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Abstract

This paper deals with a numerical analysis of a one-dimensional dynamic purely elastic (i.e. hyperbolic) model with dry friction.

Since we consider a Coulomb friction law with a slip velocity dependent coe�cient, generally, the problem has more than one solution.

A mass perturbation approach is developed to regain the uniqueness and to perform the numerical analysis. This study can be viewed

as a ®rst step in the numerical analysis of more elaborated dynamic purely elastic problems with dry friction. Ó 2001 Elsevier Science

B.V. All rights reserved.

1. Introduction

Friction laws with a slip velocity dependent coe�cient were introduced to modelize the stick±slip phe-
nomenon, which is the appearance of self-sustained vibration in mechanical systems submitted to dry
friction. Even though there is not a universally accepted model of this phenomenon, the dynamic aspect
seems to be essential in the behavior of such systems. Some mathematical and numerical results tend to
prove that multi-dimensional systems submitted to dry friction and unilateral contact can develop insta-
bilities even if the simplest Coulomb law with a constant coe�cient is chosen (see [3,15,11,16]). Because of
the results on systems with ®nite number of degree of freedom, the Coulomb law with a slip velocity de-
pendent coe�cient is still considered as a good candidate for the modelization of stick±slip motion of elastic
structures.

The model described above is a one-dimensional purely elastic model with dry friction and unilateral
contact. It is well known that there are major mathematical di�culties to treat such dynamical model,
due to the bad regularity of the solutions (discontinuities in velocity). This work is a continuation of a
paper [19] which treats the modeling part and also of the work of Ionescu and Paumier [8]. This one-
dimensional model, because of its simplicity, allows to enhance some fundamental properties of the
dynamic behavior of elastic structure under dry friction and unilateral contact. The purpose here is to
perform a numerical analysis of the purely elastic case, with a mass perturbation approach. This mass
perturbation approach is also studied in [19] where it is proven, under certain restrictions, that the se-
quence of solutions of the perturbed problem converges toward a particular solution of the non-perturbed
problem. This particular solution can be related to the selection made by the perfect delay criterion (see
[8,10]).
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2. The one-dimensional elastic model with dry friction

The model we deal with in this paper is a slight extension of the one introduced in [8,19], and was also
studied in [17] and fully described in [18]. This model represents the dynamic motion of an elastic slab which
slides with friction on a moving rigid foundation (see Fig. 1). The slab is assumed to be linearly elastic with
constant Lam�e coe�cients k and G, density q and height H.

With convenient initial data and lateral boundary conditions, it is possible to consider motions of the
slab which only depend on the vertical coordinate x3. So, if we denote by u�t; x3� � �u1�t; x3�;
u2�t; x3�; u3�t; x3�� the displacement of the slab, the evolution of the vertical displacement u3�t; x3� is de-
scribed by the equation

o2
ttu3�t; x3� � c2o2

x3x3
u3�t; x3� in �0; T �� �0;H �; �1�

where c2 �
������������������������k� 2G�=qp

is the velocity of longitudinal waves. The slab is assumed to be ®xed on its top

u3�t;H� � ÿD with D > 0 8t 2 �0; T �; �2�
and it is submitted to a unilateral contact condition on x3 � 0:

ox3
u3�t; 0�6 0; ÿu3�t; 0�6 0; ox3

u3�t; 0�u3�t; 0� � 0 8t 2 �0; T �: �3�
It is convenient to express this later condition by the inclusion

�k� 2G�ox3
u3�t; 0� 2 ÿJN �ÿu3�t; 0�� 8t 2 �0; T �; �4�

where the multi-valued map

JN�x� � f0g if x < 0;
0;�1� � if x � 0;

�
is the sub-di�erential of the convex indicator function of the interval �ÿ1; 0�.

The evolution of the horizontal displacement uT �t; x3� � u1�t; x3�; u2�t; x3�� � is described by the equation

o2
ttuT �t; x3� � c1o2

x3x3
uT �t; x3�; in �0; T �� �0;H �; �5�

where c1 �
���������
G=q

p
is the velocity of transversal waves. On x3 � H it is assumed that the slab is ®xed

uT �t;H� � 0 8t 2 �0; T �: �6�
The friction is modelized by a Coulomb law of friction with a slip velocity dependent coe�cient on the
contact boundary x3 � 0:

Fig. 1. Elastic slab in sliding with dry friction on a rigid foundation which is in uniform motion v� along the x1 axis.
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8t 2 �0; T �
if otuT �t; 0� � v� then jGox3

uT �t; 0�j6 ÿ �k� 2G�ox3
u3�t; 0�l�0�; �7�

if otuT �t; 0� 6� v� then
jGox3

uT �t; 0�j � ÿ�k� 2G�ox3
u3�t; 0�l�kotuT �t; 0� ÿ v�k�;

9 kP 0; otuT �t; 0� ÿ v� � kox3
uT �t; 0�;

�
�8�

where l : R� ! R� is the friction coe�cient, and v� the constant planar velocity of the rigid foundation. It
is easy to see that this friction condition is equivalent to the following inclusion:

8t 2 �0; T �;
Gox3

uT �t; 0� 2 ÿ�k� 2G�ox3
u3�t; 0�l�kotuT �t; 0� ÿ v�k�Dir�otuT �t; 0� ÿ v��; �9�

where the multi-valued map

Dir�v� � v
kvk

� �
if v 6� 0; Dir�0� � B�0; 1�;

is de®ned on R2, and is the sub-di�erential of the convex map v 7!kvk. The problem is completed by initial
conditions

u�0; x3� � u0�x3�; otu�0; x3� � u1�x3� 8x3 2 �0;H �: �10�
Finally, introducing the matrix

C �
c1 0 0
0 c1 0
0 0 c2

0@ 1A;
and with the previous notations, the problem can be written as follows:

�P1� o2
ttu�t; x3� � Co2

x3x3
u�t; x3� in �0; T �� �0;H �; �11�

u�t;H� � �0; 0;ÿD� with D > 0 8t 2 �0; T �; �12�
u�0; x3� � u0�x3�; otu�0; x3� � u1�x3� 8x3 2 �0;H �; �13�
�k� 2G�ox3

u3�t; 0� 2 ÿJN�ÿu3�t; 0�� 8t 2 �0; T �; �14�
Gox3

uT �t; 0� 2 ÿ�k� 2G�ox3
u3�t; 0�l�kotuT �t; 0� ÿ v�k�Dir�otuT �t; 0� ÿ v�� 8t 2 �0; T �; �15�

Due to the bad behavior of both the unilateral contact and the friction conditions, it cannot be expected
to have any solution of the problem in a classical sense (i.e. twice continuously di�erentiable). It is easy to
see that, most of the time, the velocity otu is not continuous (see [8]). One can also notice that it is possible
to solve independently the problem in vertical displacement u3.

