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Abstract

This paper deals with a numerical analysis of a one-dimensional dynamic purely elastic (i.e. hyperbolic) model with dry friction.
Since we consider a Coulomb friction law with a slip velocity dependent coefficient, generally, the problem has more than one solution.
A mass perturbation approach is developed to regain the uniqueness and to perform the numerical analysis. This study can be viewed
as a first step in the numerical analysis of more elaborated dynamic purely elastic problems with dry friction. © 2001 Elsevier Science
B.V. All rights reserved.

1. Introduction

Friction laws with a slip velocity dependent coefficient were introduced to modelize the stick—slip phe-
nomenon, which is the appearance of self-sustained vibration in mechanical systems submitted to dry
friction. Even though there is not a universally accepted model of this phenomenon, the dynamic aspect
seems to be essential in the behavior of such systems. Some mathematical and numerical results tend to
prove that multi-dimensional systems submitted to dry friction and unilateral contact can develop insta-
bilities even if the simplest Coulomb law with a constant coefficient is chosen (see [3,15,11,16]). Because of
the results on systems with finite number of degree of freedom, the Coulomb law with a slip velocity de-
pendent coefficient is still considered as a good candidate for the modelization of stick—slip motion of elastic
structures.

The model described above is a one-dimensional purely elastic model with dry friction and unilateral
contact. It is well known that there are major mathematical difficulties to treat such dynamical model,
due to the bad regularity of the solutions (discontinuities in velocity). This work is a continuation of a
paper [19] which treats the modeling part and also of the work of Ionescu and Paumier [8]. This one-
dimensional model, because of its simplicity, allows to enhance some fundamental properties of the
dynamic behavior of elastic structure under dry friction and unilateral contact. The purpose here is to
perform a numerical analysis of the purely elastic case, with a mass perturbation approach. This mass
perturbation approach is also studied in [19] where it is proven, under certain restrictions, that the se-
quence of solutions of the perturbed problem converges toward a particular solution of the non-perturbed
problem. This particular solution can be related to the selection made by the perfect delay criterion (see
(8,10]).
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2. The one-dimensional elastic model with dry friction

The model we deal with in this paper is a slight extension of the one introduced in [8,19], and was also
studied in [17] and fully described in [18]. This model represents the dynamic motion of an elastic slab which
slides with friction on a moving rigid foundation (see Fig. 1). The slab is assumed to be linearly elastic with
constant Lamé coefficients 4 and G, density p and height H.

With convenient initial data and lateral boundary conditions, it is possible to consider motions of the
slab which only depend on the vertical coordinate x;. So, if we denote by u(¢,x3) = (ui(t,x3),
uy(t,x3),u3(¢,x3)) the displacement of the slab, the evolution of the vertical displacement u;(¢,x3) is de-
scribed by the equation

6?[“3(1‘,)%) = czfﬁix}m(t,x;) in ]O, T] X]O,H[, (1)
where ¢; = /(44 2G)/p is the velocity of longitudinal waves. The slab is assumed to be fixed on its top
us(t,H) = —D with D> 0 Vt€]0,T], (2)

and it is submitted to a unilateral contact condition on x; = 0:

0,,u3(2,0) <0, —us(7,0) <0, O, u3(t,0)us(1,0) =0 Ve e ]0,7). (3)
It is convenient to express this later condition by the inclusion

(A42G)0,us(t,0) € —Jy(—us(t,0)) Vet e 0,77, (4)

where the multi-valued map

({0 if x <0,
JN(X)_{[O,+00[ 0.

is the sub-differential of the convex indicator function of the interval |—oco, 0].
The evolution of the horizontal displacement u,(¢,x3) = (u;(¢,x3), u2(#,x3)) is described by the equation

arztur(tvx3) = 016§3x3uT(I7x3)a in ]07 T] X]O,H[, (5)
where ¢; = \/G/p is the velocity of transversal waves. On x; = H it is assumed that the slab is fixed
ur(t, H) =0 Vt€]0,7]. (6)

The friction is modelized by a Coulomb law of friction with a slip velocity dependent coefficient on the
contact boundary x; = 0:

elastic slab

rigid foundation in uniform motion

Fig. 1. Elastic slab in sliding with dry friction on a rigid foundation which is in uniform motion v, along the x; axis.
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Vt € 10, T]
if du,(¢,0) = v, then |GO,u,(¢,0)| < — (4 + 2G)d,us(z,0)p(0), (7)
|GOyu, (£,0)] = = (4 + 2G)0;u3 (£, 0) u([|0 24, (¢, 0) — w.]]), ®)

if Quu, (,0) # v. th
if Oy (1,0) # v en{azl;o, Qi (1,0) — v, = Jdu, (1,0),

where u : Rt — R™ is the friction coefficient, and v, the constant planar velocity of the rigid foundation. It
is easy to see that this friction condition is equivalent to the following inclusion:
vt € 10,77,
G,yu17(t,0) € — (44 2G)0,qus (1, O) (|37 (1, 0) — v. | )Dir (B (£,0) — v.), (9)
where the multi-valued map
v
[[v]l

is defined on R?, and is the sub-differential of the convex map v+ ||v||. The problem is completed by initial
conditions

