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Abstract

We present a free-locking finite element approximation of the displacement-pressure formulation for t
norini problem, in nearly incompressible elasticity. Studying the nonlinear variational problem requires
propriate saddle point theory. An abstract framework is laid down and applied to the system of the var
inequalities we are involved in. Existence and uniqueness results for the continuous problem are proven an
convergence rates of the mixed Taylor–Hood finite element discretisation are proved. Some numerical exp
are reported to underline the reliability of this approach.
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1. Introduction and functional tools

In solid mechanic computations, standard low order finite element methods applied to the
elasticity problem are known to produce unsatisfactory results when the material becomes alm
compressible, i.e.,the Lamé coefficientλ goes to infinity or, equivalently, the Poisson parameterν comes
close to1

2. This phenomenon, called the “numerical locking”, occurs because low order Lagrange
elements fail to approximate well divergence-free displacement fields while fulfilling the incompre
ity constraint. Moreover, the stiffness matrix of the discrete problem is so ill-conditioned that com
the approximate displacement turns to be tedious. Several methods were designed to overcome
ing such as discontinuous finite elements, reduced integrations or mixed methods. We refer to the
Brezzi and Fortin [10] where this matter is widely discussed. As explicitly noticed there, since “finite el-
ement users are more at ease with continuous discretizations”, either for good or bad reasons, we choo
to focus on the mixed devices for the numerical simulation of the unilateral contact Signorini prob
nearly incompressible elasticity which allow to use a large class of continuous finite elements. Th
goal of the paper is to develop a theory which can be applied to the exact and the discrete prob
derive the expected error estimates.

Applying the virtual work principle to the motion equation yields the variational inequality with
displacement as the single unknown (see [13,22,12]). A low order Lagrangian finite element sim
is expected to suffer from numerical locking for high values ofλ. Some computational experiences co
mented in the numerical section confirm such a prediction. The mixed formulation, where the p
is considered as an independent unknown, consists in the motion variational inequality compl
the equation connecting the pressure to the displacement. The classical saddle point theory (se
cannot be applied to this problem, due to the contact nonlinearity. It is then necessary to write
saddle point theory well suited to the Signorini system. This is the core of Section 3 where existen
uniqueness results are stated with standard coerciveness and continuity assumptions on the bilin
involved in the variational problem while the proof of the uniform stability with respect toλ is derived
from aninf–supcondition. Then, comes the description of the Galerkin discretization which is very
nonconforming. To tackle the question of the error estimation we need to make the same hypot
for the continuous case, in particular we assume the compatibility of the discrete displacement
pressure spaces regarding the inf–sup condition, and putting together the mathematical tools e
by Brezzi in [9] and those used by Falk in [15], we are able to derive an abstract result that tu
be useful for the finite element approximation of the saddle point Signorini problem. This is reali
Section 4 where the Taylor–Hood mixed elements are chosen. Applying the abstract framework p
the expected optimal converge rate free of locking (the estimate does not depend onλ) for raisonable
regularity on both the displacement and the pressure. Section 5 is dedicated to a numerical disc
order to highlight the reliability of the mixed approximation of the Signorini problem.

Notation. We need to set some notation and to recall some functional tools necessary to our a
Let Ω ⊂ R

2 be a Lipschitz domain, the generic point ofΩ is denotedx. The Lebesgue spaceL2(Ω) is
endowed with the norm

‖ψ‖L2(Ω) =
(∫ ∣∣ψ(x)

∣∣2
dx

)1/2

,

Ω
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0(Ω) = L2(Ω)/R is the closed subspace containing the null-averaged functions. We use th

dard Sobolev spaceHm(Ω), m � 1, provided with the norm

‖ψ‖Hm(Ω) =
( ∑

0�|α|�m

∥∥∂αψ
∥∥2

L2(Ω)

)1/2

,

whereα = (α1, α2) is a multi-index inN
2 and the symbol∂α represents a partial derivative (H 0(Ω) =

L2(Ω)). The fractional order Sobolev spaceHν(Ω), ν ∈ R
+ \ N, is defined by the norm

‖ψ‖Hν(Ω) =
(

‖ψ‖2
Hm(Ω) +

∑
|α|=m

∫
Ω

∫
Ω

(∂αψ(x) − ∂αψ(y))2

|x − y|2+2θ
dx dy

)1/2

,

whereν = m + θ , m is the integer part ofν andθ ∈]0,1[ is the decimal part (see [1,18]). The closu
in Hν(Ω) of D(Ω) is denotedHν

0 (Ω), whereD(Ω) is the space of infinitely differentiable function
whose support is contained inΩ . For a given portionγ of the boundary∂Ω , the spaceH 1

0 (Ω,γ ) is made
of the functions that vanish onγ . Let ν be any positive real number, the Hilbert spaceHν(γ ) is defined
as the range ofHν+1/2(Ω) by the trace operator, it is then endowed by the image norm

‖ψ‖Hν(γ ) = inf
χ∈Hν+1/2(Ω),χ|γ =ψ

‖χ‖Hν+1/2(Ω).

Whenγ is sufficiently regular, it is possible to write down an explicit norm ofHν(γ ), while for polygonal
lines, which is currently the situation, it turns out to be more complicated to have an explicit
especially forν � 1

2. The spaceHν(γ )′ stands for the topological dual space ofHν(γ ) and the duality

pairing is denoted by〈·, ·〉ν,γ . The special spaceH 1/2
00 (γ ) is defined as the set of the restrictions toγ of

the functions ofH 1/2(∂Ω) that vanish on∂Ω \ γ , it is also obtained by Hilbertian interpolation betwe
H 1

0 (γ ) andL2(γ ) (see [1,23]).