Friction laws such as Coulomb law with a sliding velocity dependent coe�cient have a long history.
Rabinowicz already studies such dependencies in 1958 in [14]. Important experimental works on the
measurement of this dependency has been made (see for instance [2,5,7,10,21]). Most of these experiments
have been made on the steady state because transient states are extremely di�cult to measure.

Very often, a decreasing coe�cient of friction is used in order to modelize stick±slip phenomenon. The
value of the coe�cient for a sliding velocity equal to zero is called the static coe�cient ls, and the as-
ymptotic value for a huge sliding velocity is called the dynamic coe�cient of friction ld.

3. On the existence and uniqueness

For convenience and from now on, we assume T < �H=c2�. This is not strictly necessary, but the analysis
will be greatly simpli®ed, and this is not a real restriction, since all the following results can be extended for
T > �H=c2� in studying the problem successively on intervals
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0;
H
c2

� �� �
;

H
c2

; 2
H
c2

� �
; 2

H
c2

; 3
H
c2

� �
; . . .

Let us introduce the quantities

b��t; x3� � otu�t; x3� � Co3u�t; x3�; �16�
b��t; x3� � otu�t; x3� � Co3u�t; x3�; �17�

which are propagated along the characteristic lines of Eq. (11), i.e. that for a convenient dt and for e is � or
ÿ one has

b1e�t � dt; x3� � b1e�t; x3 � ec1dt�; �18�
b2e�t � dt; x3� � b2e�t; x3 � ec1dt�; �19�
b3e�t � dt; x3� � b3e�t; x3 � ec2dt�; �20�

where b1e, b2e and b3e are the components of be. Since we assume T < H=c2, and thanks to these equalities, if
we set

uN �t� � ÿu3�t; 0�; vs � otuT �t; 0� ÿ v�; bT e � b1e

b2e

� �
; �21�

and if we denote by

S�t� � ÿ �k� 2G�
c2

b3��t; 0�
�

� d

dt
uN �t�

�
; �22�

the contact pressure which is always positive, then Problem (P1) becomes

�P2� Find uN and vs�t�such that :

d

dt
uN �t� 2 ÿb3��t; 0� ÿ c2

k� 2G
JN �uN�t��; �23�

uN �0� � uN0 � u0
3�0; 0�; �24�

G
c1

�bT� ÿ v�� 2 G
c1

vs�t� � S�t�l�kvs�t�k�Dir�vs�t��: �25�

One can notice that those two equations are not of the same kind. Eqs. (23) and (24) form a ®rst-order
di�erential inclusion Cauchy problem in the variable uN , and Eq. (25) is a scalar inclusion in variable vs.
Problem (23), (24) is still independent of Eq. (25) and the following result holds:

Proposition 1. If b3��:; 0� 2 L1�0; T � and if the initial condition satisfies uN06 0, the following Cauchy problem

d

dt
uN �t� 2 ÿb3��t; 0� ÿ c2

k� 2G
JN �uN �t��; a:e: in �0; T �;

uN �0� � uN0;

(
�26�

has a unique absolutely continuous solution, and this solution satisfies uN �t�6 0 on �0; T �.

The proof of this result comes directly from the result of Deimling [4] on di�erential inclusions, and the fact
that the multi-valued map

�t; x� 7! ÿ b3��t; 0� ÿ c2

k� 2G
JN �x�; �27�

has convex values, is measurable, upper semi-continuous and one-sided Lipschitz. �

Unfortunately, inclusion (25) has generally not a unique solution. We can only prove the following
result:
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Proposition 2. If the friction coefficient l is a Lipschitz continuous and bounded positive function of the sliding
velocity vs, then Inclusion (25) has at least one solution. Moreover, if the friction coefficient l is an increasing
function of vs this solution is unique.

The proof of this result is a simple study of the shape of the right-hand side of Inclusion (25). �

In fact, when the friction coe�cient has at least one decreasing branch, it is always possible to exhibit a
case where there is more than one solution to Inclusion (25). See [8,19] for such examples. Moreover, this is
the interesting case, since it seems to be necessary to use a coe�cient with a decreasing branch to modelize
well stick±slip phenomena.

4. Mass perturbation and perfect delay criterion

One of the major problems is thus the non-uniqueness of the solution of Problem (P1). In fact, certain
considerations of mechanical order (see [19]) allow to say that most of the solutions of Inclusion (25) are
not acceptable. Authors like [8,10] proposed a criterion in order to choose the convenient solution of the
problem. This criterion is a dynamic extension of the perfect delay criterion which comes from the ca-
tastrophe theory and which can be formulated as follows:

the system only jump when it has no other choice: �28�

This criterion is not su�ciently accurate to always select a unique solution (it does in experience of pure
loading or pure unloading, see [8]).

Another approach to this problem is to introduce a viscous term in the elastic law and to make this term
to vanish. In this framework, it is possible to prove that the visco-elastic version of the problem has a
unique solution. But at this moment there is no theoretical results of convergence when the viscous term
vanishes.

The approach we introduced in a work [19], is to consider a mass perturbation of the friction condition.
The classical friction condition

Gox3
uT �t; 0� 2 S�t�l�kotuT �t; 0� ÿ v�k�Dir�otuT �t; 0� ÿ v��; �29�

is replaced by the following condition

eo2
ttuT � Gox3

uT �t; 0� 2 S�t�l�kotuT �t; 0� ÿ v�k�Dir�otuT �t; 0� ÿ v��; �30�

where e is the perturbation parameter. The additional term eo2
ttuT can be assimilated as a surface mass on

the contact boundary. This kind of perturbations, similarly to existing friction laws as Dieterich±Ruina
laws (see [20]), make a di�erential operator to appear on the contact boundary. Further development of
such boundary perturbations in upper dimensions are presented in [13].

