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Résumé. Dans cette Note on étudie un probleme de perturbation singuliere constitué d’une
inclusion différentielle qui admet une solution unique pour toute valeur du parametre
de perturbation. Le probleme dégénéré, qui correspond a un probléme de frottement sec
dynamique, admet une multitude de solutions. On montre que la solution du probleme
perturbé converge simplement vers une solution particuliere du probleme dégénéré
lorsque le parametre de perturbation tend vers zéro. L’approche par perturbation
singuliere permet une analyse d’un critere de choix utilisé pour la sélection d’une
solution du probléme dégénéré, et suggere une méthode pour aborder des problemes
de frottement plus élaborés.

Singular perturbation of a non-monotonous
dry friction problem

Abstract.  in this Note we deal with a singularly perturbed system constituted by a differential
inclusion which has a unique solution for each value of the perturbation parameter. The
associated degenerated problem, that corresponds to a dvnamic dry friction problem,
has many solutions. We show that perturbed problem solutions converge to a particular
solution of the degenerated problem when the perturbation parameter goes to Zero.
The singular perturbation approach allows an analysis of a criterion used to select a
solution of the degenerated problem, and suggests a method to study more elaborated
dry friction problems.

Abridged English Version

We consider the perturbation problem of finding v. : [0,7] —— R, absolutely continuous solution
of (1), with ¢ > 0 the perturbation parameter, and J : R — P(R) a multi-valued map satistying
the two following assumptions:

HypoTHESIS 1. — (3 is upper semi-continuous with compact convex values and (—[3) is semi-Lipschitz
(see (2) for the definition of (—[3) semi-Lipschitz).

Note présentée par Philippe G. CiarLET.
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HypoTrHEsIs 2. — There exist N > 0 and 2N pairs ('1)‘1 . (k;)lSJSQN, with v <3 <. < gy and:
o | — o0, uf].] — oo af)y (w3, vdi ) [ob %) 1T < i < Ny and [usy, +oof, [agy, +00] stricily
increasing branches of (3.
o [v5,_,.v5] |51, 0%) 1 < i <N, strictly decreasing branches of 3,
where [0, va], [v1, 0] is called a strictly increasing (resp. strictly decreasing) branch of /3 if
1 € Bv), a0 € Bvs), 0 < g (resp. a1 > ) and:

(¢ — ) —w) >0 (resp. < 0) Vu,w € vy, val,u # w Y € B(u), Vi € B(v)

Hypothesis 1 is sufficient for the problem (1) to have a unique a.c. solution (which is moreover
Lipschitz, see [3]), and hypothesis 2 is sufficient to establish the convergence results presented in
this Note.

Terminology. — A point («,v) with « € 3(u) is called stable point (resp. unstable point) if there
exists a strictly increasing (resp. decreasing) branch [v1.v2], [a1, ] of 3 with v € Jayy, o] (resp.
o € Jag,a]) and v € [vy,v2]. The points (w3, ,,v3;_,) are called maximum critical points; the
points (a3, v3;) and minimum critical points.

Problem (3) is called the degenerated problem. Generally, when [ is non-monotonous, there are
many solutions of this problem. In lonescu and Paumier [5] and Leonov and Srinivasan [6] one can
see how the friction of an horizontal homogeneous elastic slab can be modelized with problem (3),
where 1 is the slip velocity on the contact boundary. The use of a non-monotonous slip dependent
friction coefficient leads to a non-monotonous map /J. The first result is that sequence v, is bounded:

PROPOSITION 1. — For all € > 0, «« € BV(0,T), and 5 satisfying hypothesis 1 and 2, the unique
solution v. of the problem (1) satisfies.

ve € L(0.T) with ||ve|l~ o1y < My, where My > 0 is a constant which is independent of ¢

We introduce the following definition:

DEFINITION. — A point v € R is an artractive point of the boundary layer at t = 0 if a*(0) € g(v)
and if there exist a strictly increasing branch [v1, ve]. [@x1, 2] of 3 and ¢ > 0 such that:

v € [, 0], at(t) € [a, ] YV ie[0,(]

The analysis of the boundary layer of the problem is essential in the proof of the following main result:

