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Résumé. On présente un résultat d’existence et d’unicité pour un problème régularisé de contact
unilatéral avec frottement en élastodynamique obtenu d’une part en régularisant de façon
classique la loi de frottement et la condition de contact unilatéral et, d’autre part, en
perturbant le système à l’aide d’un opérateur d’élasticité dynamique défini sur le bord
de frottement. Un des intérêts de cette perturbation est de conserver le caractère local de
la loi de frottement. C’est une étape dans l’analyse des multi-solutions qui apparaissent
lorsque l’on utilise un coefficient de frottement décroissant en vitesse de glissement, et fait
suite à des travaux dans le cas monodimensionnel. 2000 Académie des sciences/Éditions
scientifiques et médicales Elsevier SAS

Existence and uniqueness result for elastodynamic friction with a
“surface inertia”

Abstract. We present an existence and uniqueness result for a regularized problem of unilateral
contact and friction in elastodynamic obtained with a perturbation of a dynamic elasticity
operator defined on the contact boundary. This perturbation keep the local characteristic
of the friction law. This is a step in the analysis of the multi-solutions appearing in this
kind of problems when a decreasing friction coefficient is used. 2000 Académie des
sciences/Éditions scientifiques et médicales Elsevier SAS

Introduction. – Le problème abordé est celui du contact unilatéral avec frottement d’un solide
linéairement élastique, soumis à une condition de frottement de Coulomb avec un coefficient constant ou
qui dépend de la vitesse de glissement. En effet, les données expérimentales (voir [5]) font fréquemment
état d’un affaiblissement du coefficient de frottement lorsque la vitesse de glissement augmente. Ce type
de dépendance amène des difficultés importantes lorsqu’on les applique à un modèle élastodynamique,
notamment, une multiplicité des solutions avec apparition de chocs en vitesse de glissement. C’est ce qui a
été remarqué dans le problème monodimensionnel d’une couche élastique infinie dans les études [2] et [3],
où de plus un critère de choix de solution à été introduit. Ce critère, dit « de retard maximal » consiste à
sélectionner la solution qui reste continue en vitesse de glissement le plus longtemps possible.

Note présentée par Philippe G. CIARLET .
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Le résultat que nous présentons ici, est une étape dans la généralisation au cas multidimensionnel des
résultats obtenus dans [7] et publiés dans [6]. Dans ces travaux, il a été montré que l’ajout d’une mince
couche verticalement rigide (une simple masse de surface dans le cas monodimensionnel) permet de
recouvrer l’unicité de la solution du problème dynamique. De plus, il a été montré (dans un cadre restreint)
que la solution du problème perturbé converge vers une solution du problème initial lorsque l’épaisseur de
la couche rigide tend vers zéro. Cette solution est en accord avec le principe du retard maximal.

1. Le problème élastodynamique de frottement

Soit Ω ⊂ Rn, avecn = 2 ou 3 le domaine occupé par le corps élastique. Pour simplifier, on suppose
l’ouvert cylindrique :Ω = ω× ]0,D[ , où ω est un domaine deRn−1, de hauteurD > 0. On noteΓD =
ω×{D} le bord des déplacements imposés,ΓN = ∂ω× ]0,D[ le bord des forces imposées etΓC = ω×{0}
le bord de frottement. Dans l’ouvertΩ l’équation de l’élastodynamique s’écrit :ρ(x) ü(t, x)−divσ(t, x) =
f(t, x), x ∈ Ω, t ∈ ]0, T ] , où T > 0 est fixé,ρ(x) la densité (dans la suiteρ(x) ≡ 1), f(t, x) les effort
extérieurs volumiques,u(t, x) ∈Rn le déplacement,̈u(t, x) l’accélération,σ(t, x) le tenseur des contraintes
relié au tenseur linéarisé des déformationsε(u) = 1

2 (∇u+∇uT) par une loi de comportement linéarisée
σ(t, x) = A(x)ε(u)(t, x), avecA(x) tenseur d’ordre quatre ayant les propriétés habituelles de symétrie et
de coercivité uniforme. La conditions surΓD estu(t, x) = uD(t, x) et surΓN estσ(t, x)n(x) = g(t, x), où
n(x) désigne la normale unitaire extérieure àΩ.