Dir(v) = { } if v#£0, Dir(0)=B(0,1),

u(0,x3) = u’(x3), Qu(0,x3) = u'(x3) Vx3 €[0,H]. (10)

Finally, introducing the matrix

C1 00
C=10¢ 0],
0002

and with the previous notations, the problem can be written as follows:

(P1) Qlu(t,x3) = C@ix}g(t,xg.) in 0, 7] x]0,H], 11

(11)
u(t,H) = (0,0,—D) with D >0 Vvt €]0,T], (12)
u(0,x3) = u’(x3), Qu(0,x3) = u'(x3) Vx; € [0, H], (13)
(2 + 2G)duus(t,0) € —Jy(—us(t,0)) Vi €]0,T), (14)
GOur(t,0) € —(A+ 2G)0yus(t, 0)u(||0,ur(2,0) — v.]|)Dir(dur(¢,0) — v.) Vi e ]0,T], (15)

Due to the bad behavior of both the unilateral contact and the friction conditions, it cannot be expected
to have any solution of the problem in a classical sense (i.e. twice continuously differentiable). It is easy to
see that, most of the time, the velocity 0,u is not continuous (see [8]). One can also notice that it is possible
to solve independently the problem in vertical displacement u;.

Friction laws such as Coulomb law with a sliding velocity dependent coefficient have a long history.
Rabinowicz already studies such dependencies in 1958 in [14]. Important experimental works on the
measurement of this dependency has been made (see for instance [2,5,7,10,21]). Most of these experiments
have been made on the steady state because transient states are extremely difficult to measure.

Very often, a decreasing coefficient of friction is used in order to modelize stick—slip phenomenon. The
value of the coefficient for a sliding velocity equal to zero is called the static coefficient y, and the as-
ymptotic value for a huge sliding velocity is called the dynamic coefficient of friction u,.

3. On the existence and uniqueness

For convenience and from now on, we assume T < (H/c,). This is not strictly necessary, but the analysis
will be greatly simplified, and this is not a real restriction, since all the following results can be extended for
T > (H/c,) in studying the problem successively on intervals
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(&) ) PEad]
&) (SN )] C O

Let us introduce the quantities
b+(t,JC3) = 6,g(t,x3) + C63Q(I,X3), (16)
b (t,x3) = du(t,x3) + Cosu(t, x3), (17)

which are propagated along the characteristic lines of Eq. (11), i.e. that for a convenient J¢ and for ¢ is + or
— one has

b18(1+5t,X3) :blg(t,x3+80151)7 (18)
bzg(t+5t,X3) :bzg(l,X3+8015[)7 (19)
b (t + 0t,x3) = b3,(t,x3 + 8c26t), (20)

where by, by, and b;, are the components of b,. Since we assume 7 < H/c,, and thanks to these equalities, if
we set

) = —u0,0), 0= s (00) =0 bro= (). 1)
and if we denote by
A+2G d
s = - 4120 (zw, 0) + —uw)), (22)
CH dt

the contact pressure which is always positive, then Problem (P1) becomes

(P2) Find u, and vs(¢)such that :

guN(t) € —b3.(1,0) —

dr ﬁJN(uN(I))» (23)
uy(0) = uyo = ug(O, 0), (24)
G G .

- (br. = 0.) € 0(0) + SON(e. (0 Dir(us(1). (25)

One can notice that those two equations are not of the same kind. Egs. (23) and (24) form a first-order
differential inclusion Cauchy problem in the variable uy, and Eq. (25) is a scalar inclusion in variable v;.
Problem (23), (24) is still independent of Eq. (25) and the following result holds:

Proposition 1. I b3, (.,0) € L'(0, T) and if the initial condition satisfies uyy < 0, the following Cauchy problem

{%W(r) € —by, (1,0) —ﬁh(w(r)), ace. in [0,7], 26)

HN(O) = Uno,

has a unique absolutely continuous solution, and this solution satisfies uy(t) <0 on [0, T].

The proof of this result comes directly from the result of Deimling [4] on differential inclusions, and the fact
that the multi-valued map

(&)

(t,x)— — b3, (1,0) — H—ZGJN(X)’

(27)
has convex values, is measurable, upper semi-continuous and one-sided Lipschitz. [

Unfortunately, inclusion (25) has generally not a unique solution. We can only prove the following
result:
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Proposition 2. If the friction coefficient u is a Lipschitz continuous and bounded positive function of the sliding
velocity vs, then Inclusion (25) has at least one solution. Moreover, if the friction coefficient u is an increasing
function of vs this solution is unique.