With this mass perturbation, the Problem (P2) becomes

�P3� Find uN and vs�t�suchthat :

d

dt
uN �t� 2 ÿb3��t; 0� ÿ c2

k� 2G
JN �uN�t��; �31�

uN �0� � u0
N � u0

3�0; 0�; �32�
e

d

dt
vs�t� 2 G

c1

�bT� � vs�t� ÿ v�� � S�t�l�kvs�t�k�Dir�vs�t��; �33�
vs�0� � v0

s � u1
T �0; 0�: �34�

The ®rst result is that Problem (P3) has a unique solution.
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Proposition 3. If bT� 2 �L1�0; T ��2 and if the contact pressure S is a positive function and belongs to L1�0; T �
(this is the case if S comes from the solution of (31), (32) and if conditions of Proposition (1) hold), then the
following Cauchy problem:

e
d

dt
vs�t� 2 G

c1

�bT� � vs�t� ÿ v�� � S�t�l�kvs�t�k�Dir�vs�t��;
vs�0� � v0

s ;

8<: �35�

has a unique absolutely continuous solution.

Similarly as for Proposition 1, this result comes from the fact that the multi-valued map

�t; v� 7! G
c1

�bT� � vÿ v�� � S�t�l�kvk�Dir�v�; �36�

has convex values, is upper semi-continuous and one-sided Lipschitz. �

In a more restrictive framework, in [19], we proved that when e goes to zero the solution of the perturbed
problem converges toward a particular solution of the initial problem. The connection between this and the
perfect delay criterion is that if this criterion selects a unique solution, then this is also the limit of the
solutions of the perturbed problems.

5. Regularized unilateral contact condition

For the convergence proof of Section 6, we need the solution to have a certain regularity. The regularity
of uN is not su�cient. One of the most usual way to regularize the unilateral contact condition is to consider
a continuous approximation of the map JN . It is the case, for example, for the well-known normal com-
pliance law developed by Oden and Martins in [12]. Here we consider the following simple piecewise linear
approximation J g

N of JN :

J g
N
�x� � 0 if x < 0;

x
g if x P 0;

�
�37�

The solutions of the di�erential equation

d

dt
uN �t� � ÿb3��t; 0� ÿ c2

k� 2G
J g

N
�uN�t��; �38�

are such that the time derivative of uN is Lipschitz continuous since b3��t; 0� is. This regularization cor-
responds to a certain interface elasticity.

6. Numerical analysis

In this section we present a numerical scheme for the perturbed problem. Once again, the results will be
established for T < H=c2 even though they can be easily extended for T > H=c2 and of course even though
the numerical scheme has not himself such a restriction. The scheme is a coupling of a Lax±Wendro�
scheme for the interior of the slab and of implicit Euler schemes for the equations on the boundary. The
implicit Euler scheme is chosen for the simplicity of the proof. More accurate schemes can be used (in [18]
we use a theta method, with a parameter 1=2, which is also an two points Adams±Moulton scheme, and
gives a better numerical approximation). The convergence is obtained for the regularized unilateral contact
condition. This is an open problem to know if it should be possible to work with the normal contact
condition. This analysis can be viewed as a ®rst step to improve numerical analysis results for purely elastic
friction problems with a complex friction law.

2036 Y. Renard / Comput. Methods Appl. Mech. Engrg. 190 (2001) 2031±2050



6.1. Description of the scheme

The slab is discretized with a constant step Dz � H=Nz and a constant time step Dt � T=Nt. The principal
variables are u;t � otu and u;3 � ox3

u. Let us denote by

ui;n �
ui;n

1

ui;n
2

ui;n
3

0B@
1CA; ui;n

;t �
ui;n

1;t

ui;n
2;t

ui;n
3;t

0B@
1CA; and ui;n

;3 �
ui;n

1;3

ui;n
2;3

ui;n
3;3

0B@
1CA;

the approximated values of, respectively u, u;t and u;3 at the time tn � nDt and at xi
3 � iDz. We also use the

following notations for the tangential part:

u0;n
T � u0;n

1

u0;n
2

� �
; u0;n

T ;t �
u0;n

1;t

u0;n
2;t

 !
and u0;n

T ;3 �
u0;n

1;3

u0;n
2;3

 !
:

With the matrix

D � Dt
Dz

C �
c1

Dt
Dz 0 0

0 c1
Dt
Dz 0

0 0 c2
Dt
Dz

0@ 1A � d1 0 0
0 d1 0
0 0 d2

0@ 1A;
The Lax±Wendro� scheme on the interior of the slab, for 16 i6Nz ÿ 1, reads

ui;n�1
;t � ui;n

;t �
D

2
uiÿ1;n
;t

�
ÿ 2ui;n

;t � ui�1;n
;t

�
�DC

2
ui�1;n
;3

�
ÿ uiÿ1;n

;3

�
; �39�

ui;n�1
;3 � ui;n

;3 �
D

2
uiÿ1;n
;3

�
ÿ 2ui;n

;3 � ui�1;n
;3

�
�DCÿ1

2
ui�1;n
;t

�
ÿ uiÿ1;n

;t

�
: �40�

With

bi;n
� � ui;n

;t � Cui;n
;3 and bi;n

ÿ � ui;n
;t ÿ Cui;n

;3 ; �41�
this scheme reads also

bi;n�1
� � bi;n

� �D�bi�1;n
� ÿ bi;n

� �; 06 i6Nz ÿ 1; �42�
bi;n�1
ÿ � bi;n

ÿ �D�biÿ1;n
ÿ ÿ bi;n

ÿ �; 16 i6Nz; �43�
The approximation of the Dirichlet condition on z � H is

uNz;n�1
;3 � uNz;n

;3 �D�uNzÿ1;n
;3 ÿ uNz;n

;3 � ÿDCÿ1uNzÿ1;n
;t ; �44�

uNz;n�1
;t � 0: �45�

or

bNz;n�1
� � ÿbNz;n�1

ÿ : �46�
The unilateral contact condition, which corresponds to the di�erential inclusion

d

dt
u3�t; 0� 2 b3��t; 0� � JN �ÿu3�t; 0��;

for the nonregularized case or to the di�erential equation

d

dt
u3�t; 0� � b3��t; 0� � c2

k� 2G
J g

N
�ÿu3�t; 0��;

for the regularized case, is approximated with an implicit Euler scheme. This gives for the non regularized
case
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u0;n�1
3 � �u0;n