THEOREM 1. — With 3 a multi-valued map satisfving hypothesis 1 and 2, o« € BV(0,T), and
(at(0),0°) not an unstable point, the solutions sequence v. of Problem (1) poinmwise converges to
a function vy when € goes to zero. Moreover, vy is continuous to the left, has a limit to the right
everywhere on |0, T, and satisfies:

a”(t) € Bluy(t)) Vie]0,T], vy () is an attractive point for all t € [0, T

If we consider the criterion proposed by lonescu and Paumier [5] to select a particular solution
of Problem (3), which is:

the system only jumps when it has no other choice,

it can be shown that if this criterion selects a unique solution of Problem (3) this is the same as
the limit solution of Theorem 1.
One can find a detailed proof of these results in [9].
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Introduction

Le probleme du glissement dynamique d’une couche élastique homogéne avec frottement de
Coulomb et coefficient de frottement dépendant de la vitesse de glissement, est utilisé pour la
modélisation des mouvements « stick-slip », par exemple pour 1’étude du glissement de failles
géologiques (voir [1] et [2]). Ce genre de dépendance, introduite en particulier par E. Rabinowicz [8]
(voir aussi [4]) fait apparaitre une multiplicité des solutions quand elle est appliquée a un solide
élastique. Cela rend nécessaire un critere de choix de la solution physiquement acceptable (voir (5]
et [6]). L approche par perturbation singuliere adoptée ici permet une analyse d’un critére de choix,
et donne une méthode pour aborder des problemes de frottement plus complexes. On trouvera une
démonstration détaillée des résultats annoncés dans cette Note dans [9].

1. Définition du probléme

Soit le probléme de perturbation singuliere consistant a trouver v, : [0,7] — R absolument
continue vérifiant :

{E%Ue(t) € a(t) — B(v(t)) pour presque tout t € [0, 7] (D
u»(()) =

oll ¢ > 0 est le paramétre de perturbation, «(t) : [0,7] — R est a variation bornée (on écrira
a € BV(0,T)) et 3: R — P(R) est une application multivoque sur laquelle on impose deux types
de conditions indiquées dans les hypothéses 1 et 2 qui suivent.

HypoTHESE 1. — 3 est semi-continue supérieurement a valeurs compactes convexes et (—03) est
semi-lipschitzienne, ¢’est-a-dire qu’il existe une constante My telle que :

(b — V)(v1 — v2) < My(v1 — v)? Yor, vy € RV € Blua), Y9 € B(ry) )

On dit qu’une branche [v1, vq], [(x1, 2] est strictement croissante (resp. strictement décroissante) si
a1 € B(n), s € B(ve), 01 < g (resp. «v; > ) et :

(¢ — P)(u—w) >0 (resp < 0) Vu,w€ |Jo,vef,u#w Voe pu),Vi € B(w)

j<on, avec v] < vy <o < sy et

HyPOTHESE 2. — Il existe N > 0 et 2N couples (v}, ] )i<,
i < N; et [vhy,+oo[, [aby,+oo] branches

*
i
o | = o0ui],] = oowartls [, gl [ad 03] 1
strictement croissantes de {3,
o [v3,_,, 03] [as_1. a5, 1 < i < N, branches strictement décroissantes de [3.

La condition de semi-continuité supérieure est suffisante a ’existence de solutions absolument
continues au probleme (1). Une application multivoque 3 étant semi-continue supérieurement si
pour tout fermé A C R I’ensemble 37*(A4) C R est fermé. La condition 3 semi-lipschitzienne assure
I’unicité de la solution et, avec « bornée, donne une régularité lipschitzienne pour la solution (voir [3]).
L ’hypoth&se 2 est suffisante pour établir les résultats de convergence qui suivent.

Terminologie. — Un point («,v) avec «v € ((v) est appelé point stable (resp. point instable) s’il
existe une branche strictement croissante (resp. décroissante) vy, vg], [, g] avec o € Jay, aq[ (resp.
« € |aa, a1]) et v € [v1,va]. Les points (aj,v;) sont appelés les points critiques dont les points
(3,1, v5,_1) sont les points critiques maximums et les («3;,v3;) les points critiques minimums.
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On appelle probleme dégénéré le probleme suivant :

{Trouver vy 1 )0, 7] — R telle que : 3)

a (1) € Blu(t)) YEe]0,T] ()

Ce probleme, qui est scalaire, n’admet une solution unique, pour une donnée « quelconque dans
BV(0,T), que si I’application /# est strictement monotone.