The proof of this result is a simple study of the shape of the right-hand side of Inclusion (25). O

In fact, when the friction coefficient has at least one decreasing branch, it is always possible to exhibit a
case where there is more than one solution to Inclusion (25). See [8,19] for such examples. Moreover, this is
the interesting case, since it seems to be necessary to use a coefficient with a decreasing branch to modelize
well stick—slip phenomena.

4. Mass perturbation and perfect delay criterion

One of the major problems is thus the non-uniqueness of the solution of Problem (P1). In fact, certain
considerations of mechanical order (see [19]) allow to say that most of the solutions of Inclusion (25) are
not acceptable. Authors like [8,10] proposed a criterion in order to choose the convenient solution of the
problem. This criterion is a dynamic extension of the perfect delay criterion which comes from the ca-
tastrophe theory and which can be formulated as follows:

the system only jump when it has no other choice. (28)

This criterion is not sufficiently accurate to always select a unique solution (it does in experience of pure
loading or pure unloading, see [8]).

Another approach to this problem is to introduce a viscous term in the elastic law and to make this term
to vanish. In this framework, it is possible to prove that the visco-elastic version of the problem has a
unique solution. But at this moment there is no theoretical results of convergence when the viscous term
vanishes.

The approach we introduced in a work [19], is to consider a mass perturbation of the friction condition.
The classical friction condition

GO, ur(t,0) € S(¢)u(||Our(2,0) — v.||)Dir(d,ur(z,0) — v.), (29)
is replaced by the following condition

e0pur + GO ur(t,0) € S(6)u(||dur(t,0) — v.||)Dir(dur(,0) — v.), (30)

t

where ¢ is the perturbation parameter. The additional term &d2u; can be assimilated as a surface mass on
the contact boundary. This kind of perturbations, similarly to existing friction laws as Dieterich—Ruina
laws (see [20]), make a differential operator to appear on the contact boundary. Further development of
such boundary perturbations in upper dimensions are presented in [13].

With this mass perturbation, the Problem (P2) becomes

(P3) Find uy and v,(¢)suchthat:
d &)
a”zv(f) € —b3.(1,0) — mJN(“N(f))» (
uN(O) = u?v = ug(07 0)7 (32)
o500 € Z (e, +00) = 0 + SOl D) Dir(es(0), (
vs(0) = v{ = uz(0,0). (

The first result is that Problem (P3) has a unique solution.
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Proposition 3. If b, € (L'(0,T))* and if the contact pressure S is a positive function and belongs to L'(0, T)
(this is the case if S comes from the solution of (31), (32) and if conditions of Proposition (1) hold), then the
following Cauchy problem:

o 30s0) € 2 (b + 00 = ) + SO( (0] Dir(us (1), -
vs(0) = 1Y,

has a unique absolutely continuous solution.

Similarly as for Proposition 1, this result comes from the fact that the multi-valued map
G .
(t;0) = —(bry +v = v.) + S(Ou(|lvl]) Dir(v), (36)
has convex values, is upper semi-continuous and one-sided Lipschitz. [

In a more restrictive framework, in [19], we proved that when ¢ goes to zero the solution of the perturbed
problem converges toward a particular solution of the initial problem. The connection between this and the
perfect delay criterion is that if this criterion selects a unique solution, then this is also the limit of the
solutions of the perturbed problems.

5. Regularized unilateral contact condition

For the convergence proof of Section 6, we need the solution to have a certain regularity. The regularity
of uy is not sufficient. One of the most usual way to regularize the unilateral contact condition is to consider
a continuous approximation of the map Jy. It is the case, for example, for the well-known normal com-
pliance law developed by Oden and Martins in [12]. Here we consider the following simple piecewise linear
approximation J;, of Jy:

) 0 if x<O,
S0 = {; if x>0, (37)

The solutions of the differential equation

d 1
aMN(f) = —b3, (1,0) — ——

JMuy (1)), 38
i—i‘ZG N( N( )) ( )
are such that the time derivative of uy is Lipschitz continuous since b3, (¢,0) is. This regularization cor-
responds to a certain interface elasticity.