3 � Dtb0;n�1
3� ��; �47�

where �x�� � max�0; x� is the positive part of x. The value of u0;n�1
3;t is approximated by

u0;n�1
3;t � b0;n�1

3� if u0;n�1
3 6� 0;

0 otherwise;

�
�48�

For the regularized case, the implicit Euler scheme gives

u0;n�1
3 � �u0;n

3 � Dtb0;n�1
3� �� �

1

1� Dt
~g

�u0;n
3 � Dtb0;n�1

3� �ÿ; �49�

u0;n�1
3;t � b0;n�1

3� � J ~g
N
�ÿu0;n�1

3 �; �50�
where ~g � k�2G

c2
g.

The contact pressure is thus given by

Sn�1 � ÿ k� 2G
c2

�b0;n�1
3� ÿ u0;n�1

3;t �: �51�

Those schemes are such that Sn�1 P 0. Moreover, for the nonregularized case, one has

u0;n�1
3 P 0; Sn�1u0;n�1

3 � 0;

similarly as the continuous case.
Now, concerning the perturbed friction condition, we have to approximate the following di�erential

inclusion:

e
d

dt
uT ;t 2

G
c1

�bT��t� ÿ uT ;t� ÿ S�t�l�kuT ;t ÿ V e�t�k�Dir�uT ;t ÿ V e�t��;

The implicit Euler scheme reads

u0;n�1
T ;t 2 u0;n

T ;t �
Dt
e

G
c1

b0;n�1
T�

ÿ�
ÿ u0;n�1

T ;t

�ÿ Sn�1l ku0;n�1
T ;t

ÿ ÿ V e�tn�1�k�Dir�u0;n�1
T ;t ÿ V e�tn�1��

�
; �52�

6.2. Properties of the Lax±Wendro� scheme

It is well known that the Lax±Wendro� scheme is not stable if the Courant±Friedrichs±Levi condition
d2 � Dt

Dz c26 1 does not hold. Thus we assume that the matrix D has all its coe�cients between 0 and 1.
The Lax±Wendro� scheme has important properties concerning the L1 stability. If we consider the

following quantities:

Bn
max � max

06 i6Nz

�kbi;n
� k; kbi;n

ÿ k�; �53�
dBn

max � max
06 i6Nzÿ1

�kbi�1;n
� ÿ bi;n

� k; kbi�1;n
ÿ ÿ bi;n

ÿ k�; �54�

then from Eqs. (42) and (43) it comes

kbi;n�1
� k � kbi;n

� �D�bi�1;n
� ÿ bi;n

� �k6Bn
max; 06 i6Nz ÿ 1;

kbi;n�1
ÿ k � kbi;n

ÿ �D�biÿ1;n
ÿ ÿ bi;n

ÿ �k6Bn
max; 16 i6Nz;

and

kbi;n�1
� ÿ bi�1;n�1

� k � kbi;n
� ÿ bi�1;n

� �D�bi�1;n
� ÿ bi�2;n

� ÿ bi;n
� � bi�1;n

� �k
� dBn

max; 06 i6Nz ÿ 2;

kbi;n�1
ÿ ÿ biÿ1;n�1

ÿ k6 kbi;n
ÿ ÿ biÿ1;n

ÿ �D�biÿ1;n
ÿ ÿ biÿ2;n

ÿ ÿ bi;n
ÿ � biÿ1;n

ÿ �k
6 dBn

max; 26 i6Nz:
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That is to say that the Lax±Wendro� scheme on the interior of the slab makes Bn
max and dBn

max only to
decrease. It is not di�cult to see that the Dirichlet condition do the same

kbNz;n�1
� k � kbNz;n�1

ÿ k6Bn
max;

kbNzÿ1;n�1
� ÿ bNz;n�1

� k � kbNzÿ1;n
� �D�bNz;n

� ÿ bNzÿ1;n
� � ÿ bNz;n

� �D�bNzÿ1;n
ÿ ÿ bNz;n

ÿ �k;
6 dBn

max:

Thus we can conclude

Bn�1
max6 max�Bn

max; kb0;n�1
ÿ k�;

dBn�1
max6 max�dBn

max; kb1;n�1
ÿ ÿ b0;n�1

ÿ k�:
Moreover, for n6Nz, the following estimation holds:

kb0;n
� k6B0

max; �55�
kb1;n
� ÿ b0;n

� k6 dB0
max: �56�

The reason is that if one develops b0;n
� , one has

b0;n
� � �1ÿD�b0;nÿ1

� �Db1;nÿ1
� ;

� �1ÿD�2b0;nÿ2
� � 2�1ÿD�Db1;nÿ2

� �D2b2;nÿ2
� ;

� . . .

�
Xj

i�0

j

i

� �
Di�1ÿD�jÿibi;nÿj

� ; for 06 j6 min�n;Nz�;

where the
j
i

� �
are the combinations of i elements among j. Since

Pj
i�0

j
i

� �
Di�1ÿD�jÿi �

�1ÿD�D�j � 1 the result hold. The same computation can be made with kb1;n
� ÿ b0;n

� k.