2. The Hermann mixed formulation of the Signorini problem

Let Ω be an arbitrary Lipschitz domain inR2, the boundary∂Ω being a union of two nonoverlappin
portionsΓu andΓC and let{c1, c2} be the common vertices ofΓC andΓu. Denote byn the outward
unit normal to∂Ω . In structural mechanics, the displacement of an elastic bodyΩ (represented in Fig. 1
supported by a frictionless rigid foundation, fixed alongΓu and subjected to external forcesf|Ω ∈ L2(Ω)2

satisfies the following partial differential equation

−divσ (u) = f in Ω, (2.1)

u = uD onΓu, (2.2)

whereuD is a prescribed displacement. The bold symboldiv stands for the divergence operator of a ten
function and is defined asdivσ = (

∂σ ij

∂xj
)i . To close the system, frictionless contact conditions are ne

onΓC . Denotingσn the normal component of the stress force(σn) andσ t its tangential component suc
thatσn = σnn + σ t, the contact conditions are formulated as follows (see [13,20,22]):

u · n � 0, σn � 0, σn(u · n) = 0,

σ = 0. (2.3)
t
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Fig. 1. The configuration of the elastic solidΩ before deformation subjected, e.g., to its weight. The bottom edgeΓC is the
region candidate to be in contact with the rigid foundation. The effective contact zone is not known before calculations

The stress tensor is obtained from the displacement through the Hook constitutive law

σ (u) = 2µε(u) + λ(div u)I,

where under small perturbations hypothesis,ε(u) is the linear strain tensor; i.e.,ε(u) = 1
2(∇u + ∇uT),

I is the metric tensor and(λ,µ) are the Lamé parameters. Then, the static equilibrium equation (2.1
be rewritten as follows

−2µ
(
divε(u)

) − λ∇(div u) = f in Ω. (2.4)

Only for simplification we shall assume in the subsequent discussion thatuD = 0. AsΓu = ∂Ω (and
ΓC = ∅), we are therefore in the linear context, near the incompressibility limitλ → +∞, the finite ele-
ment discretization of the variational form of problem (2.2)–(2.4) suffers from the “numerical loc
phenomenon; there can be a decrease in the accuracy of the computed displacement. This is pa
observed as lower degree finite elements are used (of degree� 3). The reason why such a phenomen
occurs is the inability of the discrete space to approximate accuratelyu while satisfying the incompress
ibility (div u = 0). The numerical locking is highlighted in many works among which we recomm
[3,28]. To avoid this phenomenon (see [10]), the most popular strategy is to resort to the mixed
lation of the problem (2.2)–(2.4). This allows us to reduce the severity of the constraint(div u = 0) by
enforcing it only weakly. Recall that, whenΓu = ∂Ω the technique consists to introduce the auxili
pressure(λdiv u) as an independent unknown (λ(div u) ∈ L2

0(Ω)), the pressure has a zero mean va
because of the Dirichlet condition. Unfortunately, for some reasons that will appear later this ch
not appropriate for our Signorini problem. The convenient way to proceed is to split the pressureλ(div u)

into

λ(div u) = p + λ

|Ω|
(∫

Ω

div u dx
)

, (2.5)

with p ∈ L2
0(Ω) and to write down a mixed variational inequality on the displacement-pressure(u,p)

unknowns. First, let us describe the suitable functional framework to handle the nearly incompr
Signorini problem. The displacements belong toH 1

0 (Ω,Γu)
2. The unilateral contact condition onΓC is

weakly formulated by means of the closed convex cone

K(Ω) = {
v ∈ H 1(Ω,Γ )2, (v · n) � 0, a.e.

}
.
0 u |ΓC
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The Hermann weak formulation adapted to the Signorini problem leads to a variational system th
as:find (u,p) ∈ K(Ω) × L2

0(Ω) such that

aλ(u,v − u) + b(v − u,p) � (f,v − u)L2(Ω) ∀v ∈ K(Ω), (2.6)

b(u, q) − 1

λ
(p,q)L2(Ω) = 0 ∀q ∈ L2

0(Ω). (2.7)

In (2.6), (2.7) we have set:∀u,v ∈ H 1
0 (Ω,Γu)

2,∀q ∈ L2
0(Ω),

aλ(u,v) = 2µ
(
ε(u),ε(v)

)
L2(Ω)4 + λ

|Ω|
(∫

Ω

div u dx
)(∫

Ω

div v dx
)

,

b(v, q) =
∫
Ω

(div v)q dx.

Taking into account the term inλ in the expression ofaλ(·, ·) can be viewed as an augmented Lagrang
procedure (see [17, Chapter 4]). The proof of the equivalence between (2.6) and (2.4) at one s
between (2.7) and (2.5) at the other side is skipped over as no particular technical difficulty arise

Remark 2.1. The normal componentσn of the normal stress force is given by

σn = (
2µε(u)n · n + p

) + λ

|Ω|
∫
Ω

div u dx. (2.8)

For convenience (see Section 4) this normal stress will be denoted byσλ
n , to underline the dependenc

on λ, while σn = (2µε(u)n · n + p) stands only for the part that is independent ofλ. Moreover, in the
variational formulation (2.6), (2.7), the mathematical sense given to condition (2.3) is the followin〈

σ λ(u)n,v
〉
1/2,∂Ω

� 0, ∀v ∈ H
1/2
00 (∂Ω,Γu)

2, (v · n)|ΓC
� 0, (2.9)〈

σ λ(u)n,u
〉
1/2,∂Ω

= 0, (2.10)

whereH
1/2
00 (∂Ω,Γu)

2 is the subspace ofH 1/2(∂Ω)2 of the functionsv whose normal component(v · n)

vanishes onΓu. Roughly, (2.9) says thatσ t = 0 andσλ
n � 0 onΓC while (2.10) expresses the exclusi

(in mechanic terminology) or the complementarity (in optimization terminology) conditionσλ
n (u · n) = 0

onΓC .