6. Numerical analysis

In this section we present a numerical scheme for the perturbed problem. Once again, the results will be
established for 7 < H/c, even though they can be easily extended for 7 > H/c, and of course even though
the numerical scheme has not himself such a restriction. The scheme is a coupling of a Lax—Wendroff
scheme for the interior of the slab and of implicit Euler schemes for the equations on the boundary. The
implicit Euler scheme is chosen for the simplicity of the proof. More accurate schemes can be used (in [18]
we use a theta method, with a parameter 1/2, which is also an two points Adams—Moulton scheme, and
gives a better numerical approximation). The convergence is obtained for the regularized unilateral contact
condition. This is an open problem to know if it should be possible to work with the normal contact
condition. This analysis can be viewed as a first step to improve numerical analysis results for purely elastic
friction problems with a complex friction law.
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6.1. Description of the scheme

2037

The slab is discretized with a constant step Az = H/N, and a constant time step Az = T7//N,. The principal

variables are u, = O,u and u ; = O,,u. Let us denote by

in in

uy" uy, Uy

in __ in in __ in in __ in

u" = w" |, u'=|u) [, and uy=|uj [,
in in in
U3 Uz, Uss

the approximated values of, respectively u, u, and u; at the time " = nA¢ and at xy = iAz. We also use the

following notations for the tangential part:

0,n 0,n 0,n

on [ U on [ Uis d O — Ups
Ur = u()‘n I ET,[ - 0,n an ﬂTj - 0.1 .

2 Uy, Uy

With the matrix

At C1% 00 d1 00
D=rC=|0cf 0)={0d 0]
00 Cz% 00 d2

The Lax—Wendroff scheme on the interior of the slab, for 1 <i< N, — 1, reads

) . D/ . , . DC / ; ;
g —1, p s 1, -1,
El;IH»l — ﬂl[n _|_ i (ﬂlt In _ 221;1 + Ezt+1 n> + (ﬂl;— no_ yl3 ,n)y
s s 2 s g s 2 g y
-1
ui,n+l _ uiﬁn + 9 uiflﬁn o Zui,n + ui+1,n + DC ui+1,n _ ui—l,n .
=3 £3 2 =3 =3 =3 =t =t

With
i, i in in __ i in
b =u"+Cuy and B =u" — Cuy,
this scheme reads also

b =B+ DR - B, 0<i<N - 1,
B =" DT — b, 1<i<N,,

The approximation of the Dirichlet condition on z = H is

N:n+1 _  Non N.—1,n N-,n -1, N.—1n
uy" =uy" + Dy " —uy”) —DC
Ef\t]z,n+l _ 0

or
bNZ,nJrl _ _bN;¢n+l
=+ - zZ- .

The unilateral contact condition, which corresponds to the differential inclusion
d
$u3(t7 0) € b3+(t7 0) + ']N (—U3(l, 0))7

for the nonregularized case or to the differential equation

&)
A+2G

d
—I/l3(l, 0) = b3+(l, 0) +

dr ‘],:,1(_u3(t7 0))’

for the regularized case, is approximated with an implicit Euler scheme. This gives for the non regularized

case
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ug"”“ = (ug‘" + Atbgf“)+ (47)
where (x), = max(0,x) is the positive part of x. The value of ugf“ is approximated by

ontt _ [ BTN Wy £ 0, 43

¥ { 0 otherwise, (48)

For the regularized case, the implicit Euler scheme gives

u"t = (" + AT+ o (" + Ay, (49)
1
ug:H—l — b(})1+1 _"_JA;j(_ug),n+l)7 (50)
where 77 = 426,
The contact pressure is thus given by
A+2G
Sn+1 - _ + (bg+n+l _ ug;H—I) (51)

(&)

Those schemes are such that S"*' > 0. Moreover, for the nonregularized case, one has
0.n+1 0n+1
u3,n+ > 0’ Sn+lu3,n+ — 0’

similarly as the continuous case.
Now, concerning the perturbed friction condition, we have to approximate the following differential
inclusion:
d G .
e qpre € o (brot) —ur) = SO p(lur, = L(O])Dir(ur, = V.(2),

The implicit Euler scheme reads

C1

n n At G NG .n n .n n . .n v
i et S (S ) - Sl - LD - e ) (5

6.2. Properties of the Lax—Wendroff scheme

It is well known that the Lax—Wendroff scheme is not stable if the Courant—Friedrichs-Levi condition
d = %cz <1 does not hold. Thus we assume that the matrix D has all its coefficients between 0 and 1.

The Lax—Wendroff scheme has important properties concerning the L> stability. If we consider the
following quantities:

B = max (167, 1), (53)
n _ i+ln _ pin i+l,n _ gin
dBmax - Ogringa]\)/i—l(||é+ b+ ||7 ||b, Q, ||)7 (54)

then from Egs. (42) and (43) it comes

max’

122 = 152 + DB — B[ < By, 1SS

max’

|7 = B + D — B < Bl 0<i<N. — 1,

and

”QTH _ éi:rl.wrl” _ ”an _ Qi:Ln +D(éijl’n _ Qiz.n _ éern +er1,n)||
—dB,, 0<i<N.—2,

Bt — B B — B D — B — b b
< dB’ 2<i<N,.

max’
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That is to say that the Lax—Wendroff scheme on the interior of the slab makes B}, and dB}, . only to
decrease. It is not difficult to see that the Dirichlet condition do the same