6.3. Stability of the schemes

We ®rst deal with the u3 component of the displacement, i.e. the component submitted to the unilateral
contact condition. We consider Bn

3 max and dBn
3 max:

Bn
3 max � max

06 i6Nz

�jbi;n
3�j; jbi;n

3ÿj�; �57�
dBn

3 max � max
06 i6Nzÿ1

�jbi�1;n
3� ÿ bi;n

3�j; jbi�1;n
3ÿ ÿ bi;n

3ÿj�; �58�

We just saw that

Bn�1
3 max6 max�Bn

3 max; jb0;n�1
3ÿ j�;

dBn�1
3 max6 max�dBn

3 max; jb1;n�1
3ÿ ÿ b0;n�1

3ÿ j�:

Proposition 4. If the CFL condition d26 1 holds, schemes (39)±(46), (47), (48) has the following properties:

Bn
3 max6B0

3 max;

ju0;n
3 j6 ju0;0

3 j � TB0
3 max:

Proof. We have

b0;n�1
3ÿ � ÿb0;n�1

3� if u0;n�1
3;t � 0;

b0;n�1
3� if u0;n�1

3;t � b0;n�1
3� ;

(
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Thus jb0;n�1
3ÿ j � jb0;n�1

3� j and

Bn�1
3 max6Bn

3 max6 � � � 6B0
3 max:

For u0;n
3 now we have

ju0;n�1
3 ÿ u0;n

3 j6Dtjb0;n�1
3� j;

from the scheme, and thus

ju0;n
3 j6 TB0

3 max: �

Proposition 5. If exists dmin > 0 such that dmin6 d26 1 then schemes (39)±(46), (49), (50) have the following
properties: Exist C1;C2;C3 and C4 four positive constants which only depend on initial data such that

Bn
3 max6C1;

ju0;n
3 j6C2;

dBn
3 max6C3dB0

3 max � DtC4:

Proof. We saw that

jb0;n
3�j6B0

3 max; jb1;n
3� ÿ b0;n

3�j6 dB0
3 max; �59�

and it follows from scheme (49), (50) that

ju0;n�1
3 j6 jDtb0;n�1

3� � u0;n
3 j;

6 ju0;n
3 j � DtB0

3 max;

thus, since we assume n < Nz:

ju0;n
3 j6 ju0;0

3 j � NzDtB0
3 max;

6 ju0;0
3 j �

H
c2

B0
3 max:

Moreover, we can also deduce from schemes (49), (50) that

ju0;n�1
3 ÿ u0;n

3 j6Dt jb0;n�1
3� j

�
� ju

0;n�1
3 j
~g

�
;

6DtB0
3 max 1

ÿ � 2NzDt � ju0;0
3 j
�
:

and because

b0;n�1
3ÿ � b0;n�1

3� � 2c2u0;n�1
3;3 ;

and

u0;n�1
3;3 � 0 if u0;n�1

3 P 0;
u0;n�1

3

c2 ~g if u0;n�1
3 < 0;

(
we have

jb0;n�1
3ÿ j6 jb0;n�1

3� j �
2ju0;n�1

3 j
~g

;

6B0
3 max 1

�
� 2

H
c2

�
� 2ju0;0

3 j:
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That is to say

Bn
3 max6B0

3 max 1

�
� 2

H
c2

�
� 2ju0;0

3 j:

Now if we compute

jb1;n�1
3ÿ ÿ b0;n�1

3ÿ j � jb1;n
3ÿ � D�b0;n

3ÿ ÿ b1;n
3ÿ� ÿ b0;n�1

3ÿ j;
6 �1ÿ d2�jb1;n

3ÿ ÿ b0;n
3ÿj � 2jc2u0;n

3;3 ÿ c2u0;n�1
3;3 j � jb0;n�1

3� ÿ b0;n
3�j;

6 �1ÿ d2�dBn
3 max � d2dB0

3 max � 2
Dt
~g

B0
3 max�1� NzDt � ju0;0

3 j�;

it comes

dBn�1
3 max6 �1ÿ d2�dBn

3 max � d2dB0
3 max � 2

Dt
~g

B0
3 max�1� 2NzDt � ju0;0

3 j�;

and by induction

dBn
3 max6 �1ÿ d2�ndB0

3 max � d2dB0
3 max

�
� 2

Dt
~g

B0
3 max�1� NzDt�

�Xnÿ1

i�0

�1ÿ d2�i;

6 �1ÿ d2�ndB0
3 max �

1

d2

d2dB0
3 max

�
� 2

Dt
~g

B0
3 max 1

ÿ � NzDt � ju0;0
3 j
��
;

6 1� � �1ÿ d2�n�dB0
3 max � Dt

2

~gd2

B0
3 max 1

�
� H

c2

�
;

6 2dB0
3 max � Dt

2

~gdmin

B0
3 max 1

�
� H

c2

� ju0;0
3 j
�
: �

Now, for the complete scheme, including the friction condition, we consider Bn
T max and dBn

T max:

Bn
T max � max

06 i6Nz

�kbi;n
T�k; kbi;n

Tÿk�; �60�
dBn

T max � max
06 i6Nzÿ1

�kbi�1;n
T� ÿ bi;n

T�k; kbi�1;n
Tÿ ÿ bi;n

Tÿk�; �61�

where bi;n
T� and bi;n

Tÿ are the horizontal components of bi;n
T and bi;n

ÿ .

Proposition 6. If exists dmin > 0 such that dmin6 d26 1 then schemes (39)±(46), (51), (52) combined with either
schemes (47), (48) or (49), (50) has the following properties: there exist four positive constant C1;C2;C3 and C4

which only depend on the initial condition such that

Bn
T max6C1;

ku0;n
3 k6C2;

dBn
T max6C3dB0

T max � DtC4:

Proof. From (52), it comes

u0;n�1
T ;t 2 u0;n

T ;t �
Dt
e

G
c1

b0;n�1
T�

ÿ�
ÿ u0;n�1

T ;t

�ÿ Sn�1l ku0;n�1
T ;t

ÿ ÿ V e�tn�1�k�Dir�u0;n�1
T ;t ÿ V e�tn�1��

�
;

i.e.

u0;n�1
T ;t 2 u0;n

T ;t � DtF �tn�1; u0;n�1
T ;t �; �62�
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with a multi-valued map F which has a bounded growth

kF �tn; x�k6 c�tn��1� kxk�;
with c�tn� de®ned by

c�tn� � 1

e
max

G
c1

; 1

� �
kb0;n

T�k
ÿ � kSnkklk1

�
: �63�

From the previous propositions, kSnk is bounded independently of n. Moreover, since we assume n < Nz,
kb0;n

