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R&urn& Dans cette Note on Ctudie un probEme de perturbation singulikre constituk d’une 
inclusion differentielle qui admet une solution unique pour toute valeur du paramktre 
de perturbation. Le problkme dCgCnCrC, qui correspond & un problkme de frottement set 
dynamique, admet une multitude de solutions. On montre que la solution du problkme 
perturb6 converge simplement vers une solution particuliPre du problkme degenCr6 
lorsque le parambtre de perturbation tend vers z&o. L’approche par perturbation 
singulihre permet une analyse d’un critkre de choix utilisC pour la selection d’une 
solution du problkme dCgCnCr& et suggkre une mkthode pour aborder des problkmes 
de frottement plus ClaborCs. 

Singulwr perturbation of n non-monotonous 

dry friction problem 

Abstract. In this Note MV deal with (I singularlv perturbed system constituted by a d(jferentictl 

inclusion mhich has a unique solution,fi,r 1wc.h value of the perturhntion pammeter. The 
ussociuted degenrruted problem, that corresponds to (I ciwtrmic dry ,friction pr~oblem, 

has many .solutions. We show that perturbed problm solutions converge to (I pcwticultrr 

solution of the degerwmted problern whm the perturbntim pnrctm~tet- goes to xro. 
The singular perturbation uppromh ~~11ow.s nn ma1wi.s of u criterion used to se1rc.t (I 

.solution of the drxenercrted problem. and .sug,gests n method to .study mm ekrborcrted 

dry ,frictim problems. 

A bridged English Version 

We consider the perturbation problem of finding ‘oE : [0, T] ---+ R, absolutely continuous solution 
of (I), with E > 0 the perturbation parameter, and /r : R’ -+ P(R) a multi-valued map satisfying 
the two following assumptions: 

HYPOTHESIS 1. - [j is upper semi-continuous with compact convex values and (- jj) is semi-Lipschitz 
(see (2) ,for the definition of (-/j) semi-Lipschit:). 

Note prCsentCe par Philippe G. CIARLW. 
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HYPOTHESIS 2. - There exist N > 0 a~zd 2N pairs (YI,~, ~ti,~)~<.,~~,~, with ,/IT 5 7~; 2 . . 5 z&, and: 
0 ] - cau;].] - X! CY~]; [,t$;, 71;;+~], [ct.:,, w;;+~], 1 <: i < N; arzd [u&. $oo[, [cY;,~, +30[ strict/y 

increasing branches of /j. 

l [7$-l.?:;,], [$;-1, rk.&], 1 5 ? 5 IV, strictly decreasing branches of [I’, 
where [VI. ~21, [cY,. (I,] is called a strictly increasing (resp. strictly decreasing) branch of /l’ if 

cl1 E r/JJ(V~),cy~ E p(‘lI.,), (11 < (~2 (resp. ~1 > CY?) and: 

((i, - *JJ)(IL - II:) > 0 (resp. < 0) V ll,~lr E ],f~~.flo~[, (1, # ~lr V(i, E /~(u),V$~I E [j(,o) 

Hypothesis 1 is sufficient for the problem (1) to have a unique a.c. solution (which is moreover 
Lipschitz, see [3]), and hypothesis 2 is sufficient to establish the convergence results presented in 
this Note. 

Terminology. - A point (o,,v) with r~ E /j(7)) is called stable poirzt (resp. unstable point) if there 
exists a strictly increasing (resp. decreasing) branch [~l:~2]. [(VI, ~~21 of /j with (I: E 1~~1 1 ti2[ (resp. 
(r E ]oZ.ol[) and 11 E [,/11%~~]. The points (c~;~~,,u;,-~) are called maximum critical points; the 
points ($, , 79;) and nzinimum critical points. 

Problem (3) is called the degenerated problem. Generally, when ,/j is non-monotonous, there are 
many solutions of this problem. In Ionescu and Paumier [5] and Leonov and Srinivasan [6] one can 
see how the friction of an horizontal homogeneous elastic slab can be modelized with problem (3), 
where 1~~ is the slip velocity on the contact boundary. The use of a non-monotonous slip dependent 
friction coefficient leads to a non-monotonous map ij. The first result is that sequence 71, is bounded: 

PROPOSITION 1. - For all c >. 0, o E BV(O, T), and /‘I sati&ing hypothesis 1 and 2, the unique 
solution 11, of the problem (1 ) satisfies. 