B = (1825 < B
||b}izfl,n+l _ bzz,iﬂrl” — ||bN 1,n _|_ D(Q]X n _b112711n) _b}iz‘n _"_D(bllfzfl,n _b/i/z,n)H,
<dB!

max*

Thus we can conclude

B"! < max(B"

max X max’

dB"! < max(dB"

max X max’

12 )),
||bln+] _ Q(}nntl H)

Moreover, for n < N, the following estimation holds:
152 < Binas
163" = b < B, (56)
The reason is that if one develops E_);”, one has
b = (1 —D)B%" ' + Db,
— (1 -D)’p%" 2 +2(1 —D)Db'" 2 + D*p>" 2,

J

>D’ (1-D)Y b7, for 0<,< min(n,N,),

where the

(1-D+DY

£
{ ) are the combinations of i elements among j. Since YL, (f)Di(l -D)y ' =
= 1 the result hold. The same computation can be made with [|b"" — b%".

6.3. Stability of the schemes

We first deal with the u; component of the displacement, i.e. the component submitted to the unilateral

contact condition. We consider B; . and dBj
BY e = max (|51, |5, (57)
n i+1, i, i+1, i
dBY ey = | max ([b3}" = B (b5 — B ), (58)

0<i<N.—1
We just saw that

n+1 n
B3max = maX(BS

dBit! < max(dB?

3max > 3max’

b(),n+1 |)’

max’ | 3—

b5 — b5 )).

Proposition 4. If the CFL condition dy <1 holds, schemes (39)—(46), (47), (48) has the following properties:
B <B)

3max X~ 3max’

7] < i3] + 7B

3max*

Proof. We have

0+l sp Ontl
ont1 ) —b3y if uy; =0,
by =

0,n+1 : 0,n+1 0,n+1
b + f 3.t - b )
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Thus [53""!| = [p37*"| and

n+1 n 0
B3max BSmax <B3max'
For u}" now we have
|u0n+1 | At|b0n+l|,

from the scheme, and thus

\ug < 71B} O

3max"”

Proposition 5. If exists dyi, > 0 such that dy;, < dp <1 then schemes (39)—(46), (49), (50) have the following

properties: Exist Cy,Cy,C;y and Cy4 four positive constants which only depend on initial data such that

C17

C27
C3dB,

3 max

3 max >
|u
daB’

3 max

<
<C + AtCy.

Proof. We saw that

B3 < BY byt — bY"| < dBY

3 max’ 3max?

and it follows from scheme (49), (50) that

| 0n+l| < |Atb0n+l g,n

< |uy”| + AtBY

)
3 max’

thus, since we assume n < N.:

0,n

lu |L{ |+NAtB%max’

H
<\+B

3max”

Moreover, we can also deduce from schemes (49), (50) that

uO,n+1|
ugsll+l | At<|b0n+l| + 3~ )7
’ n

< AtB?

3 max

(1+2N.Af + [u3?]).
and because

041 _ 7 0n+1 0n+l
by" = byl + 20u3y

and
: 0,n+1
>

omtl 00 +l1f Uy =0,

33 T Y wy"

s 3 lf u0n+l < 0’

on

we have

2|M0 n+1|

B3+ <65 ,

H
<BS, (1 + 2—) + 2/}’
C
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That is to say
H
Bgmax < Bgmax (1 + 2_> + 2|u2,0
(&)

Now if we compute

|b;f+l 7 bgil+1| _ |b;f +D(b0n _ bl,n) o b(),71+1|7
< (1= do)[by” = B3"| + 2|eaus’s — cous’s™ | + b3 — B,

<(1 - dy)dB: +2AtB

3 max

+ dydB) 1+ NA?+ [3°),

3 max 3 max (

it comes

A

3 max \

and by induction
At n—1
ngmax (1 - dz) ngmax (ddeSmax +2— B3max 1 +NAt ) Z 1 - dz
i=0
0 1 0 At 0,0
< (1 - dz) dB3max d dde.’)max +2— B3max( + N.At + |u3 ) )
2 H
<(1+(1—d2) )nglndx+At d 3m1x<1+ >
(&)

2
<2dBS . + And Bgmax<1+c_2+ug,0>, O

Now, for the complete scheme, including the friction condition, we consider B%., . and dB}. ..
B = jmax ((IB7% 1, 17" ), (60)
n _ i+1,n in i+1.n in
B = max (15517 = B 5 = B ), (61)

where eri and b} are the horizontal components of Q’}” and b™".

Proposition 6. If exists dy, > 0 such that dy, < dy < 1 then schemes (39)—(46), (51), (52) combined with either
schemes (47), (48) or (49), (50) has the following properties: there exist four positive constant Cy, C,, C3 and C,
which only depend on the initial condition such that

B;max < Cl’

lu3"[| < Ca,
dB.. . < CdBY + AtCy.