Remark 2.2. Most often, a part of the boundary of the domainΩ is subjected to boundary forces whi
correspond to Neumann conditions. However, in this work, we consider only Dirichlet and uni
contact conditions which is the “worst case” with respect to the stability and the convergence
methods to be studied.

3. An abstract problem

Let us now consider an abstract problem that will be successfully applied to the variational p
(2.6), (2.7) and its finite element approximation. This framework is readily extended to more g
saddle point problems for a class of variational inequalities, we refer to the work of [27] (see also
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3.1. Continuous setting of a mixed variational inequality

Let X andM be two Hilbert spaces with inner products(·, ·)X and(·, ·)M ; the associated norms bein
‖ · ‖X and‖ · ‖M , respectively. Denote byX′ andM ′ their dual spaces. Consider two continuous bilin
forms a0(·, ·) and a1(·, ·) on X and set, for anyε > 0, aε(·, ·) = a0(·, ·) + 1

ε
a1(·, ·). Let cε(·, ·) be a

bilinear form onM andb(·, ·) a continuous bilinear form onX × M . Denote byK a closed convex con
of X with vertex at 0. Then, for a given
 ∈ X′ andχ ∈ M ′, we investigate the variational problem:find
(u,p) ∈ K × M such that

aε(u,v − u) + b(v − u,p) � 
(v − u) ∀v ∈ K, (3.1)

b(u, q) − cε(p, q) = χ(q) ∀q ∈ M. (3.2)

In [19], a study of a different version of the mixed problem (3.1), (3.2) can be found for whichε = 0
and a frictional nondifferentiable term is added to (3.1). Existence and stability results are proven
This problem can be reformulated in the symmetric case as a saddle point problem by conside
Lagrangian functional,∀v ∈ X, ∀q ∈ M ,

L(v, q) = 1

2
aε(v,v) + b(v, q) − 1

2
cε(q, q) − 
(v) − χ(q),

and(u,p) is then characterized as the saddle point ofL,

L(u,p) = inf
v∈K

sup
q∈M

L(v, q) = sup
q∈M

inf
v∈K

L(v, q).

In order to state existence and uniqueness results we need some additional hypothesis which are
made for the saddle-point theory even in the linear context.

(i) The bilinear forma0(·, ·) is coercive and the forma1(·, ·) is positive semi-definite

a0(v,v) � α‖v‖2
X, ∀v ∈ X,

a1(v,v) � 0, ∀v ∈ X.

Notice that a direct consequence is that the formaε(·, ·) is also elliptic becauseaε(·, ·) � a0(·, ·).
(ii) There exists two constantsγ andγ̃ such that:∀p,q ∈ M ,

cε(p, q) � γ̃ ε‖p‖M‖q‖M, cε(q, q) � γ ε‖q‖2
M.

Proposition 3.1. Assume that hypothesis(i)–(ii) hold. Then, problem(3.1), (3.2) has only one solution
(u,p) ∈ K × M that satisfies

α‖u‖X + εγ ‖p‖M � 1

α
‖
‖X′ + 1

γ
‖χ‖M ′ .

Proof. Let us rewrite the mixed system (3.1), (3.2) as a standard variational inequality. Denote byX the
Hilbert spaceX × M endowed with the natural norm,K ⊂ X stands for the closed convex coneK × M

andAε andL are the bilinear and linear forms respectively defined by:∀u∗ = (u,p), v∗ = (v, q) ∈ X ,

Aε

(
u∗,v∗) = aε(u,v) + b(v,p) − b(u, q) + cε(p, q),

L
(
v∗) = 
(v) − χ(q).
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Then, it is easily checked thatu∗ = (u,p) is solution of (3.1), (3.2) if and only if it is solution of th
variational inequality:Find u∗ = (u,p) ∈ K such that

Aε

(
u∗,v∗ − u∗) � L

(
v∗ − u∗), ∀v∗ ∈ K. (3.3)

The formAε being continuous and positive definite (with an ellipticity constant dependent onε) and
the linear formL is continuous then applying Stampachia theorem to the variational inequality (3.3
mixed problem (3.1), (3.2), has only one solutionu∗ = (u,p) ∈K. For the stability, takingv∗ = 2u∗ and
v∗ = 0 in (3.3) yields

aε(u,u) + cε(p,p) = 
(u) − χ(p). (3.4)

The coerciveness ofaε(·, ·) andcε(·, ·) and Young inequality complete the proof.�
The estimate derived onu looks satisfactory, in the contrary that proven onp does not. Indeed, fo

smallε, which is the case of our interest, we have not a uniform bound on‖p‖M . However, if we make an
additional assumption onb(·, ·) it is possible to recover the optimality. Let us first introduce the subs
W of X

W = K ∩ (−K) = {v ∈ K, −v ∈ K},
and assume that

(iii) There exists a constantβ > 0 such that the followinginf–supcondition holds

inf
q∈M

sup
v∈W

b(v, q)

‖v‖X‖q‖M

� β.

(iv) The forma1(·, ·) vanishes onW meaning that:

a1(u,v) = 0, ∀u ∈ X, ∀v ∈ W.

An immediate consequence of the definition ofW and of the assumption (iv) is that

a0(u,v) + b(v,p) = aε(u,v) + b(v,p) = 
(v), ∀v ∈ W. (3.5)

Theorem 3.2. Assume that hypothesis(i)–(iv) hold. Then, the mixed problem(3.1), (3.2) has only one
solution(u,p) ∈ K × M that satisfies

‖u‖X + β‖p‖M � C
(‖
‖X′ + ‖χ‖M ′

)
.

The constantC is independent ofε.

Proof. The inf–sup condition and the variational identity (3.5) give

β‖p‖M � sup
v∈W

b(v,p)

‖v‖X
= sup

v∈W

a0(u,v) − 
(v)

|v|X .