7JE E LW (0. T) with (l,ti,JI~~(~~,~~j < A41. \t:here A11 > 0 is a constant which is independent qf E 

We introduce the following definition: 

DEFINITION. - A point ‘~1 E R’ is an attractive point of the boundary layer at t = 0 if tr+(O) E L-~(V) 
and if there exist a strictly increasing branch [VI, ~1~1. [CY, , (~~1 of fi and < > 0 such that: 

The analysis of the boundary layer of the problem is essential in the proof of the following main result: 

THEOREM 1. - With ,o a multi-valued map sati.!fiing hypothesis 1 and 2, CY E BV(I), T), and 
(o+ (0): 71~) not an unstable point, the solutions sequence 11, of Problem ( 1) pointwise converges to 
u ,fzmction ~0 when r goes to ;ero. Moreover, ‘~0 is continuous to the left, has a limit to the right 
everywhere on 10. ‘T], and satisfies: 

c(t) E @(v,,(t)) v t E ]O.T], l!:(t) is an attructive poitztfi,r ail f E [O, T[ 

If we consider the criterion proposed by Ionescu and Paumier [5] to select a particular solution 
of Problem (3), which is: 

the system only ,jump.s when it has no other choice. 

it can be shown that if this criterion selects a unique solution of Problem (3) this is the same as 
the limit solution of Theorem 1. 

One can find a detailed proof of these results in [9]. 
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Introduction 

Le probleme du glissement dynamique d’une couche tlastique homogene avec frottement de 
Coulomb et coefficient de frottement dependant de la vitesse de glissement, es1 utilise pour la 
modelisation des mouvements << stick-slip D, par exemple pour l’etude du glissement de failles 
geologiques (v&r [I] et [2]). Ce genre de dependance, introduite en particulier par E. Rabinowicz [8] 
(voir aussi [4]) fait apparaftre une multiplicite des solutions quand elle est appliquee a un solide 
Clastique. Cela rend necessaire un critere de choix de la solution physiquement acceptable (voir [5] 
et [6]). L’approche par perturbation singuliere adoptee ici permet une analyse d’un critere de choix, 
et donne une methode pour aborder des problemes de frottement plus complexes. On trouvera une 
demonstration detaillee des resultats annonces dans cette Note dans [9]. 

1. Ddfinition du problhme 

Soit le probleme de perturbation singuliere consistant a trouver II, : [0, T] + Iw absolument 
continue verifiant : 

1 eiuE(r) E o(f) - ijj(rlE(t)) pour presque tout t E [O:T] 
(1) 

ll< (0) = 71’) 

oti E > 0 est le parametre de perturbation, o(t) : [O?T] ---+ Iw est a variation bornee (on Ccrira 
(1 E BV(0,T)) et [j : [w ---+ P(W) est une application multivoque sur laquelle on impose deux types 
de conditions indiqdes dans les hypotheses 1 et 2 qui suivent. 

HYPOTH~SE 1. - [j est semi-continue supe’rieurement & valeurs compactes con\‘exes et (-17’) est 
semi-lipschitzienne, c’est-&dire qu’il existe une constante M,? telle que : 

On dit qu’une branche [71l, 7121, [ al: (~~1 est strictetnent croissante (resp. strictement decroissante) si 

(11 E B(%),fir, E ,@m), cyl < ctr2 (resp. fvl > ol) et : 

HYPOTH~SE 2. - IL existe N > 0 et 2N couples (71,;, CYT)~~,,~~~~~, avec IIT 5 74 5 . 5 ,u.& et : 

l I - ~,~~;I,1 - ~cj, rr:]; [$,, ,u;~+~]: [a;,, N;.;+~], 1 5 % < N; et [u&, +ocl[, [c$,~, +OCI[ branches 
strictement croissantes de p, 

l [$-l>Gl! K--l? cvGi], 1 5 % < N, brunches strictement decroissantes de [j. 
La condition de semi-continuite superieure est suffisante a l’existence de solutions absolument 

continues au probleme (1). Une application multivoque /Y Ctant semi-continue superieurement si 
pour tout ferme A c R l’ensemble /j-‘(A) c Iw est ferme. La condition /3 semi-lipschitzienne assure 
l’unicite de la solution et, avec o bornee, donne une regularit lipschitzienne pour la solution (voir [3]). 
L’hypothese 2 est suffisante pour Ctablir les resultats de convergence qui suivent. 