Proof. From (52), it comes

At (G .
e S (S0 - ) - S - K ) Rint - 1)),

ie.

upy" € up + AF (e, (62)
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with a multi-valued map F which has a bounded growth
[F(", )| < (@) (1 + ixl]),
with ¢(¢") defined by

n 1 G n n
e(t) = max (1) (1821 + 1570 ) (63)

From the previous propositions, ||S”]| is bounded independently of n. Moreover, since we assume n < N,,
1657 || < BY e the quantity c(#") is bounded independently of n and At for ¢ < X dsin- Setting

T max

Cmax = max c(t),
0<i<2N;

and from (62) we deduce that
ez < N7 1|+ Ateman (14 [l 1)

We assume At < :-—, thus

n 1 n
7 < m(”ﬂ%” + CmaxAt)
< (1 + 2maxAt) (||| + cmaxAt).

And by induction

n

171 < (1 + 2emax )" ||t | + Atemax Y (1 + 2emaxAt)'.

i=1
Since (1 + 2cmax N) < 2Tomax:
I < e (4 2 o )
Setting
= e (142 ).
we deduce immediately

o7 < 1157 I+ 2l

<B) . +20).
Thus
7t — || < Ad|F (e + 1,
< At (1 + [[ud7]),
< Atemax (1 + CY),
and

||b1 n+1 b(}fHH Hb;ﬁ 4 dl (bOﬁn _ blﬁn) _ bO,nJrlH

(1= )16 = By + 2™ — ]+ 1657 — B
(1 - dl)dBr}max + dldBO + 2Atcmax(1 4 C(l))

T max

s

NN N
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And now just as for Proposition 5, we conclude by induction that

dB’

T max

At
<2dBY, .+ zd—lcmax(l +C). O

6.4. Convergence

To simplify the proof, we will assume that the ratio £ is constant, i.e. N. is proportional to N,:

1
Nz = _NM
n

where 7 is independent of N, and satisfies the CFL condition

C2T
n= E
Let us denote by gf;”"N’, gfg”’N’ the discrete solution given by one of the schemes and yf‘t"(t,x3), gﬁ‘(t,m) the
linear interpolations of the discrete solutions

y'\f (nAt + 0t,iAz + 6z) = (1 — o¢)((1 — 52)2;""\" + ozu TN 1 Se((1 — 52)@3"“”\" + Ozu TN

with 0 < o0f < At and 0 < 0z < Az. An analogous definition is taken for y]g’(t,x3).

Lemma 1. If the sequence (g{)”,yg”)/\,{ uniformly converges toward a pair of functions (u, u;) and if the
functions u, and u 5 are continuous on [0, T] x [0, H] then these functions satisfy the relations (18)~(20) on the
characteristic lines.

Proof. We establish the result on only one relation and one component, the vertical component, because the
proof is identical for the other cases. As before, we define

b (t,x3) = u3,(t,x3) + cousz 3(2,x3),

By (t,x3) = ug\i’t(t,xg) + czug’3(t,x3),

in Ny _ in,N; i,n,Ny
by =y, + sy

For any zy, ty, o9 such that
H H
506 |:0,1'1’13.X (T,—>:|7 Zp € |:O,H—1’]50—:|, l()G[O,T—(S()].
C T
Let us define
N, LNztOJ N, {MZOJ N, {Nz(fo + 50)J
n] = ) 12 = ) n2 = 7 |
T nH T

Ne _ . Ni Ni
An =Ny —np,

where |x] is the integer part of x. Of course, n}'At¢ converges toward £ when N, goes to infinity; and

(ny At, i Az) converges toward (ty + 89,z0). Thus

J;’ ,ng’ Ny Ny—~+00

b3, — by (to + 69, 30),
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From the Lax—Wendroff scheme, it comes

InN,

b2

i +1n -1,V

—(1- dz)b"3””2"1"v’ + b2, :

Ne_
:( dz) l My +2(1 —dz)dz t +1n +d2b2+2n 2N,,

Il
=
=z
7N
>
S _‘2 .
N———
]
—
—
|
SY
S~—
=
B
ol
w,\;‘
+
+
_:
=

AQ . . . . ..
where B is a Bernstein polynomial. With the decomposition

i tn N, i:\]’ i,nN’AN, H
b3, i = b3, <t0720 +— AT (7750 >> + <b3-++ ' = by (lo,zo +— AT (7’]50 T >>>7

it comes

N,

AVV
blz "2 N — Z (dz)b3+ (to,Zo + — A (7150 ?))

i=0

—f—ZB (bfv, (n) At (& + i)Az) — b;+<t0,zo+A‘ (11501;))).