We complete thanks to the uniform stability onu of Proposition 3.1. �
Remark 3.1. From (3.4) we can derive that

1

ε
a1(u,u) � 
(u) − χ(p),

form which we obtain thanks to Theorem 3.2√
a1(u,u) � C

√
ε
(‖
‖X′ + |χ |M ′

)
.
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3.2. Ritz–Galerkin approximation and an error estimate

Let Xh andMh be two finite dimensional sub-spaces which are supposed to be appropriate i
approximations ofX andM respectively, for small values of the discretization parameterh. Introduce a
closed convex coneKh of Xh with vertex 0 that is not necessarily contained inK (Kh �⊂ K) and consider
the nonconforming Riesz–Galerkin approximation of the continuous variational problem (3.1), (3.2find
(uh,ph) ∈ Kh × Mh such that

aε(uh,vh − uh) + b(vh − uh,ph) � 
(vh − uh) ∀vh ∈ Kh, (3.6)

b(uh, qh) − cε(ph, qh) = χ(qh) ∀qh ∈ Mh. (3.7)

For the complete analysis of this system and in order to derive estimates that do not dependε we
need to modify hypothesis (iii) and (iv) to render them well adapted to the discrete framework. D
Wh = Kh ∩ (−Kh) and let us make the following hypothesis

(iii )h There exists a constantβ̃ > 0 independent ofh such that the followinginf–supcondition holds

inf
qh∈Mh

sup
vh∈Wh

b(vh, qh)

‖vh‖X‖qh‖M

� β̃.

(iv)h We haveWh ⊂ W.
In the same way as in (3.5) a direct consequence of the hypothesis(iv)h is that

a0(uh,vh) + b(vh,ph) = 
(vh), ∀vh ∈ Wh,

which is necessary, together with theinf–supcondition, for the uniform stabilility of the discrete pressu

Theorem 3.3. Assume that the hypotheses(i)–(ii) and(iii )h–(iv)h hold. Then, the discrete mixed proble
(3.6), (3.7)has only one solution(uh,ph) ∈ Kh × Mh such that

‖uh‖X + β̃‖ph‖M � C
(‖
‖X′ + ‖χ‖M ′

)
.

Moreover, we have the following error estimate:

‖u − uh‖2
X + ‖p − ph‖2

M

� C
(

inf
vh∈Kh

a1(u−vh,u−vh)=0

[‖u − vh‖2
X + eiε(vh)

] + inf
v∈K

ecε(v) + inf
qh∈Mh

‖p − qh‖2
M

)
. (3.8)

The constantC does not depend onε nor onh and where we have set

eiε(vh) = aε(u,vh − u) + b(vh − u,p) − 
(vh − u),

ecε(v) = aε(u,v − uh) + b(v − uh,p) − 
(v − uh).

Proof. Following the same line as in the proof of Theorem 3.2 we obtain the existence, the uniq
and the stability result. In order to state the error estimate (3.8) letvh ∈ Wh andqh ∈ Mh be arbitrarily
chosen, then we have

b(vh, qh − ph) = b(vh, qh) − b(vh,ph) = b(vh, qh) + aε(uh,vh) − 
(vh)

= b(v , q − p) + a (u − u,v ) = b(v , q − p) + a (u − u,v ).
h h ε h h h h 0 h h
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In view of theinf–supcondition of assumption(iii )h it comes out that:∀qh ∈ Mh

‖p − ph‖M � η
(‖u − uh‖X + |p − qh|M

)
. (3.9)

Next, notice that the discrete mixed problem (3.6), (3.7) can also be reformulated in the same wa
variational inequality (3.3). Then, we derive that:∀v∗ ∈K, ∀v∗

h ∈Kh,

Aε

(
u∗ − u∗

h,u∗ − u∗
h

) = Aε

(
u∗,u∗) −Aε

(
u∗,u∗

h

) −Aε

(
u∗

h,u∗) +Aε

(
u∗

h,u∗
h

)
= L

(
u∗ − v∗

h

) −Aε

(
u∗,u∗ − v∗

h

)
+L

(
u∗

h − v∗) −Aε

(
u∗,u∗

h − v∗) +Aε

(
u∗ − u∗

h,u∗ − v∗
h

)
.

After obvious simplifications we obtain:∀δ, δ′ > 0, ∀v∗ ∈ K, ∀v∗
h ∈Kh,

Aε

(
u∗ − u∗

h,u∗ − u∗
h

)
� ecε(v) + eiε(vh) + aε(u − uh,u − vh)

+ b(vh − u,ph − p) + b(uh − u, qh − p) + cε(p − ph,p − qh).

Using Young inequality and the ellipticity ofaε(·, ·) provide:∀v∗ ∈K, ∀v∗
h ∈ Kh,

1

2
aε(u − uh,u − uh) + 1

2
cε(p − ph,p − ph)

� ecε(v) + eiε(vh) + 1

2

(
1+ ‖b‖

δα

)
aε(u − vh,u − vh) + 1

2
cε(p − qh,p − qh)

+ ‖b‖
2α

δ′aε(u − uh,u − uh) + ‖b‖
2

δ‖p − ph‖2
M + ‖b‖

2δ′ ‖p − qh‖2
M.

On account of (3.9), we can write:∀v∗ ∈ K,∀v∗
h ∈ Kh,

aε(u − uh,u − uh) + cε(p − ph,p − ph)

� 2
(
ecε(v) + eiε(vh)

) +
(

1+ ‖b‖
δα

)
aε(u − vh,u − vh) + cε(p − qh,p − qh)

+ ‖b‖
α

(
δ′ + 2δη2

)
aε(u − uh,u − uh) + ‖b‖

(
1

δ′ + 2δη2

)
‖p − qh‖2

M.