Terminologie. - Un point (o,71) avec o E [j(7)) est appele point stable (resp. point instable) s’il 
existe une branche strictement croissante (resp. decroissante) [ ‘u13 ~21, [(VI, ck2] avec 0 E ]ai, Q~[ (resp. 
0: E 1~2, crr[) et ~1 E [?!I, ~1. Les points (~5, II,*) sont appeles les points critiques dont les points 

(a;;-l. 71?*j-l) sont les points critiques maximums et les ((~3~‘ 11;;) les points critiques minimums. 
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On appelle pmblthe d&gtMre’ le problkme suivant : 

i 

Trouver ~~~~ : IO, T] -+ R telle que : 

K(f) E /q!,,(t)) v t E ]O,T] (1) (3) 

Ce problitme, qui est scalaire, n’admet une solution unique, pour une donnke rr quelconque dans 
BV(0: T), que si l’application /I est strictement monotone. 

2. Relation avec le probkme de frottement 

On considkre une couche klastique frx6e au plan rigide immobile y = H, et glissant avec frottement 
sur le plan rigide ;r/ = 0 qui est en mouvement suivant l’axe des :L’ avec une vitesse V;. (voir figure la). 
Si on se limite aux solutions indipendantes des coordonn&es horizontales, le dkplacement TL suivant 
I’axe des :I: est gouvernk par les Cquations suivantes : 

{ / 
VP / 

Support rigide en mouvement 

Figure la. Couche klastique entrain&e. Figure I b. - Exemple de coefficient de frottement. 

Fipre I a. - Elo.\ric~ sltrh on (I mwi~?l: fimndution. Figure I b. - ./Gwn~~le of fiiictinn cmf$cient. 

oti Ff est la force de frottement, G le module de cisaillement Clastique, c = m la vitesse des 
ondes et /, la densitt. Le contact entre la couche Clastique et le plan rigide 1~ = 0 est modClis6 par 
une loi de Coulomb avec coefficient de frottement dkpendant de la vitesse de glissement, qui s’kcrit : 

oti /’ : IF!+ + IF!+ est le coefficient de frottement qui dCpend de la vitesse de glissement (la figure 1 b 
donne un exemple typique de dkpendance de ce coefficient), 5’ la pression de contact que l’on suppose 
constante, 71~; = &~(t. 0) - K.(t.) la vitesse de glissement sur le bord de contact et Sgn(?r) la fonction 
signe multivoque qui vaut tout l’intervalle [-1, l] en ‘11 = 0 et {ql/j,flJ} ailleurs. On complkte le 
problkme par les conditions initiales : 

(‘) On note les limites 5 droite et :i gauche respectivement o+(f) = ,I!;: ~(7) et ,(1-(t) = ,I”:! 11(7) 
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En suivant Ionescu et Paumier [5], ou Leonov et Srinivasan [6], on ram& le problkme (4)-(7) sur 
le bord de contact, g&e B des tgalitts sur les droites caract&istiques. Ainsi, en posant : 

le problkme revient, pour T < 5, 2 trouver 71,:(t) telle que : 

a(t) E p(l!,;(t)) 

c’est-g-dire B inverser l’inclusion (9), ce qui entre bien dans le cadre du problkme (3). En g&&-al, ce 
problkme admet une infinite de solutions ; c’est pourquoi Ionescu et Paumier [5] proposent un critirre de 
choix de solution issu de la thCorie des catastrophes, dit crit.?re du retard maximal, qui s’Cnonce ainsi : 

Le syst>me efectue un saut en vitesse quand il n’a plus d’autres choix possibles (IO> 

IndCpendamment, Leonov et Srinivasan [6] proposent un critbe similaire. 

3. Principaux rbultats 

Majoration. - Par un raisonnement ClCmentaire, on montre que s’il existe [,Q, ~~1) [fil: 021 tels que 

(11 E B(7Jl)v ‘y2 E B(v2). 71’ E [vl; 71~1 et a(t) E [ (x1, <x2 sur [O, T], alors la solution 1~~ du problkme (1) ] 

vCrifie l)=(t) E [ ul: v2] sur [0, T] pour tout E > 0. Ceci nous permet d’ktablir le rCsultat suivant : 

PROPOSITION. - Pour tout E > 0, (Y E BV(0, T) et ,ij vtri’ant les hypothkses 1 et 2, /‘unique solution 
‘11, du probkme (1) ve’ri$e : 