From the approximation with Bernstein polynomials, we know that for each continuous function
f:10,1] — R, the function /" = va:o BY (%) uniformly converges toward f when N goes to +oc. Since the
function A}’ is continuous, the expression

ZB (d>) b3+<10720+A (’750 ))

converges towards the value

H
by, (t()vz() +d <11507>> = b3 (to,20 + doc2),

when A goes to +oo0.
Now, due to uniform convergence, it comes

Ve, AN, >0; VN, >N, Y(t,z) € [0,T] x [0,H], b} (t,z) — b3, (t,2)| < e.
Considering the uniform continuity of b3, on [0, 7] x [0, H] we get

Ve, 30, Y(t1,z1), Y(ta,22), d((t1,21),(t2,22)) < 0. = |b3s(t1,21) — b3 (ta, )| < &
And because

|ty — n)' At| < At

and

(I + )Az — 20 + —- A (nao )

i to ty 50 50
<Azt Az b L) fof _%
AT QA; {AIJ +AtJ At)’

<3Az,
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then

Ve, AN, >0; VN, >N, |y, (n)'At, (i)' +i)Az) — by, (n)'At, (i) +i)Az)| < e,

|b3+(}’l]1VlAt, (112\[/ + I)AZ) — b3+(l(),Z() + 506‘2)| < &.

and

Ve, AN, >0; VN, >N, |bY (n)'At, (Y +i)Az) — b3, (ty, zo + doc2)| < 2¢
then the expression

AN

AN Ne (N, N | i H
ZB,- " (dz) <b3’+ (nl‘At, (lzr + I)AZ) — b3y <IO7Z() + F (ﬂ50?>>> R
i=0 n

converges to zero when N, goes to +oc.
We just established that the relation

b3 (to + 00,20) = b3 (t0,20 + €200), (64)

is satisfied for all dy € [0, max(T %)], and for all pairs (4, z) satisfying

H -
Zy € |:0,H—I150T:|, ty € [0,T — Jy).
It is not sufficient to conclude, because we need to establish the result for all pairs (z,z,) satisfying

Zp € [O,H — 6250], t € [0, T — 50]

But, equality (64) can be split in two parts:

) ) 0
bs+(fo+?0, Zo+02§0) st+<to, Zo+0230>7

) o
b3y (to + do, zo) =b3+<10+30, Zo+02?0>-

which are established for

[ do oo H
0H—c——n——|.
Zp € i ) (&) 2 n 2 T:|
Using this reasoning, one sees that relation (64) is satisfied for
_ s
z0 € |0,H — ¢y 70 .

And since the function b3, is continuous, this relation is also satisfied for

] 5
ZM;Qqug. O

Proposition 7. If the following hypotheses are satisfied.

e the initial data w, is differentiable and is derivative is Lipschitz continuous,
o the initial data u, is Lipschitz continuous,

e the ratio n = 1}\\'7’ is constant and satisfies n = %,

then schemes (39)—(46), (49)—(52) is convergent.

Proof. Let us still consider uY(#,x3), u¥(t,x;) the linear interpolations of the discrete solutions of schemes
(39)(46), (49)—(52). From Propositions 5 and 6 these functions are bounded in (L*([0,7] x [0,H]))’
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independently of N,, and moreover exist C; and C,, two positive constants which only depend on the initial
data such that

(a7 o€ - €l

<G max  (Jluy (7 + 1A?) =, (GAD]], [[COx o (2 + 1)AL) — COruo (7AN)]]) + Cart.

Since we assume y, is differentiable and is derlvatlve is Lipschitz and u; is Lipschitz, we conclude that uy
and 'y are bounded in (W'>(]0, T[x]0, H )’ independently of N,.

From the Rellich-Kondrachov Theorem (see [1] for instance) the space W' (]0, T[x]0, H]) is included in
the space €([0,T] x [0,H]) of the continuous functions on [0, 7] x [0, H], and the inclusion is compact.
Thus, from the sequence (i, u’y) v, it is possible to extract a sub-sequence (gﬁ”,gﬁ")ﬂ,, which uniformly
converges toward a pair of continuous functions (u,u;). o

From Lemma 1, we know that u,(¢,x3) and u 5(¢,x3) satisfy to the relations (18)—(20) on the characteristic
lines. In particular, for ¢ < g, we get '

blﬂk(l‘7 O) = ull(clt) + Clax3ulo(cll),
by (1,0) = sy (c1t) + €10y u20(c1t),
b3+(t, 0) = Uz (Czt) —+ Czax3u3o(C21).
And, because of the uniform convergence, the functions bﬁ(., 0), bgi(.7 0) and b];/j,r(., 0) uniformly converge

toward the respective values Llll(le) + claxjulo(clt), u21(clt) + Clax3uzo(01t) and u31(021) + C2613u30(02t).
The expression of the implicit Euler scheme is

n ! 7 1
ug +IN, ( 0,1,N! +Atb0"+1N) 4 At( 0,1,N! +Atb0"+1N> 7
+ lJr,7 -

Sn+lJVl’ - _ L+2G (bO,nJrl.,Nt’ 0,n+1,N,’>

—Uu
¢ 3+ 3t

u cu f 4 —
2Tt 2Tt + “
, B c T Tt

0,n+1,N/ 0.n,N/ At (G (bO,nJrl,N,’ . u0~"+1‘Nr/)