T�k6B0
T max the quantity c�tn� is bounded independently of n and Dt for t < H

c2
dmin. Setting

cmax � max
06 i<2Nz

c�ti�;

and from (62) we deduce that

ku0;n�1
T ;t k6 ku0;n

T ;tk � Dtcmax�1� ku0;n�1
T ;t k�:

We assume Dt < 1
2cmax

, thus

ku0;n�1
T ;t k6

1

1ÿ Dtcmax

�ku0;n
T ;tk � cmaxDt�

6 �1� 2cmaxDt��ku0;n
T ;tk � cmaxDt�:

And by induction

ku0;n
T ;t
k6 �1� 2cmaxDt�nku0

T ;tk � Dtcmax

Xn

i�1

�1� 2cmaxDt�i:

Since 1� 2cmax
T
N

ÿ �N 6 e2Tcmax :

ku0;n
T ;t
k6 e4H

c2
dmincmax ku0

T ;tk
�

� 2cmax

H
c2

dmin

�
:

Setting

C0
1 � e4H

c2
dmincmax ku0

T ;tk
�

� 2
H
c2

cmaxdmin

�
;

we deduce immediately

kb0;n�1
Tÿ k6 kb0;n�1

T� k � 2ku0;n
T ;tk;

6B0
T max � 2C0

1 :

Thus

ku0;n�1

T ;t
ÿ u0;n

T ;t
k6DtkF �tn � 1; u0;n�1

T ;t
�k;

6Dtcmax�1� ku0;n�1

T ;t
k�;

6Dtcmax�1� C0
1�;

and

kb1;n�1
Tÿ ÿ b0;n�1

Tÿ k6 kb1;n
Tÿ � d1�b0;n

Tÿ ÿ b1;n
Tÿ� ÿ b0;n�1

Tÿ k;
6 �1ÿ d1�kb0;n

Tÿ ÿ b1;n
Tÿk � 2ku0;n�1

T ;t ÿ u0;n
T ;tk � kb0;n�1

T� ÿ b0;n
T�k;

6 �1ÿ d1�dBn
T max � d1dB0

T max � 2Dtcmax�1� C0
1�:
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And now just as for Proposition 5, we conclude by induction that

dBn
T max6 2dB0

T max � 2
Dt
d1

cmax�1� C0
1�: �

6.4. Convergence

To simplify the proof, we will assume that the ratio Dt
Dz is constant, i.e. Nz is proportional to Nt:

Nz � 1

g
Nt;

where g is independent of Nt and satis®es the CFL condition

gP
c2T
H

;

Let us denote by ui;n;Nt
;t ; ui;n;Nt

;3 the discrete solution given by one of the schemes and uNt
;t �t; x3�; uNt

;3 �t; x3� the
linear interpolations of the discrete solutions

uNt
;t �nDt � dt; iDz� dz� � �1ÿ dt���1ÿ dz�ui;n;Nt

;t � dzui�1;n;Nt� � dt��1ÿ dz�ui;n�1;Nt
;t � dzui�1;n�1;Nt�;

with 06 dt6Dt and 06 dz6Dz. An analogous de®nition is taken for uNt
;3 �t; x3�.

Lemma 1. If the sequence �uNt
;t ; u

Nt
;3 �Nt

uniformly converges toward a pair of functions �u;t; u;3� and if the
functions u;t and u;3 are continuous on �0; T � � �0;H � then these functions satisfy the relations (18)±(20) on the
characteristic lines.

Proof. We establish the result on only one relation and one component, the vertical component, because the
proof is identical for the other cases. As before, we de®ne

b3��t; x3� � u3;t�t; x3� � c2u3;3�t; x3�;
bNt

3��t; x3� � uNt
3;t�t; x3� � c2uNt

3;3�t; x3�;
bi;n;Nt

3� � ui;n;Nt
3;t � c2ui;n;Nt

3;3 :

For any z0; t0; d0 such that

d0 2 0;max T ;
H
c2

� �� �
; z0 2 0;H

�
ÿ gd0

H
T

�
; t0 2 �0; T ÿ d0�:

Let us de®ne

nNt
1 �

Ntt0

T

� �
; iNt

2 �
Ntz0

gH

� �
; nNt

2 �
Nt�t0 � d0�

T

� �
;

DNt
n � nNt

2 ÿ nNt
1 ;

where bxc is the integer part of x. Of course, nNt
1 Dt converges toward t0 when Nt goes to in®nity; and

�nNt
2 Dt; iNt

2 Dz� converges toward �t0 � d0; z0�. Thus

b
iNt
2
;nNt

2
;Nt

3� !Nt!�1b3��t0 � d0; 30�;
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From the Lax±Wendro� scheme, it comes

b
iNt
2
;nNt

2
;Nt

3� � �1ÿ d2�biNt
2
;nNt

2
ÿ1;Nt

3� � d2b
iNt
2
�1;nNt

2
ÿ1;Nt

3� ;

� �1ÿ d2�2b
iNt
2
;nNt

2
ÿ2;Nt

3� � 2�1ÿ d2�d2b
iNt
2
�1;nNt

2
ÿ2;Nt

3� � d2
2 b

iNt
2
�2;nNt

2
ÿ2;Nt

3� ;

� . . .

�
XDNt

n

i�0

i

DNt
n

� �
di�1ÿ d�DNt

n ÿib
iNt
2
�i;nNt

1
;Nt

3� ;

�
XDNt

n

i�0

BDNt
n

i �d2�biNt
2
�i;nNt

1
;Nt

3� ;

where BDNt
n

i is a Bernstein polynomial. With the decomposition

b
iNt
2
�i;nNt

1
;Nt

3� � b3� t0; z0

 
� i

DNt
n

gd0

H
T

� �!
� b

iNt
2
�i;nNt

1
;Nt

3�

 
ÿ b3� t0; z0

 
� i

DNt
n

gd0

H
T

� �!!
;

it comes

b
iNt
2
;nNt

2
;Nt

3� �
XDNt

n

i�0

BDNt
n

i �d2�b3� t0; z0

 
� i

DNt
n

gd0

H
T

� �!

