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Résumé.

Abstract.

Introduction. —Le probleme abordé est celui du contact unilatéral avec frottement d'un solide
linéairement élastique, soumis a une condition de frottement de Coulomb avec un coefficient constant
qui dépend de la vitesse de glissement. En effet, les données expérimerdal€s]) font fréquemment
état d'un affaiblissement du coefficient de frottement lorsque la vitesse de glissement augmente. Ce t
de dépendance améne des difficultés importantes lorsqu’on les applique a un modeéle élastodynami
notamment, une multiplicité des solutions avec apparition de chocs en vitesse de glissement. C’est ce ¢
été remarqué dans le probléeme monodimensionnel d’'une couche élastique infinie dans les études [2] ef
ou de plus un critere de choix de solution a été introduit. Ce critére, dit «de retard maximal» consiste

On présente un résultat d’existence et d’unicité pour un probléme régularisé de contact
unilatéral avec frottement en élastodynamique obtenu d’une part en régularisant de fagon
classique la loi de frottement et la condition de contact unilatéral et, d’autre part, en
perturbant le systéme a l'aide d'un opérateur d’élasticité dynamique défini sur le bord
de frottement. Un des intéréts de cette perturbation est de conserver le caractére local de
la loi de frottement. C’est une étape dans I'analyse des multi-solutions qui apparaissent
lorsque I'on utilise un coefficient de frottement décroissant en vitesse de glissement, et fait
suite & des travaux dans le cas monodimensionn2000 Académie des sciences/Editions
scientifiques et médicales Elsevier SAS

Existence and uniqueness result for elastodynamic friction with a
“surface inertia”

We present an existence and uniqueness result for a regularized problem of unilateral
contact and friction in elastodynamic obtained with a perturbation of a dynamic elasticity
operator defined on the contact boundary. This perturbation keep the local characteristic
of the friction law. This is a step in the analysis of the multi-solutions appearing in this
kind of problems when a decreasing friction coefficient is use@000 Académie des
sciences/Editions scientifiques et médicales Elsevier SAS

sélectionner la solution qui reste continue en vitesse de glissement le plus longtemps possible.
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Le résultat que nous présentons ici, est une étape dans la généralisation au cas multidimensionne
résultats obtenus dans [7] et publiés dans [6]. Dans ces travaux, il a été montré que I'ajout d’une mir
couche verticalement rigide (une simple masse de surface dans le cas monodimensionnel) perme
recouvrer l'unicité de la solution du probléme dynamique. De plus, il a été montré (dans un cadre restrei
que la solution du probléme perturbé converge vers une solution du probléme initial lorsque I'épaisseur
la couche rigide tend vers zéro. Cette solution est en accord avec le principe du retard maximal.

1. Le probléme élastodynamique de frottement

Soit ) C R™, avecn = 2 ou 3 le domaine occupé par le corps élastique. Pour simplifier, on suppost
I'ouvert cylindrique :Q = wx ]0, D[, ol w est un domaine d&”~!, de hauteuD > 0. On notel'p =
w x {D} le bord des déplacements impogdés, = dwx |0, D[ le bord des forces imposéedgt = w x {0}
le bord de frottement. Dans 'ouveRtI'équation de I'élastodynamique s’écrip(x) i(t, x) — divo(t,x) =
ft,x), x € Q, t€]0,T], ouT > 0 est fixé, p(z) la densité (dans la suite(x) = 1), f(t,x) les effort
extérieurs volumiquesy(t, z) € R™ le déplacement;(t, z) 'accélérationg (¢, x) le tenseur des contraintes
relié au tenseur linéarisé des déformatiefis) = 1 (Vu + Vu™) par une loi de comportement linéarisée
o(t,z) = A(z)e(u)(t,x), avecA(x) tenseur d’ordre quatre ayant les propriétés habituelles de symétrie e
de coercivité uniforme. La conditions sbip, estu(t,z) = up(t,x) et surl'y esto (¢, z)n(z) = g(t,x), ou
n(z) désigne la normale unitaire extérieur@a