SurΓC , le corps élastique est en contact unilatéral avec un support rigide plan, lui même en mouvement
horizontal à la vitesseτ(t). On note, surΓC , uN = u · n le déplacement normal,σN = (σn) · n la
contrainte normale,uT = u − uNn le déplacement tangentiel,vG = u̇T − τ(t) la vitesse de glissement
et σT = σn − σNn la contrainte tangentielle. Avec les fonctions multivoquesJN : R→P(R) et DirT :
Rn→P(Rn) définies par :

JN (ξ) =

{0} pourξ < 0,
[0,+∞[ pourξ = 0,
∅ pourξ > 0,

DirT (u) =

{{
uT /‖uT‖

}
si uT 6= 0,{

v ∈Rn; vN = 0, ‖vT ‖6 1
}

si uT = 0,

les conditions de contact et de frottement s’écrivent pourt ∈ [0, T ] et x ∈ ΓC (voir [7]) : σN (t, x) ∈
−JN(uN (t, x)), σT (t, x) ∈ σN (t, x)µ

(
‖vG(t, x)‖

)
DirT

(
vG(t, x)

)
, oùµ : R+→ R+ est le coefficient de

frottement avecµ(v) borné, lipschitzien etµ(0) = µs > 0.

Régularisation des conditions de contact unilatéral et de frottement. –Pour mener à bien notre étude,
nous utilisons une régularisation assez classique des conditions multivoques précédentes, à l’aide des
fonctionsJηN :R→R+ et DirηT :Rn→Rn :

JηN (ξ) =

{
0 pourξ < 0,
ξ/η pourξ > 0,

DirηT (u) =

{
uT /‖uT‖ si ‖uT ‖> η,
uT /η si ‖uT ‖< η,

qui approchent les fonctions multivoquesJN et DirT respectivement. Les lois régularisées s’écrivent :
σN (t, x) =−JηN

(
uN (t, x)

)
, σT (t, x) = σN (t, x)µ

(
‖vG(t, x)‖

)
DirηT

(
vG(t, x)

)
.

Toutefois, dans le casn= 3, une difficulté technique est écartée en modifiant sur[1/η,+∞[ la fonction
JηN décrite ci-dessus :JηN (ξ) = 1/η2 pourξ ∈ [1/η,+∞[ .

2. Le problème élastodynamique avec perturbation

En supposant pour le moment que la force de frottementF (t, x) est donnée surΓC , et en posant :
a(u, v) =

∫
Ω σ(u) : ε(v) dx, b(t, v) =

∫
Ω f(t) · vdx+

∫
ΓN

g(t) · v dΓ +
∫

ΓC
F (t) · vdΓ, oùσ(u) : ε(v) =∑n

i,j=1 σij(u)εij(v), le problème élastodynamique se pose en formulation faible dans les espacesW0 =

H1(Ω)n, V0 =
{
v ∈W0; v = 0 surΓD

}
etH0 = L2(Ω)n, de la manière suivante :

u(0, x) = u0(x), u̇(0, x) = u1(x), x ∈Ω, (1)
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Figure 1. – Perturbation sur une coucheΩε.

Figure 1. – Perturbation on a layerΩε.

t ∈ ]0, T ] : u(t) ∈W0 et u(t, x) = uD(t, x), x ∈ ΓD, (2)

t ∈ ]0, T ] :
(
ü(t), v

)
+ a
(
u(t), v

)
= b(t, v), ∀v ∈ V0, (3)

oùu0 ∈W0 etu1 ∈H0 sont les conditions initiales et(·, ·) le produit de dualité entreV ′0 etV0. Rappelons
que l’existence et l’unicité d’une solution appartenant à l’espaceL∞(0, T ; W0) ∩ W1,∞(0, T ; H0) ∩
W2,∞(0, T ; V ′0) est démontrée dans Duvaut–Lions [1] sous des hypothèses suffisantes de régularité portant
suru0, u1, f , g, F etuD. En particulier on a l’hypothèse suivante :
(H) Fi et Ḟi ∈ L2

(
0, T ; L2(ΓC)n

)
.

La perturbation proposée consiste à distinguer une coucheΩε = ω× ]0, ε[⊂ Ω d’épaisseurε > 0
arbitrairement petite et dont la face inférieure est le bord de frottement.

On notex= (x′, xn). Fixons un entierm ∈N et, pour̀ = 0, 1, définissons l’espaceP`,m :

p ∈ P`,m⇐⇒ p(x) =

m∑
k=0

pk(x′) (xn)k, avecp0, p1, . . . , pm ∈H`(ω).

Alors les espacesWε =
{
v ∈ W0; v|Ωε ∈ (P1,m)n

}
, Vε =

{
v ∈ V0; v|Ωε ∈ (P1,m)n

}
, Hε =

{
v ∈ H0;

v|Ωε ∈ (P0,m)n
}

sont des sous-espaces fermés respectifs deW0, V0 etH0. Le problème élastodynamique
avec perturbation sera tout simplement le problème (1)–(3), mais posé dans ces espaces (avec des conditions
initiales approchéesuε0 et uε1). L’intérêt de cette approche est que l’on peut affaiblir l’hypothèse (H) en
l’hypothèse (voir paragraphe suivant) :
(H-bis) F ∈ L2

(
0, T ; L2(ΓC)n

)
.