Choosingδ andδ′ such that‖b‖
α

(δ′ + 2δη2) = 1
2 and taking the infimum onqh ∈ Mh, on v ∈ K and on

{vh ∈ Kh, a1(u − vh,u − vh) = 0} gives the estimate on‖u − uh‖X. The estimate on‖p − ph‖M is
therefore a direct consequence of (3.9) and of the bound on‖u − uh‖X. �
Remark 3.2. Notice that the consistency error infv∈K ecε(v) is due to the nonconformity of the approx
mation. Otherwise ifKh ⊂ K it suffices to choosev = uh to show that the infimum is� 0 and this error
can be canceled in (3.8).

4. Application to the mixed Signorini problem

We are going to fit the mixed problem (2.6), (2.7) of the nearly incompressible elasticity to the a
theory developed in the previous section and to describe and analyze its finite element approxim
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4.1. Well posedness of the continuous mixed Signorini problem

Let us setX andM to be respectivelyH 1
0 (Ω,Γu)

2 andL2
0(Ω). Then, definea0(·, ·) anda1(·, ·) to be

the bilinear forms

a0(u,v) = 2µ
(
ε(u),ε(v)

)
L2(Ω)4, ∀u,v ∈ X,

a1(u,v) = 1

|Ω|
( ∫

ΓC

u · n dΓ

)( ∫
ΓC

v · n dΓ

)
, ∀u,v ∈ X.

The current expression ofa1(·, ·) is obtained from the former one by Green’s formula. For obvious c
modity the bilinear formsaε(·, ·) with ε = 1

λ
is rather denotedaλ(·, ·) andcλ(·, ·) (the same convention i

adopted for the index) is defined to be:∀p,q ∈ M ,

cλ(p, q) = 1

λ

∫
Ω

pq dx.

Assumptions (i) and (ii) are readily checked (by Korn’s inequality for (i) and withγ = γ̃ = 1 for (ii)).
The construction of the spaceW from K shows that

W = {
v ∈ X, (v · n)|ΓC

= 0
}
,

which contains(H 1
0 (Ω))2. Then, hypothesis (iii) is straightforward from the standardinf–supcondition

on (H 1
0 (Ω))2 × L2

0(Ω) (see [10,16]) while hypothesis (iv) is directly obtained from the expressio
a1(·, ·). We are in position to apply Theorem 3.2 to establish existence, uniqueness and stability
for problem (2.6), (2.7).

Theorem 4.1. The mixed Signorini problem(2.6), (2.7) has only one solution(u,p) ∈ K × L2
0(Ω) that

satisfies

‖u‖H1(Ω)2 + ‖p‖L2(Ω) � C‖f‖L2(Ω)2.

The constantC is independent ofλ.

Remark 4.1. For large values ofλ, and in view of Remark 3.1 we have∣∣∣∣
∫
Ω

div u dx

∣∣∣∣ � C√
λ
‖f‖L2(Ω)2,

while from the boundedness ofp we derive that∥∥∥∥div u − 1

|Ω|
(∫

Ω

div u dx
)∥∥∥∥

L2(Ω)

� C

λ
‖f‖L2(Ω)2.

This makes a small difference with the linear problem (when, e.g.,ΓC = ∅) where‖div u‖L2(Ω) decays
like 1

λ
.
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4.2. Taylor–Hood finite element approximation

The finite element discretization of the mixed variational problem (2.6), (2.7) we choose to st
based on the Taylor–Hood finite elements constructed on triangular meshes. The analysis de
hereafter, can be extended modulo some slight modifications to different type of finite elements s
the MINI (or P1/ isoP1) finite element introduced by Bercovier and Pironneau, the Crouzeix–Ra
discontinuousP1 ×P0 finite element or the stabilized Brezzi–Douglas–Marini (BDM) finite element
(see [10]). The only point consists in the numerical modeling of the unilateral condition which sho
enforced in an appropriate way so as to preserve the accuracy of the finite element used (see [4]

Assume the shape of the domainΩ is polygonal so that it can be exactly covered by rectilinear fi
elements. For any given discretization parameterh > 0, let be givenTh, a partition ofΩ into trianglesκ
with a maximum sizeh,

Ω =
⋃
κ∈Th

κ.

The analysis exposed here applies as well to the quadrangular finite elements. The set of the finite
nodes isΞh. The family(Th)h is assumed to beC0-regular in the classical sense [11]. MoreoverTh is built
in such a way that the boundar points{c1 andc2} of ΓC are vertices of some triangles. For anyκ ∈ Th,
Pr (κ) stands for the set of polynomials of total degree� r . Then, we introduce the finite dimension
subspaceXh of X:

Xh = {
vh ∈ C(Ω)2, ∀κ ∈ Th, vh|κ ∈P2(κ)2, vh|Γu

= 0
}
.

The construction of the discrete convex cone requires the introduction of some more notations
to the contact zone. Due to theC0-regularity hypothesis, the boundary inherits a regular meshT ∂Ω

h ,
the elements of which are complete edges of the trianglesκ ∈ Th. The trace ofT ∂Ω

h on ΓC results in
a mesh denoted byT C

h and is characterized by the subdivision(xC
i )0�i�i∗ with xC

0 = c1 and xC
i∗ = c2

while (ti =]xC
i ,xC

i+1[)0�i�i∗−1 are its elements and the middle node ofti is denotedxC
i+1/2. To avoid high

technicalities, in particular when fractional Sobolev norms are involved, so as to emphasize the
features of the mixed formulation we assume thatΓC is a straight line. The generalization to a mo
complex geometry is readily checked at the cost of a longer mathematical analysis, which is bey
scope of this work.