SurT'¢, le corps élastique est en contact unilatéral avec un support rigide plan, luiméme en mouvem
horizontal a la vitesse(t). On note, sul'¢, uy = u - n le déplacement normaky = (on) - n la
contrainte normaleyr = u — uyn le déplacement tangentielg = ur — 7(t) la vitesse de glissement
etor = on — onn la contrainte tangentielle. Avec les fonctions multivogugs: R — P(R) et Diry :
R™ — P(R™) définies par :

{0} pouré < 0, ;
. Si 0,
JIn(§) =4 [0,+o0[ pour{=0, Dirp (u) { }ZTE/]EZTU)} 0, [lor] < 1 } si ZT 7_é 0
1%} pouré > 0, P UN T ="
les conditions de contact et de frottement s’écrivent poar[0,T] et x € ' (voir [7]) : on(t,x) €
—JIn(un(t,z)), or(t,z) € on(t, @) u(|lva(t, 2)|) Dirr (va(t, @), ol p: Ry — Ry est le coefficient de
frottement aveg:(v) borné, lipschitzien et (0) = s > 0.

Régularisation des conditions de contact unilatéral et de frottemeitour mener a bien notre étude,
nous utilisons une régularisation assez classique des conditions multivoques précédentes, a l'aide
fonctionsJ}; : R — Ry etDir. : R — R" :

0 pour{ <0, ur/|lur| sillur| =7
J77 = ° D .
v {6/77 pour¢ >0, P00 = {uT/n Si lur| <,
qui approchent les fonctions multivoquds et Dir respectivement. Les lois régularisées s'écrivent :
on(t,x) =Tk (un(t,z)), or(t,z) = on(t,z) p(lva(t,2)|)) Dirk (ve (L, z)).

Toutefois, dans le cas = 3, une difficulté technique est écartée en modifian{ s/, +oo[ la fonction

J3, décrite ci-dessus.d (&) = 1/n? pouré € [1/n, +oc].

2. Le probleme élastodynamique avec perturbation

En supposant pour le moment que Ia force de frottem}%(mtx) est donnée sur'¢, et en posant :
= [,0( v)dz, b(t,v) = [o f(t) -vde+ [ g(t) -vdl + [ F(t)-vdl, ouo(u) :e(v) =
Ezjzl oi;(u )5”( ), Ie probleme élastodynamique se pose en formulatlon faible dans les e$paees
HY ()", Vo = {veWp; v=0surl'p} etHy = L?(Q)", de la maniére suivante :

u(0,z) =uo(x), 0(0,z)=ui(x), z€€, 1)
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Figure 1. — Perturbation sur une coudhe
Figure 1. — Perturbation on a laye®..

t€]0,T): u(t)e Wy et wu(t,x)=up(t,x), =z€Tlp, @)
t€]0,T]: (i(t),v) +a(u(t),v) =b(t,v), YveVy, 3)

ouugy € Wy etuy € Hy sont les conditions initiales €t, -) le produit de dualité entr&; et ;. Rappelons
que I'existence et I'unicité d’une solution appartenant a I'espa®&0, T'; Wy) N W (0,75 Hp) N
W2(0,T; V) est démontrée dans Duvaut—Lions [1] sous des hypothéses suffisantes de régularité por
surug, u1, [, g, F etup. En particulier on a I'hypothese suivante :
(H) F; etF; e L2(0,T; L2(Tc)™).

La perturbation proposée consiste a distinguer une cotithe wx ]0,e[C Q d'épaisseurs > 0
arbitrairement petite et dont la face inférieure est le bord de frottement.

On notex = (/, ,,). Fixons un entiem € N et, pour/ =0, 1, définissons I'espacg; , :

EPgm<:>p Zpk n k7 avecp07p17"'7pm€He(w)'

Alors les espace$V. = {v € Wo; v, € (Pim)"}, Ve = {v e Vo v, € (PLm)"}, He = {v € Hy;

V), € (Po,m)”} sont des sous-espaces fermés respectif§gld, et Hy. Le probleme élastodynamique
avec perturbation sera tout simplement le probleme (1)—(3), mais posé dans ces espaces (avec des cond
initiales approchéesj et u5). Lintérét de cette approche est que I'on peut affaiblir 'hypothése (H) en
I'hypothese yoir paragraphe suivant) :

(H-bis) F e L2(0,T; L*(I'¢)™).