3. Décomposition des solutions du problème avec perturbation

Pour résoudre le problème de frottement régularisé on va décomposeruε, la solution du problème
perturbé, en la somme d’une fonction de référenceuε solution du problème perturbé pourF = 0 et d’une
fonctionwε solution de ce problème pourf = 0, g = 0, uD = 0 etuε0 = uε1 = 0. On note ainsiwε = Eε(F )
défini par :

wε(0, x) = 0, ẇε(0, x) = 0, x ∈Ω, (4)

t ∈ ]0, T ] : wε(t) ∈ Vε, (5)

t ∈ ]0, T ] :
(
ẅε(t), v

)
+ a
(
wε(t), v

)
=

∫
ΓC

Fi(t, x)vi(x) dσ, ∀v ∈ Vε. (6)

On peut énoncer le résultat suivant dont la démonstration suit celle du résultat de [1].

THÉORÈME 1. – Supposons l’hypothèse(H-bis)satisfaite, alors le problème(4)–(6)admet une unique
solutionwε ∈ L∞(0, T ; Vε) vérifiantẇε ∈ L∞(0, T ; Hε) et ẅε ∈ L∞(0, T ; V ′ε ).
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De plus, l’applicationEε : F 7→ wε = Eε(F ) est linéaire continue de l’espaceL2
(
0, T ; L2(ΓC)n

)
dans

l’espaceL∞(0, T ; Vε)∩W1,∞(0, T ; Hε) et on a l’estimation:∥∥wε(t)∥∥2

1,Ω
+
∥∥ẇε(t)∥∥2

0,Ω
6C eαt

ε

∫ t

0

∥∥F (s)
∥∥2

0,ΓC
ds, ∀t ∈ [0, T ],

oùC > 0 etα > 0 sont des constantes indépendante deε etT .

4. Résolution du problème de frottement régularisé et perturbé

On définit l’applicationFε par(FT , FN ) =Fε(wT ,wN ) si et seulement si:

FN (t, x) =−JηN
(
wN (t, x) + uεN (t, x)

)
,

FT (t, x) =−JηN(wN (t, x) + uεN (t, x)
)
µηT
(
ẇT (t, x) + u̇εT (t, x)− τ(t)

)
,

où, pour alléger un peu l’écriture, on a notéµηT (v) = µ(‖v‖) DirηT (v).
En posantGε = Eε◦Fε etEε =

{
w ∈W1,∞(0, T ; Hε)∩L∞(0, T ; Vε) ; w(0) = 0 dansHε}, le problème

de frottement revient à la recherche d’un point fixe deGε :

trouver w = (wT ,wN ) ∈Eε tel quew = Gε(w). (7)

Le principal résultat est le suivant :

THÉORÈME 2. – Supposons queuεN ∈ L2
(
0, T ; H1(ΓC)

)
et u̇εT ∈ L2

(
0, T ; L2(ΓC)n

)
, alors, pour

chaqueε > 0 etη > 0, le problème de frottement approché(7) admet une unique solutionwε ∈Eε.
La méthode de démonstration, développée dans [4], s’inspire de celle du théorème classique de Cauchy–

Lipschitz. On montre que, pour un entierp assez grand, l’opérateur itéré par compositionp fois :
Gpε = Gε ◦ · · · ◦ Gε, est contractantdans une certaine boule ferméeBε ⊂Eε.

Conclusion. –Par rapport aux résultats de [7] dans le cas monodimensionnel, où une simple inertie de
surface était considérée, nous proposons ici une généralisation au cas multidimensionnel qui fait intervenir
en plus, quandm = 0 (voir la définition deWε), ce qu’on peut interpréter comme étant un opérateur
d’élasticité de surface. Par analogie au cas monodimensionnel nous qualifions toujours cette perturbation
d’« inertie de surface ». Au contraire d’autres approches, cette perturbation, conserve le caractère local
de la loi de frottement, autorise l’apparition de discontinuités en vitesse et permet d’exprimer les lois de
contact et de frottement sous forme classique. Dans le cas monodimensionnel, on peut se passer de la
régularisation des lois de contact unilatéral et de frottement, bien que celles-ci ne jouent pas de rôle dans
le caractère multiple des solutions. L’exercice semble plus difficile dans le cas multidimensionnel car on
utilise le caractère lipschitzien des fonctionsJηN et DirηN dans l’argument de point fixe du théorème 2. On
pourra voir plus de détails dans [4] et dans un article en cours de préparation.
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