooke’s law. We denote by u
the horizontal displacement (with respect to the y-di-
rection) and we suppose that it depends on ¢ and x,
i.e. u=u(x, t). In this way we get on the frictional
boundary x=0 the normal and tangential stress
g,= -8, o,=—Gif0, 1)/3,. Assuming that
u(O 1)=>0, from (l)—(3) and the equations of the
elastodynamic, we get the following initial and
boundary value problem:
2

u
pii(x, 1) =Go—(x, 1), )]

ou
Ga—(o, t)=nuS, if a(0,1)>0, (8)
X

GIZ—:(O, )| <uS, if #(0,1)=0, 9
u(h, t)y =Dy + Vi, (10)
d(x,0)=V1;-, u(x,0)=uo+(Do—uo)%.

(11)
where p is the density and u, is the initial displace-
ment (slip) at x =0.

For each of these two systems we consider two
cases:

Slip weakening case. The coefficient u depends
on the slip displacement (see Fig. 2):

= pu(u(r)) for the slider:
n=pu(u(0, t)) for the slab.

‘|

Hota-
u-o-a-

0 2n u

Slip rate weakening case. The coefficient p de-
pends on the slip rate (0, ) (se Fig. 2):

n=p(a(t)) for the slider:
n= (a0, t)) for the slab.

3. Mathematical aspects

For the first system (slider) no mathematical spe-
cial difficulties appear in the analysis of ordinary
differential Eq. (4)—(6) in the slip or slip rate weak-
ening cases.

For the second system (slab) the partial differen-
tial equations are hyperbolic and can be reduced (for
details see Jonescu and Paumier, 1993, 1994) to the
following equation on the friction boundary:

VoG (0, 1) + uS=B(s), if (0, 1)>0,
(12)
|B(1)| <uS, if a(0,1)=0, (13)

where, for a time t€[0, T*] with T* = hy/p/G,
the function B is given by: B(:)=G(Vt+ D, -
uy)/h. For t>T* it is possible to obtain an analyti-
cal expression for the function 8 which has to be
modified in order to take into account the reflected
wave and the boundary condition at x = h.

In the first case, where p = u(u(0, t)), this equa-
tion is an ordinary differential equation for (0, t)
and the solution exists and is unique. Consequently,
the slab problem with slip dependent friction is
mathematically well-posed.

In the second case, where u= u(a(0, t)), this
equation is a scalar equation for the slip rate (0, ?).

o |

o

Fig. 2. In the first case the coefficient of friction x depends on the displacement and in the second case it depends on the slip velocity.
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Fig. 3. Illustration of the regular and irregular regimes of the system depending upon the characteristics of the slip rate dependance. The
solutions (&, B) belong K that is plotted in thick solid line in the case of regular behavior (left side) and in the case of irregular behavior

(right side).

If we denote by g(s) =y pG s+ u(s)S then (12)-

(13) may be written as

(0, 1), B(1)) €K ={(s, y):
s=0,1yl <g(0)},

where the set K is plotted in the Fig. 3. Two

qualitative behaviors are possible depending on the

shape of u. In the first one, called the regular

behavior, g is increasing and there is a unique

solution (0, t) for all B(z). In the second one,
called the irregular behavior, g is not anymore in-

&

y=g(s) or

creasing. The solution #(0, ¢) is unique if B(t) < Su,
or Su, < B(1), but there are three solutions for Sy,
< B(1) < Spu,.

However, since the solution of the problem is not
uniquely determined for the irregular behavior, we
need a criterion to select between the three solutions
the one which is more appropriate to a physical
interpretation. Whatever is the selection rule chosen
to discriminate the solution, shocks will occur. A
possible choice for this criterion is the (perfect)
delay convention of the catastrophe theory (see for

Fig. 4. Using the delay convention of catastrophe theory to select a unique solution.
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instance Poston and Stewart, 1978): the system only
jumps when it has no other choice. In this way (see
Fig. 4) different paths of solutions are obtained in
acceleration (path ODABE, solid arrows) and decel-
eration (path EBCDO, dotted arrows) processes and
a hysteresis phenomenon occurs. As it follows from
TIonescu and Paumier (1996) the perfect delay con-
vention is not related to a simple energy criterion.

One may notice that the delay criterion, which we
give explicitely here, is implicitly present in the
analysis of many physical problems. For instance,
even in the case of the slider, it is implicitly accepted
that the slider will keep motionless as long as possi-
ble when the load is increasing.

4. Comparison between the systems
The aim of this paragraph is to point out the

difference which appear in the numerical simulations
of a very slow loading process for the two systems,
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considered above, with the two friction law types.
Since we are interested in a qualitative comparison,
the physical constants have not a great importance.
However we tried to choose them as ‘realistic’ as
possible. Since we deal with very simple models,
which are rather far from the physical reality, it is
not always possible to give physical interpretation of
our choice. Having in mind that for both systems we
have a very slow loading process, V = 0.05 m year™!,
we have chosen the initial data close to an unstable
position.

For the slab system we have considered p = 2800
kgm™3, A=10*m, c=yG/p=3500ms~ !, G=
Gap =¢’p and S=10® N m~2. In the slip weaken-
ing case we have chosen uy=u_+ 107> m where
u, is such that du(u,)/du =0 and D, such that the
initial shear stress G(D, — u,)/h is equal to u(u,)S.
In the slip rate weakening case we have u, =0 and
Dy such that initial shear stress GD,/h is equal to
1(0)S.