Following the choice made in [4], the numerical modeling of the Signorini condition consists
forcing the nonpositivity of the values of the approximated normal displacement(uh · n) at the vertices
(xC

i )0�i�i∗ and on its integral value on the elements(ti)0�i�i∗−1 instead of imposing the nonnegativi
on the values of the approximated normal displacement(uh · n) at the vertices(xC

i )0�i�i∗ and at the
middle nodes(xi+1/2)0�i�i∗−1, which seems more natural. The reason why this approach is adopte
appear at the end of the current section. The finite dimensional closed convex cone of the ad
displacement fields is, then, defined to be

Kh =
{

vh ∈ Xh, (vh · n)
(
xC

i

)
� 0, ∀i

(
0� i � i∗

) ∫
(vh · n)dΓ � 0, ∀i

(
0� i � i∗ − 1

)}
.

ti
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It is an easy matter to see thatKh is an external approximation ofK, i.e.,Kh �⊂ K, thus the discretizatio
is non-conforming. For technical needs we introduce the interpolation operatorJh which is specified by
the following degrees of freedom

(
v(x)

)
x∈Ξh\ΓC

,
(
v
(
xC

i

))
0�i�i∗,

(∫
ti

v dΓ

)
0�i�i∗−1

.

Using the Bramble–Hilbert Theorem we can derive the following error estimate: For anyν (1 < ν � 3)

there exists a constantC > 0 such that:∀v ∈ Hν(Ω)2,

‖v −Jhv‖L2(Ω)2 + h‖v −Jhv‖H1(Ω)2 � Chν‖v‖Hν(Ω)2. (4.1)

A pleasant feature of this operator is that for anyv ∈ K ∩ C0(Ω)2 we have(Jhv) ∈ Kh. To end with the
description of the finite element framework, the discrete pressure is chosen to be in

Mh =
{
qh ∈ C(Ω), ∀κ ∈ Th, qh|κ ∈ P1(κ),

∫
Ω

qh dx = 0

}
.

The discrete variational Signorini model is obtained as (3.6), (3.7), is set on the quadratic finite e
closed coneKh and the linear finite element spaceMh and reads as:find (uh,ph) ∈ Kh × Mh such that:

aλ(uh,vh − uh) + b(vh − uh,ph) �
∫
Ω

f · (vh − uh)dx, ∀vh ∈ Kh, (4.2)

b(uh, qh) − cλ(ph, qh) = 0, ∀qh ∈ Mh. (4.3)

In order to check-up assumptions(iii )h and(iv)h we need to build the discrete spaceWh: vh ∈ Wh

if and only if (vh · n)(xi ) = 0 (0 � i � i∗) and
∫
ti
(vh · n)dΓ = 0 (0 � i � i∗ − 1). This yields that

(vh · n)|ΓC
= 0; thenWh ⊂ W and (iv)h is fulfilled. The div-stability of(Wh,Mh) is issued from the

classical result of the mixed Taylor–Hood finite elements, which says that auniform inf–supcondition
on Xh ∩ (H 1

0 (Ω))2 andMh is available (see [10]); this gives(iii )h. Theorem 3.2 can be applied and w
then have

Proposition 4.2. The variational system(4.2), (4.3) is well posed and, then, has only one solut
(uh,ph) ∈ Kh × Mh such that

‖uh‖H1(Ω)2 + ‖ph‖L2(Ω) � C‖f‖L2(Ω)2.

The constantC does not depend onλ.

4.3. Error estimate

The analysis of the accuracy of our mixed approximation shows that it is Poisson’s locking-fre
convergence rate does not deteriorate for high values ofλ and is optimal with respect to the mesh-sizh
(except in (4.7) where it suffers from the extra-term| log(h)|1/4) under reasonable regularity assumptio

Theorem 4.3. Let (u,p) ∈ K × M be the solution of the mixed variational problem(2.6), (2.7).
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(i) Assumeu ∈ Hν(Ω)2 andp ∈ Hν−1(Ω) with 1< ν � 3
2. Then, the discrete solution(uh,ph) ∈ Kh ×

Mh satisfies

‖u − uh‖H1(Ω)2 + ‖p − ph‖L2(Ω) � Chν−1
(‖u‖Hν(Ω)2 + ‖p‖Hν−1(Ω) + ‖f‖L2(Ω)2

)
. (4.4)

(ii) Assumeu ∈ Hν(Ω)2 andp ∈ Hν−1(Ω) with 2< ν � 5
2. Then, the discrete solution(uh,ph) ∈ Kh ×

Mh satisfies

‖u − uh‖H1(Ω)2 + ‖p − ph‖L2(Ω) � Chν−1
(‖u‖Hν(Ω)2 + ‖p‖Hν−1(Ω)

)
. (4.5)

The constantC in (4.4)and in(4.5) is independent ofλ.

Theorem 4.4. Let (u,p) ∈ K × M be the solution of the mixed variational problem(2.6), (2.7), assume
that the number of points inΓC , where the constraint changes from binding(u · n = 0) to nonbinding
(u · n < 0), is finite.

(i) Assumeu ∈ Hν(Ω)2 andp ∈ Hν−1(Ω) with 3
2 < ν < 2. Then, the discrete solution(uh,ph) ∈ Kh ×

Mh satisfies

‖u − uh‖H1(Ω)2 + ‖p − ph‖L2(Ω) � Chν−1
(‖u‖Hν(Ω)2 + ‖p‖Hν−1(Ω)

)
. (4.6)

(ii) Assumeu ∈ H 2(Ω)2 andp ∈ H 1(Ω). Then, the discrete solution(uh,ph) ∈ Kh × Mh satisfies

‖u − uh‖H1(Ω)2 + ‖p − ph‖L2(Ω) � Ch| logh|1/4
(‖u‖H2(Ω)2 + ‖p‖H1(Ω)

)
. (4.7)

The constantC in (4.6)and in(4.7) is independent ofλ.

Basically, the proof of both theorems is a combination of the sharp technical tools developed b
hachmi and Ben Belgacem in [4] and the framework exposed in the previous section. Herea
restrict ourselves to the detailed proof of the estimate (4.5). Those given in (4.4), (4.6) and (4
proven following the same methodology.