�
XDNt

n

i�0

BDNt
n

i �d2� bNt
3��nNt

1 Dt; �iNt
2

 
� i�Dz� ÿ b3� t0; z0

 
� i

DNt
n

gd0

H
T

� �!!
:

From the approximation with Bernstein polynomials, we know that for each continuous function
f : �0; 1� ! R, the function f N �PN

i�0 BN
i f � i

N� uniformly converges toward f when N goes to �1. Since the
function bNt

3� is continuous, the expression

XDNt
n

i�0

BDNt
n

i �d2�b3� t0; z0

 
� i

DNt
n

gd0

H
T

� �!
;

converges towards the value

b3� t0; z0

�
� d2 gd0

H
T

� ��
� b3��t0; z0 � d0c2�;

when DNt
n goes to �1.

Now, due to uniform convergence, it comes

8e; 9 Ne > 0; 8Nt > Ne; 8�t; z� 2 �0; T � � �0;H �; jbNt
3��t; z� ÿ b3��t; z�j < e:

Considering the uniform continuity of b3� on �0; T � � �0;H � we get

8e; 9 de; 8�t1; z1�; 8�t2; z2�; d��t1; z1�; �t2; z2�� < de ) jb3��t1; z1� ÿ b3��t2; z2�j < e:

And because

jt0 ÿ nNt
1 Dtj6Dt;

and

�iNt
2

����� � i�Dzÿ z0 � i

DNt
n

gd0

H
T

� ������6Dz� Dz
i

DNt
n

t0

Dt

��
ÿ t0

Dt

j k
� d0

Dt

�
ÿ d0

Dt

�
;

6 3Dz;

2044 Y. Renard / Comput. Methods Appl. Mech. Engrg. 190 (2001) 2031±2050



then

8e; 9 Ne > 0; 8Nt > Ne; jbNt
3��nNt

1 Dt; �iNt
2 � i�Dz� ÿ b3��nNt

1 Dt; �iNt
2 � i�Dz�j < e;

jb3��nNt
1 Dt; �iNt

2 � i�Dz� ÿ b3��t0; z0 � d0c2�j < e:

and

8e; 9 Ne > 0; 8Nt > Ne; jbNt
3��nNt

1 Dt; �iNt
2 � i�Dz� ÿ b3��t0; z0 � d0c2�j < 2e:

then the expression

XDNt
n

i�0

BDNt
n

i �d2� bNt
3� nNt

1 Dt; �iNt
2

ÿ 
� i�Dz

�ÿ b3� t0; z0

 
� i

DNt
n

gd0

H
T

� �!!
;

converges to zero when Nt goes to �1.
We just established that the relation

b3��t0 � d0; z0� � b3��t0; z0 � c2d0�; �64�
is satis®ed for all d0 2 �0;max�T ; H

c2
��, and for all pairs �t0; z0� satisfying

z0 2 0;H
�

ÿ gd0

H
T

�
; t0 2 �0; T ÿ d0�:

It is not su�cient to conclude, because we need to establish the result for all pairs �t0; z0� satisfying

z0 2 �0;H ÿ c2d0�; t0 2 �0; T ÿ d0�:
But, equality (64) can be split in two parts:

b3� t0

�
� d0

2
; z0 � c2

d0

2

�
� b3� t0; z0

�
� c2

d0

2

�
;

b3��t0 � d0; z0� � b3� t0

�
� d0

2
; z0 � c2

d0

2

�
:

which are established for

z0 2 0;H
�

ÿ c2

d0

2
ÿ g

d0

2

H
T

�
:

Using this reasoning, one sees that relation (64) is satis®ed for

z0 2 0;H
�

ÿ c2

d0

2

�
:

And since the function b3� is continuous, this relation is also satis®ed for

z0 2 0;H
�

ÿ c2

d0

2

�
: �

Proposition 7. If the following hypotheses are satisfied:
· the initial data u0 is differentiable and is derivative is Lipschitz continuous,
· the initial data u1 is Lipschitz continuous,
· the ratio g � Nt

Nz
is constant and satisfies gP c2T

H ;
then schemes (39)±(46), (49)±(52) is convergent.

Proof. Let us still consider uNt
;t �t; x3�; uNt

;3 �t; x3� the linear interpolations of the discrete solutions of schemes
(39)±(46), (49)±(52). From Propositions 5 and 6 these functions are bounded in �L1��0; T � � �0;H ���3
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independently of Nt, and moreover exist C3 and C4, two positive constants which only depend on the initial
data such that

max
06 i6Nzÿ1

�kui�1;n;Nt
;t ÿ ui;n;Nt

;t k; kCui�1;n;Nt
;3 ÿ Cui;n;Nt

;3 k�
< C3 max

06 i6Nzÿ1
�ku1��i� 1�Dt� ÿ u1�iDt�k; kCox3

u0��i� 1�Dt� ÿ Cox3
u0�iDt�k� � C4Dt:

Since we assume u0 is di�erentiable and is derivative is Lipschitz and u1 is Lipschitz, we conclude that uNt
;t

and uNt
;3 are bounded in �W 1;1��0; T ���0;H ���3 independently of Nt.

From the Rellich±Kondrachov Theorem (see [1] for instance) the space W 1;1��0; T ���0;H �� is included in
the space C��0; T � � �0;H �� of the continuous functions on �0; T � � �0;H �, and the inclusion is compact.
Thus, from the sequence �uNt

;t ; u
Nt
;3 �Nt

it is possible to extract a sub-sequence �uNt
;t ; u

Nt
;3 �N 0t which uniformly

converges toward a pair of continuous functions �u;t; u;3�.
From Lemma 1, we know that u;t�t; x3� and u;3�t; x3� satisfy to the relations (18)±(20) on the characteristic

lines. In particular, for t < H
c2

, we get

b1��t; 0� � u11�c1t� � c1ox3
u10�c1t�;

b2��t; 0� � u21�c1t� � c1ox3
u20�c1t�;

b3��t; 0� � u31�c2t� � c2ox3
u30�c2t�:

And, because of the uniform convergence, the functions bN 0t
1��:; 0�; bN 0t

2��:; 0� and bN 0t
3��:; 0� uniformly converge

toward the respective values u11�c1t� � c1ox3
u10�c1t�, u21�c1t� � c1ox3

u20�c1t� and u31�c2t� � c2ox3
u30�c2t�.