_SnHN (H 0,n+1,N/ v, ( nH)”)DlI‘( 0,n+1,N/ Ke(t’1+l)))a

which can be rewritten as

Uy N = ( 9Ny Atbs (”“,0)) + ( 0N L Athy (”*1,0)) e,

A
S’H»]‘N; - _ A + 2G (b ( n+1 O) O’H’IN )
Cy ’
0,n+1,N/ 0,n,N/ At (G £ 0 n+1,N/
Ur, Cur, '+ ? (Cl <b7,+( o O) Ur, )

=S (s - v (DD (Y - v () ) ) e

This scheme is an implicit Euler scheme for the Cauchy problem corresponding to Eq. (38) and the Cauchy
problem (35). Now, under the conditions that the right-hand side of the differential 1nc1us1on of (35) is one-
sided Lipschitz and satisfies the growth condition (63) and also that the quantities ; TN and et N satisfy

lim | max (l€ ], 1)) | =0,

Ni—oo | 1<j<N

it is a result of Lempio (see [9,6]) that this scheme is convergent. The quantities e'QH’N’/ , and e”TH’N/ satisfy
these conditions because the following estimations hold:
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n.N/ 1 n 0,n+1,N/
&< (m b3 (£71,0) — b3y,
n

<2At|bs, (41, 0) — b

3+
n,N/ At G )\. + 2G n 0,n l,N[/
17 S (£ 222 Y o, 0) - 327,

and because the functions bﬂTl’;(.,O) and bAT]’;(.,O) uniformly converge, respectively toward b7, (.,0) and
b3, (1,0).

In conclusion, for ¢ € [0,%] the function u(z,0), is the derivative with respect to time of the unique
solution of the Cauchy problem associated to the differential equation (38) and the function u(t,0) r. 18 the
unique solution of (35). Additionally, From Lemma (1), the functions u,(f,x3) and u,(¢,x;) satisfy to the
relations 18,18,20 on the characteristic lines. From the uniqueness of this solution, we can conclude that all
the uniformly convergent sub-sequences of the sequence (i, u'y) v, converge toward (u,, u3). This is suf-
ficient to say that the whole sequence (u)', gﬁi’) N uniformly converges toward (u,us). O

7. Numerical experiments

In this section, we present a few numerical experiments made with scheme (39)-(48), 51,52, i.e. with the
non-regularized unilateral contact condition. Mechanical parameters for the material corresponds to a little
metallic piece (4 = 107 x 10° Pa, G = 77 x 10° Pa, p = 7800 Kg/m’) of height 5 cm. The coefficient of
friction has the shape of Fig. 2, with y, = 0.8 and p; = 0.5.

7.1. Numerical test of convergence

We here test the stability and the convergence of schemes (39)—(48), 51 on an example. This convergence
has not been established theoretically. In order to have a relevant case, we choose an example where the
contact pressure varies, and where sometimes the contact does not hold. The perturbation parameter for
the friction condition is chosen constant (¢ = 10.0). The computations are made with different values of Az
and Az with a constant ratio 4.

The results of computations are presented on Figs. 3 and 4.

(vy)

Ma [ T

Sliding Velocity v,

Fig. 2. Example of friction coefficient.
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Experiment At Az lo? — 02 oo | Ju? — 2o
1 107 104
2 4x107% [ 4x107° 0.3678 2.5342 x 1076
3 1078 1077 0.1277 9.2298 x 1077
4 4x107°[4x10°C 0.0905 7.1579 x 1077
5 1079 107° 0.0237 2.8334 x 1077

Fig. 3. Different values of Az, Az and maximal difference between two successive computations.

~
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Fig. 4. Evolution of contact pressure, tangential velocity and normal displacement.

There is a numerical convergence, but, due to the bad regularity of the continuous problem solution, the
rate of convergence seems to be lower than linear on At.

7.2. Example of global behavior

Now, we choose a small perturbation parameter (¢ = 0.1) and a constant contact pressure.

Fig. 5 presents the evolution of tangential displacement on the contact boundary. One can see that there
is a chaotic behavior at the beginning of the simulation, but, after a certain time of simulation the motion
becomes more regular. Fig. 6 presents a detail of the simulation where the motion is regular. This dy-
namical system seems to be attracted by a solution which is nearly periodical. It is a classical result that a
one degree of freedom elastic system with such a law of friction often has a periodic attractor. Here, for the
infinite slab, the difference is the infinite number of degree of freedom and the presence of jump in velocity.
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Fig. 5. Evolution of the tangential displacement on the contact boundary.
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Fig. 6. Detail of the evolution of tangential displacement and velocity.
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