First of all, foru ∈ Hν(Ω)2 andp ∈ Hν−1(Ω) with 2 < ν � 5
2, a direct application to our problem o

Theorem 3.3 and after transforming the termseiλ(vh) andecλ(v) by Green’s formula we obtain

Proposition 4.5. The following error estimate holds

‖u − uh‖2
H1(Ω)2 + ‖p − ph‖2

L2(Ω)

� C

(
inf

vh∈Kh∫
ΓC

(vh·n−u·n)dΓ =0

[
‖u − vh‖2

H1(Ω)2 +
∫
ΓC

σ λ
n (vh · n − u · n)dΓ

]

+ inf
v∈K

∫
ΓC

σ λ
n (v · n − uh · n)dΓ + inf

qh∈Mh

‖p − qh‖2
L2(Ω)

)
. (4.8)

We are going to bound separately the best approximation error represented by the first infim
(4.8) and the consistency error.



14 F. Ben Belgacem et al. / Applied Numerical Mathematics 54 (2005) 1–22

tstrap-
Lemma 4.6. Let (u,p) ∈ K × M be the solution of the mixed variational Signorini problem(2.6), (2.7).
Assumeu ∈ Hν(Ω)2 andp ∈ Hν−1(Ω) with 2 < ν � 5

2. Then

inf
vh∈Kh∫

ΓC
(vh·n−u·n)dΓ =0

[
‖u − vh‖2

H1(Ω)2 +
∫
ΓC

σ λ
n (vh · n − u · n)dΓ

]

� Ch2(ν−1)
(‖u‖2

Hν(Ω)2 + ‖p‖2
Hν−1(Ω)

)
.

The constantC is independent ofλ.

Proof. Choosingwh = Jhu ∈ Kh, then obviously, via the definition ofJh, we have∫
ΓC

(wh · n − u · n)ψh dΓ = 0, ∀ψh ∈ L2(ΓC), ψh|ti ∈P0(ti).

In particular takingψh = 1, it holds that∫
ΓC

(wh · n − u · n)dΓ = 0. (4.9)

This makeswh admissible to bound the infimum on the set{vh ∈ Kh,
∫
ΓC

(vh · n − u · n)dΓ = 0}.
Furthermore, using (4.1) we obtain

‖u − wh‖2
H1(Ω)2 � Ch2(ν−1)‖u‖2

Hν(Ω)2.

Next, to estimate the integral term, observe right away that, sinceλ is involved inσλ
n only through a

constant term (see Remark 2.1) and because of (4.9), the dependency onλ is canceled,∫
ΓC

σ λ
n (wh · n − u · n)dΓ =

∫
ΓC

σn(wh · n − u · n)dΓ.

Let ψh be fixed such thatψh|ti = 1
|ti |

∫
ti
σn dΓ (0� i � i∗), thanks to the construction ofwh we can write

that ∫
ΓC

σn(wh · n − u · n)dΓ =
∫
ΓC

(σn − ψh)(wh · n − u · n)dΓ

� ‖σn − ψh‖L2(ΓC)‖wh · n − u · n‖L2(ΓC) � Chν−3/2‖σn‖Hν−3/2(ΓC)h
ν−1/2‖u · n‖Hν−1/2(ΓC).

Then, the proof is completed by the trace theorem.�
We cope, now, with the consistency error so as to derive an intermediary bound of it. By a boo

ping, this bound allows to state a final estimate.

Lemma 4.7. Let (u,p) ∈ K × M be the solution of the mixed variational Signorini problem(2.6), (2.7).
Assumeu ∈ Hν(Ω)2 andp ∈ Hν−1(Ω) with 2 < ν � 5

2. Then

inf
v∈K

∫
ΓC

σ λ
n (v · n − uh · n)dΓ � Chν−1

(‖u − uh‖X + hν−1‖u‖Hν(Ω)2

)(‖u‖Hν(Ω)2 + ‖p‖Hν−1(Ω)

)
.

The constantC is independent ofλ.
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Proof. Takingv = u ∈ K and choosingψλ
h such thatψλ

h|ti = 1
|ti |

∫
ti
σ λ

n dΓ (0� i � i∗), we have∫
ΓC

σ λ
n (u · n − uh · n)dΓ

=
∫
ΓC

(
σλ

n − ψλ
h

)
(u · n − uh · n)dΓ +

∫
ΓC

ψλ
h (u · n − uh · n)dΓ. (4.10)

To bound the first part observe that

ψλ
h = ψh + λ

|Ω|
∫
Ω

div u dx,

with ψh|ti = 1
|ti |

∫
ti
σn dΓ (0� i � i∗). Then, we deduce thatσλ

n − ψλ
h = σn − ψh and∫

ΓC

(
σλ

n − ψλ
h

)
(u · n − uh · n)dΓ � ‖σn − ψh‖H

1/2
00 (ΓC)′‖u · n − uh · n‖

H
1/2
00 (ΓC)

� Chν−1‖σn‖Hν−3/2(ΓC)‖u · n − uh · n‖
H

1/2
00 (ΓC)

� Chν−1
(‖u‖Hν(Ω) + ‖p‖Hν−1(Ω)

)‖u − uh‖X.

The estimate on(σn − ψh) can be found in [2]. To handle the second term of (4.10) notice that
∫
ΓC

ψλ
h (uh · n)dΓ =

i∗−1∑
i=0

ψλ
h|ti

∫
ti

uh · n dΓ � 0.

This yields that∫
ΓC

ψλ
h (u · n − uh · n)dΓ �

∫
ΓC

ψλ
h (u · n)dΓ.

Defineχh ∈ L2(ΓC) such thatχh|ti = 1
|ti |

∫
ti
(u · n)dΓ (0� i � i∗), in view of the saturationσλ

n (u · n) = 0
onΓC , we can write that

∫
ΓC

ψλ
h (u · n)dΓ =

∫
ΓC

(
ψλ

h − σλ
n

)
(u · n − χh)dΓ =

i∗−1∑
i=0

∫
ti

(
ψλ

h − σλ
n

)
(u · n − χh)dΓ.