The expression of the implicit Euler scheme is

u0;n�1;N 0t
3 � u0;n;N 0t

3

�
� Dtb0;n�1;N 0t

3�
�
�
� 1

1� Dt
~g

u0;n;N 0t
3

�
� Dtb0;n�1;N 0t

3�
�
ÿ
;

Sn�1;N 0t � ÿ k� 2G
c2

b0;n�1;N 0t
3�

�
ÿ u0;n�1;N 0t

3;t

�
;

u0;n�1;N 0t
T ;t 2 u0;n;N 0t

T ;t � Dt
e

G
c1

b0;n�1;N 0t
T�

��
ÿ u0;n�1;N 0t

T ;t

�
ÿ Sn�1;N 0t l ku0;n�1;N 0t

T ;t

�
ÿ V e�tn�1�k

�
Dir u0;n�1;N 0t

T ;t

�
ÿ V e�tn�1�

��
;

which can be rewritten as

u0;n�1;N 0t
3 � u0;n;N 0t

3

�
� Dtb3��tn�1; 0�

�
�
� 1

1� Dt
~g

u0;n;N 0t
3

�
� Dtb3��tn�1; 0�

�
ÿ
� �n�1;N 0t

3 ;

Sn�1;N 0t � ÿ k� 2G
c2

b3��tn�1; 0�
�

ÿ u0;n�1;N 0t
3;t

�
;

u0;n�1;N 0t
T ;t 2 u0;n;N 0t

T ;t � Dt
e

G
c1

bT��tn�1; 0�
��

ÿ u0;n�1;N 0t
T ;t

�
ÿ Sn�1;N 0t l�ku0;n�1;N 0t

T ;t ÿ V e�tn�1�k�Dir u0;n�1;N 0t
T ;t

�
ÿ V e�tn�1�

��
� �n�1;N 0t

T :

This scheme is an implicit Euler scheme for the Cauchy problem corresponding to Eq. (38) and the Cauchy
problem (35). Now, under the conditions that the right-hand side of the di�erential inclusion of (35) is one-
sided Lipschitz and satis®es the growth condition (63) and also that the quantities �

n�1;N 0t
3 , and �n�1;N 0t

T
satisfy

lim
Nt!1

max
16 j6N

�k�n;N 0t
T k; j�n;N 0t

3 j�
� �

� 0;

it is a result of Lempio (see [9,6]) that this scheme is convergent. The quantities �
n�1;N 0t
3 , and �

n�1;N 0t
T satisfy

these conditions because the following estimations hold:
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j�n;N 0t
3 j6

1

1� Dt
~g

 !
jb3��tn�1; 0� ÿ b0;n�1;N 0t

3� j;

6 2Dtjb3��tn�1; 0� ÿ b0;n�1;N 0t
3� j;

k�n;N 0t
T k6

Dt
e

G
c1

�
� k� 2G

c2

klk1
�
kbT��tn�1; 0� ÿ b0;n�1;N 0t

T� k;

and because the functions bN 0t
T��:; 0� and bN 0t

T��:; 0� uniformly converge, respectively toward bT��:; 0� and
b3��:; 0�.

In conclusion, for t 2 �0; H
c2
� the function u�t; 0�3;t is the derivative with respect to time of the unique

solution of the Cauchy problem associated to the di�erential equation (38) and the function u�t; 0�T ;t is the
unique solution of (35). Additionally, From Lemma (1), the functions u;t�t; x3� and u;3�t; x3� satisfy to the
relations 18,18,20 on the characteristic lines. From the uniqueness of this solution, we can conclude that all
the uniformly convergent sub-sequences of the sequence �uNt

;t ; u
Nt
;3 �Nt

converge toward �u;t, u;3�. This is suf-
®cient to say that the whole sequence �uNt

;t ; u
Nt
;3 �Nt

uniformly converges toward �u;t, u;3�: �

7. Numerical experiments

In this section, we present a few numerical experiments made with scheme (39)±(48), 51,52, i.e. with the
non-regularized unilateral contact condition. Mechanical parameters for the material corresponds to a little
metallic piece (k � 107� 109 Pa, G � 77� 109 Pa, q � 7800 Kg=m

3
) of height 5 cm. The coe�cient of

friction has the shape of Fig. 2, with ls � 0:8 and ld � 0:5.

7.1. Numerical test of convergence

We here test the stability and the convergence of schemes (39)±(48), 51 on an example. This convergence
has not been established theoretically. In order to have a relevant case, we choose an example where the
contact pressure varies, and where sometimes the contact does not hold. The perturbation parameter for
the friction condition is chosen constant (e � 10:0). The computations are made with di�erent values of Dt
and Dz with a constant ratio Dt

Dz.
The results of computations are presented on Figs. 3 and 4.

Fig. 2. Example of friction coe�cient.
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There is a numerical convergence, but, due to the bad regularity of the continuous problem solution, the
rate of convergence seems to be lower than linear on Dt.

7.2. Example of global behavior

Now, we choose a small perturbation parameter (e � 0:1) and a constant contact pressure.
Fig. 5 presents the evolution of tangential displacement on the contact boundary. One can see that there

is a chaotic behavior at the beginning of the simulation, but, after a certain time of simulation the motion
becomes more regular. Fig. 6 presents a detail of the simulation where the motion is regular. This dy-
namical system seems to be attracted by a solution which is nearly periodical. It is a classical result that a
one degree of freedom elastic system with such a law of friction often has a periodic attractor. Here, for the
in®nite slab, the di�erence is the in®nite number of degree of freedom and the presence of jump in velocity.

Fig. 3. Di�erent values of Dt, Dz and maximal di�erence between two successive computations.

Fig. 4. Evolution of contact pressure, tangential velocity and normal displacement.
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Fig. 6. Detail of the evolution of tangential displacement and velocity.

Fig. 5. Evolution of the tangential displacement on the contact boundary.
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