3. Décomposition des solutions du probléme avec perturbation

Pour résoudre le probléme de frottement régularisé on va décomggskr solution du probleme
perturbé, en la somme d’une fonction de référemtsolution du probleme perturbé pofir= 0 et d’'une
fonctionw* solution de ce probléme poyr=0, g =0, up =0 etu§ = u§ = 0. On note ainsiv® = £.(F)
défini par :

w®(0,2) =0, w*(0,2)=0, z€Q, (4)
€10,T]: w(t) eV, ©)
€l0,T]: (w(t),v) +a(w(t),v) = Fi(t,x)vi(x)do, Vel (6)

I'e

On peut énoncer le résultat suivant dont la démonstration suit celle du résultat de [1].

THEOREME 1. — Supposons I'hypothégkl-bis) satisfaite, alors le problem@)—(6)admet une unique
solutionw® € L>°(0,T; V;) vérifiantw® € L>°(0,T; H.) etw*® € L>°(0,T; V).
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De plus, 'application. : F — w® = £.(F) est linéaire continue de I'espadé€ (0,7; L*(I'c)") dans
I'espacel.>°(0,T; V.) N W1°°(0,T; H.) et on a I'estimation

e 2 NI et [t 2
o @1 g+ 15Ol < € = [ PG, ds. vee .7

ouC > 0 eta > 0 sont des constantes indépendante @¢7'.

4. Résolution du probléme de frottement régularisé et perturbé
On définit 'application. par(Fr, Fn) = F.(wr,wy) Si et seulement si
Fn(t,x) = —J (wn(t,z) +ufy(t,z)),
Fr(t,z) = —J%(wn(t,2) + uy(t,2)) ph(or(t, @) + 05t z) — 7(1)),

ou, pour alléger un peu I'écriture, on a n@tg(v) = (||v||) Dir/h(v).
Enposanf. =E.oF. etE. = {w € Whoo(0,T; H.)NL>(0,T; V%) ; w(0) = 0 dansH. }, le probléme
de frottement revient a la recherche d’un point fixeide

trouver w = (wp,wy) € E- tel quew = G.(w). 7
Le principal résultat est le suivant :

THEOREME 2. — Supposons ques, € L?(0,7; H'(I'¢)) et uj € L?(0,7; L*(T¢)™), alors, pour
chaques > 0 etn > 0, le probléme de frottement approcf® admet une unigue solutiap® € E..

La méthode de démonstration, développée dans [4], s'inspire de celle du théoréme classique de Cau
Lipschitz. On montre que, pour un entigrassez grand, I'opérateur itéré par compositioifiois :
GP =G, o---0(G., est contractardans une certaine boule fermée C E..

Conclusion. —Par rapport aux résultats de [7] dans le cas monodimensionnel, ou une simple inertie
surface était considérée, nous proposons ici une généralisation au cas multidimensionnel qui fait intervi
en plus, quandn = 0 (voir la définition delV.), ce qu'on peut interpréter comme étant un opérateur
d'élasticité de surface. Par analogie au cas monodimensionnel nous qualifions toujours cette perturba
d'«inertie de surface». Au contraire d'autres approches, cette perturbation, conserve le caractéere Ic
de la loi de frottement, autorise I'apparition de discontinuités en vitesse et permet d’exprimer les lois
contact et de frottement sous forme classique. Dans le cas monodimensionnel, on peut se passer (
régularisation des lois de contact unilatéral et de frottement, bien que celles-ci ne jouent pas de réle d
le caractére multiple des solutions. L'exercice semble plus difficile dans le cas multidimensionnel car «
utilise le caractére lipschitzien des fonctioft$ et Dir’, dans I'argument de point fixe du théoreme 2. On
pourra voir plus de détails dans [4] et dans un article en cours de préparation.
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