2. Relation avec le probléeme de frottement

On considére une couche élastique fixée au plan rigide immobile y = H, et glissant avec frottement
sur le plan rigide ¥ = 0 qui est en mouvement suivant I’axe des = avec une vitesse V.. (voir figure a).
Si on se limite aux solutions indépendantes des coordonnées horizontales, le déplacement u suivant
I’axe des z est gouverné par les équations suivantes :

Dult,y) — A2 u(t,y) =0, yelo,H[, t€]0,T] (4)

Yy

u(t, H) =0, Gdyu(t,0)=—F, te]0.T] (5

Partie fixe

AN y\\\\\\\\ usf

Couche élastique

Support rigide en mouvement

Figure la. — Couche élastique entrainée. Figure Ib. - Exemple de coefficient de frottement.

Figure la. — Elastic slab on a moving foundation. Figure b. — Example of friction coefficient.

ot Fy est la force de frottement, G le module de cisaillement élastique, ¢ = \/G/p la vitesse des
ondes et p la densité. Le contact entre la couche élastique et le plan rigide y = O est modélisé par
une loi de Coulomb avec coefficient de frottement dépendant de la vitesse de glissement, qui s écrit :

Fy € ~Spllo,|)Sen(v,,) (©)

oll i : Rt — R™ est le coefficient de frottement qui dépend de la vitesse de glissement (la figure 1b
donne un exemple typique de dépendance de ce coefficient), S la pression de contact que I’on suppose
constante, v,, = dyu(t,0) — V. (t) la vitesse de glissement sur le bord de contact et Sgn(v) la fonction

signe multivoque qui vaut tout I'intervalle [—1,1] en v = 0 et {v/[v|} ailleurs. On compléte le
probléme par les conditions initiales :
uw(0,9) = ug(y). u(0,y) =wui(y), y €0, H] (7

(") On note les limites A droite et & gauche respectivement v+ (¢) = lim v(7) et v~ (t) = lim v(7)

T—1 T—t
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En suivant Ionescu et Paumier [5], ou Leonov et Srinivasan [6], on ramene le probleme (4)—(7) sur
le bord de contact, grice a des égalités sur les droites caractéristiques. Ainsi, en posant :

a(t) = E:‘(ul((:t) — V() + Goyup(ct), Plv) = %’u + Spe(|v])Sgn(v) (8)

le probleme revient, pour T' < % a trouver v, (1) telle que :
alt) € Blv. (1) (9)

c’est-a-dire a inverser I'inclusion (9), ce qui entre bien dans le cadre du probleme (3). En général, ce
probleme admet une infinité de solutions ; c’est pourquoi Ionescu et Paumier [5] proposent un critére de
choix de solution issu de la théorie des catastrophes, dit critére du retard maximal, qui s’énonce ainsi :

Le systeme effectue un saut en vitesse quand il n'a plus d’autres choix possibles (10)
Indépendamment, Leonov et Srinivasan [6] proposent un critére similaire.

3. Principaux résultats

Majoration. — Par un raisonnement €lémentaire, on montre que s’il existe [v1, va], [x1, o] tels que
v € B(v1), aa € B(v2), v° € [v1, va] et a(t) € [y, cxa] sur [0, T, alors la solution v, du probleme (1)
vérifie v (t) € [v1, ve] sur [0, 7] pour tout ¢ > 0. Ceci nous permet d’établir le résultat suivant :

PROPOSITION. — Pour tout € > 0, o € BV(0,T) et 3 vérifiant les hypothéses 1 et 2, ['unique solution
ve du probleme (1) vérifie :

ve € L2(0,T) avec ||ve||L>0,r) < M1, oi My > 0 est une constante indépendante de ¢