Comportement au voisinage de f = 0. - Dans le cas le plus courant oh la condition initiale ne 
vCrifie pas a+(O) E p(v”), on a un comportement de couche limite en t = 0 lorsque ;: tend vers z&o. 
Nous nous sommes inspird d’une Ctude de A.N. Tikhonov, A.B. Vasil&a et A.G. Sveshnikov [lo] 
qui concerne un cas plus rCgu1ier. Nous introduisons les notions suivantes : 

DEFINITIONS. - Soit U, la suite des solutions du problkme (1) pour E > 0. 
l On dit que u E R est un point d’adhkrence de la couche limite en t = 0 si et seulement s’il existe 
une suite (E~~)~&>o strictement positive et une suite (/ I,L ) 1,~~ positive telles que : lim,, + +,sc E,, = 0, 
lim 71 + +oo t,,, = 0, lim,, -..+ +X I’,,? (tll) = ‘0. L’ ensemble des points d’adhkrence qui correspondent 2 
une donnCe initiale 11” est un intervalle ferme born6 que l’on note 1,(7f’). 

l On dit que ‘II E R est un point limite de la couche limite en t = 0 si et seulement s’il existe iE > 0 
pour tout E > 0 tel que : lim, -+ o t, = 0, lim E --+ (, uc(tE) = 71. L’ensemble des points limites qui 
correspondent a une donnCe initiale 71’ est un sous-intervalle fermi de I,,(u”) que l’on note I1(~#). 
l On dit que 71 E R est un point attractif de la couche limite en t = 0 si a+(O) E /3(o) et si de plus 
il existe une branche strictement croissante [U 1, PUN]. [(Y,, ~21 de /j et C > 0 telle que : 

Par une suite de r&ultats Mmentaires on montre que si ((Y+(O), 71”) n’est pas un point instable de p, 
alors on peut dtcrire compl&tement les intervalles ln(z~‘) et IJ(u”). 
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On montre ainsi que lorsque (a+(O), <(IO) n’est pas un point instable, l’intervalle 11 (u’) contient 
un et un seul point attractif. On peut alors caracttriser le comportement de la suite tli au voisinage 
de 1: = 0 de la man&e suivante : 

PROPOSITION 2. - Avec a: E BV(0, T), /J 9 ui satisfuit les hypotheses 1 et 2 et le point (o+(O), 7~‘) 
qui II ‘est pas un point instable de j3, il existe une branche strictement croissante [‘VI. 7121, [al, cr2] de 
[3 et { > 0 tels que la suite ‘II, des solutions du probleme (1) converge simplement vers une fonction 
v. sur [0, <] quand E tend vers zero. De plus, 110 est continu Li gauche, a une limite b droite purtout 
sur IO, <] et ve’ri$e pour tout t E 10; <[ : 

Q+(t) E [W!Q21, <r-(t) E 4(7)0(t))> 7$(t) E ['lil,VL?], wz (t) est un point attruct~f 

Resultat de convergence. - 11 est alors possible de montrer le rdsultat suivant : 

THBORBME. - Pour une applicution [j ve’rijiant les hypotheses 1 et 2, ~1 E BV(0, T) et (a+(O), u’) 
n’etant pus tot point instable de [j, la suite des solutions u, du problbme (1) converge simplement 
vers une fonction vo quand E tend vet-s zero. De plus, vo est continu ir gauche, a une limite i2 droite 
pat-tout sur IO, T] et ve’ri$e : 

cr (t) E p(v()(t)) v t E 10, T], 4(t) est un point attructifpour tout t E [O, T[ 

La demonstration de ce resultat passe par l’application successive de la proposition 2 sur un nombre 
fini d’intervalles. La deuxieme propriete enoncee implique que la solution limite reste sur les branches 
strictement croissante de /j. 

Relation avec le critere de retard maximal. - L’hypothese 2 n’est pas trop restrictive pour traiter des 
problemes de frottement. En effet, les dependances choisies dans les modelisations (voir [4] et [7]) 

sont toujours tres regulieres. Si on considere le critere du retard maximal defini par (IO), on peut 
montrer que lorsque celui-ci permet de selectionner une solution unique au probleme (3), alors celle-ci 
coincide avec la solution limite du theoreme 1. Malgre tout, il n’y a pas une totale equivalence car 
l’enond (10) n’est pas suffisamment precis pour selectionner une solution unique dans tous les cas de 
figure. Cette etude apporte un Cclairage sur l’utilisation de ce critere. Elle donne aussi des perspectives 
pour des problemes de frottement bidimensionnels ou tridimensionnels oti l’approche par perturbation 
singulibe est envisageable alors qu’il semble plus difficile d’exhiber des criteres de choix. 
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