For the block slider system we consider m=p-
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Fig. 5. Comparison between the systems in the case of slip dependent friction.
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10° m*>, G=G,,,-10* m and S=10" N. In the
slip weakening case we have chosen u, such that
Sduup)du + G=0 and D, = Su(uy)/G + uy +
107 3m. In the slip rate weakening case uy =0 and
Dy, = Su(0)/G.

4.1. The case of slip dependent friction

The importance of slip dependent friction was
demonstrated from theoretical and experimental
points of view (Brace and Byerlee, 1966; Byerlee,
1967, 1970; Byerlee and Brace, 1968). In our study
we do not intend to discuss the details of a particular
friction law but rather we want to investigate the
qualitative implications of a slip dependent friction.
For this reason, we choose to consider here a friction
law given by the following dependence of stress with
displacement:

1= py+asin{ wu). (14)
where w=5m""', u,=1 and a=0.5 This friction
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law is illustrated in Fig. 2. It corresponds to a
process of slip weakening followed by slip hardening
after a certain displacement. It is similar to an exam-
ple discussed in Scholz (1990). Fig. 5 shows the slip,
the slip velocity and tangential stress obtained for a
block slider. As noticed by Scholz (1990), the block
moves when a critical strain level is reached, thus
releases significantly the stress level and stops. Then
it will remain immobile for the long period needed to
reach again the critical stress level. This very simple
behavior suggests that with a slip dependent friction
one cannot expect to observe stick slip events. Con-
sidering now the case of the infinite slab with the
same friction law we obtained the results shown in
Fig. 5.

A striking qualitative difference of behavior be-
tween the two models appears with the existence of
several pulses in the case of the slab. It shows that in
this case the stress release occurs with a series of
stick-slip-like events on a very short time scale. The
stress history on the frictional surface is governed by
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Fig. 6. Comparison between the systems in the case of slip rate dependent friction when a = 1 (irregular regime).
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two different phenomena. The first one is related
with the friction law and results in the occurrence of
several slip pulses which produce waves that propa-
gates in the slab. The second one is related to the
reflection of the primary waves on the boundary of
the slab. The arrival of the reflected waves at the
frictional surface produces an important stress re-
lease responsible for the complete arrest of the slip.
Therefore, the number of slip events depends only on
the thickness of the slab and on the wave velocity in
this very simple model. This result from the 1D
model could be important for the understanding of
seismological records since it could indicate the pos-
sibility of several slip velocity pulses during a slid-
ing event if such a property is retained in 3D.

4.2. The case of slip rate dependence

It is widely accepted that slip rate weakening
plays an important part for the behavior of actual
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faults (see for instance Scholz, 1990). We consider
here the following dependence:

Hs — Kp
_—, 15
1+ au ( )

where uD =0.3, uy=0.8 and a > 0 is a parameter
that governs the shape of u. This dependance is
shown in Fig. 2. We first consider a=1snm™!. In
the case of the slider, as it is shown in Fig. 6 the slip
rate is a continuous function of time. On the con-
trary, for the slab, the slip rate is characterized by
sudden jumps. Again, the two systems present very
different qualitative behaviors.

To further investigate the discontinuous behavior
of the slab, we choose a to be very close to the limit
between the regular and irregular regimes which we
defined previously. This limit, denoted by «,, is
obtained from dg(0)/ds = 0. Therefore a, is equal
to VpG /S(ps — pp) which is 0.196 s m™"! in our
case. In the computations presented in Fig. 7, we

p=ppt
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Fig. 7. Comparison between the systems in the case of slip rate dependent friction when a is chosen very close to the limit o, between the

regular and irregular regime.
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choose a=a,+ 107% s m~'. While the slip rate is
very small in this case, we note the presence of two
shocks at the begining and the end of the event. The
first shock is directly produced by the friction law
(shock AB in Fig. 4) while the second shock also
involves the reflected stress wave that produced a
discontinuity in B(¢). This indicates that, in the
whole irregular regime of the slab, the slip rate is
dominated by shocks while the slider model is char-
acterized by smooth slip rate.

We remark that when o is larger enough (for
instance a>3a,) the system behaves as for the
classical Coulomb’s law u(0) = ug, uls) = p, for
s> 0, where u; and pu, are the static and dynamic
friction coefficients.

5. Conclusion

The two simple systems under consideration show
very different qualitative behaviors. This observation
holds for both slip and slip rate dependent friction. In
the case of the slip dependent friction considered
here, a slider moves with a single slip event when a
critical stress level is reached. Under the same condi-
tions, a series of slip events occur for the infinite
slab. This difference between the behavior of the two
systems is due to the important part played by inertia
in the mass concentrated block slider model. In the
case of slip rate weakening, the analysis of the
problem for the infinite slab indicates a major diffi-
culty: this problem may have not a unique solution.
Whatever is the selection rule chosen to discriminate
the solution, shocks will occur. This point indicates
the need to introduce in the model an extra-condition
deduced from physical considerations. One may be
afraid that, in numerical solutions, this condition is
implicitly present in the numerical scheme indepen-
dently of the assumed physical hypothesis. We
choose here the solution corresponding to the perfect
delay convention. With this assumption, the slip
history obtained for the slab is very different from
the one obtained with a block slider. For the infinite
elastic slab the slip velocity exhibits sharp variations
(shocks) in a wide range of the parameter a which
governs the shape of the friction law.
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