Comportement au voisinage de t = 0. — Dans le cas le plus courant ol la condition initiale ne
vérifie pas a*(0) € 3(+"), on a un comportement de couche limite en ¢ = 0 lorsque = tend vers zéro.
Nous nous sommes inspiré d’une étude de AN. Tikhonov, A.B. Vasiléva et A.G. Sveshnikov [10]
qui concerne un cas plus régulier. Nous introduisons les notions suivantes :

DEFINITIONS. — Soit v, la suite des solutions du probleme (1) pour £ > 0.
e On dit que v € R est un point d’adhérence de la couche limite en ¢ = O si et seulement s°il existe
une suite (€, )y >0 Strictement positive et une suite (£, ), >0 positive telles que : lim, _, | &, =0,
lim, — 4oty =0, lim, | v (t.)=v. L’ensemble des points d’adhérence qui correspondent a
une donnée initiale v° est un intervalle fermé borné que I’on note I(L(UO).
¢ On dit que v € R est un point limite de la couche limite en ¢ = 0 si et seulement s’il existe . > 0
pour tout £ > 0 tel que : lim, ¢, = 0, lim_ ., ;v.(t.) = v. L’ensemble des points limites qui
correspondent 2 une donnée initiale »* est un sous-intervalle fermé de [,(v°) que I’on note I,(+).
¢ On dit que v € R est un point attractif de la couche limite en ¢ = 0 si a*(0) € 3(v) et si de plus
il existe une branche strictement croissante [vy, vo]. [v1, a] de 3 et ¢ > 0 telle que :

v € [, v, at(t) €, a0 Vi€,

Par une suite de résultats €lémentaires on montre que si (o™ (0),»") n’est pas un point instable de S,
alors on peut décrire complétement les intervalles 1,(2°) et I;(v°).

135



Y. Renard

On montre ainsi que lorsque (a*(0),v°) n’est pas un point instable, 'intervalle I;(v°) contient
un et un seul point attractif. On peut alors caractériser le comportement de la suite v. au voisinage
de ¢ = 0 de la maniere suivante :

PROPOSITION 2. — Avec o € BV(0,T), B qui satisfait les hypothéses 1 et 2 et le point (a+(0), )
qui n'est pas un point instable de (3, il existe une branche strictement croissante [v1, v2], [, as] de
B et { > 0 tels que la suite v, des solutions du probléme (1) converge simplement vers une fonction
vo sur [0, ] quand € tend vers zéro. De plus, vy est continu a gauche, a une limite a droite partout
sur 0, et vérifie pour tout t € 10,¢[ :

at(t) € [ar,an), o () € Blwo(t)), vg(t) € [vi,ve), v (t) est un point attractif

Résultat de convergence. — 1l est alors possible de montrer le résultat suivant :

THEOREME. — Pour une application 3 vérifiant les hypothéses 1 et 2, o € BV(0,T) et (a™(0),v°)
n'étant pas un point instable de [3, la suite des solutions v. du probléme (1) converge simplement
vers une fonction vy quand € tend vers zéro. De plus, vy est continu & gauche, a une limite a droite
partour sur 10, T| et vérifie :

a (t) € Blug(t)) YiEe€]o,T], vg (t) est un point attractif pour tout t € [0, T|

La démonstration de ce résultat passe par I’application successive de la proposition 2 sur un nombre
fini d’intervalles. La deuxieme propriété énoncée implique que la solution limite reste sur les branches
strictement croissante de /3.

Relation avec le critére de retard maximal. — L hypothése 2 n’est pas trop restrictive pour traiter des
problémes de frottement. En effet, les dépendances choisies dans les modélisations (voir [4] et [7])
sont toujours trés régulieres. Si on considere le critere du retard maximal défini par (10), on peut
montrer que lorsque celui-ci permet de sélectionner une solution unique au probléme (3), alors celle-ci
coincide avec la solution limite du théoréme 1. Malgré tout, il n’y a pas une totale équivalence car
I’énoncé (10) n’est pas suffisamment précis pour sélectionner une solution unique dans tous les cas de
figure. Cette étude apporte un éclairage sur I'utilisation de ce critere. Elle donne aussi des perspectives
pour des problemes de frottement bidimensionnels ou tridimensionnels ol I’approche par perturbation
singuliére est envisageable alors qu’il semble plus difficile d’exhiber des critéres de choix.
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