The sum can be restricted to the setI of indicesi for which u · n vanishes at least once inti . Indeed, if
(u · n)|ti < 0 thenσ λ

n|ti = 0 this yieldsψλ
h|ti = 0, and therefore the integral onti vanishes. Then∫

ΓC

ψλ
h (u · n)dΓ =

∑
i∈I

∫
ti

(
ψλ

h − σλ
n

)
(u · n − χh)dΓ =

∑
i∈I

∫
ti

(ψh − σn)(u · n − χh)dΓ

�
∑
i∈I

‖ψh − σn‖L2(ti )
‖u · n − χh‖L2(ti )

� C
∑
i∈I

h
ν−3/2
i ‖σ n‖Hν−3/2(ti )

hi |u · n|H1(ti )
.

The evaluation of the semi-norm|u · n|H1(ti )
is carried out as in [4, Lemma 4.11]. Since(u · n)|ti ∈ C1(ti)

with (u · n)|ti � 0 and vanishes at least once inti then

|u · n| 1 � Ch
ν−3/2‖u · n‖ ν−1/2 ,
H (ti ) i H (ti )
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so that
∫
ΓC

ψλ
h (u · n)dΓ �

∑
i∈I

Ch
ν−3/2
i ‖σn‖Hν−3/2(ti )

h
ν−1/2
i ‖u · n‖Hν−1/2(ti )

� Ch2(ν−1)

(∑
i∈I

‖σn‖2
Hν−3/2(ti )

)1/2(∑
i∈I

‖u · n‖2
Hν−1/2(ti )

)1/2

� Ch2(ν−1)‖σn‖Hν−3/2(ΓC)‖u · n‖Hν−1/2(ΓC)

� Ch2(ν−1)
(‖u‖Hν(Ω)2 + ‖p‖Hν−1(Ω)

)‖u‖Hν(Ω).

The proof is complete. �
Proof of (4.3) of Theorem 4.3. Putting together Lemmas 4.6 and 4.7 we obtain that

‖u − uh‖2
H1(Ω)2 + ‖p − ph‖2

L2(Ω)

� C
(
h2(ν−1)‖p‖2

Hν−1(Ω)
+ hν−1

(‖u − uh‖H1(Ω)2 + hν−1‖u‖Hν(Ω)2

)(‖u‖Hν(Ω)2 + ‖p‖Hν−1(Ω)

))
from which (4.5) of Theorem 4.3 is issued.�
Remark 4.2. In [4], a second numerical model—called the pointwise model—for the Signorini co
tions that looks more natural is studied. The corresponding discrete closed convex cone is de
follows

Hh = {
vh ∈ Xh, (vh · n)

(
xC

i

)
� 0, ∀i

(
0� i � i∗

)
(vh · n)

(
xC

i+1/2

)
� 0, ∀i

(
0� i � i∗ − 1

)}
.

In the compressible elasticity, when a primal formulation is used with the displacementu as the only
unknown, it is shown that this model performs as well as the one adopted in this paper—the i
model. In the mixed nearly incompressible elasticity things are changed. Indeed, when only Si
and Dirichlet boundary conditions are enforced on the boundaryΓ the pointwise model fails to provid
locking-free results. In particular the result of Lemma 4.6 does not hold any longer. The reason
if we choosevh = Ihu ∈ Hh in the proof of that lemma,Ih being the classical Lagrange interpolati
operator, the identity

∫
ΓC

(vh ·n−u ·n)dΓ = 0 is not valid anymore. In addition the bound of the integ
termeiλ(vh) is polluted byλ.

However, most often a part of the boundary is subjected to Neumann condition, then there is n
to split (λdiv u) as in (2.5) and settingp = (λdiv u) ∈ L2(Ω) becomes possible; the mixed variation
model is modified and is easier to analyze (see [26] for details).

Remark 4.3. The extension of our study to the MINI finite elementsP1/ isoP1 or to the stabilized BDM
finite elements is readily checked. The only point is to define properly the discrete Signorini cond
The discrete spacesKh andMh are constructed on two overlapping meshes. The pressure triangl
denotedκp andph|κp

∈ P1. Eachκp is broken into four smaller trianglesκu in the way shown in Fig. 2
anduh|κu ∈ P1.
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The set of the pressure points located onΓC are (xC
i )0�i�i∗ while those determining the degre

of freedom ofuh are (xC
i )0�i�i∗ and (xC

i+1/2)0�i�i∗−1. Then, the numerical modeling of the Signor
conditions reads as

(uh · n)
(
xC

i

)
� 0

(
0� i � i∗

) xC
i+1∫

xC
i

(uh · n)dΓ � 0
(
0� i � i∗ − 1

)
.

In this case the analysis may be carried out in the same way as done in this work and the results an
in part (i) of Theorem 4.3 and in Theorem 4.4 still hold.

5. Implementation and numerical discussion

Before discussing some examples to illustrate the conditions where the numerical locking occ
the Signorini problem and how to overcome it via the mixed Taylor–Hood finite element approxim
we provide some hints on the implementation and we describe briefly the algorithm used to so
discrete problem (4.2), (4.3).

Let uh ∈ R
n denote the discrete displacement vector whose components are(uh(x),x ∈ Ξh \ ΓD),

then n = 2card(Ξh \ ΓD), card is the cardinality,p
h

∈ R
m stands for the vector of(ph(x),x ∈ Ξh),

with m = cardΞh, where we give up, at least for a while, the zero mean value constraint. The Sig
conditions on the contact border specifying the admissible displacements can be expressed by th
of a rectangular matrixMC

h ; vh ∈ Kh if its vector representationvh satisfies the inequalityMC
h vh � 0, in

the sense that each component of it is nonpositive. Using these stencils, the algebraic equivalent
(4.4) reads as:find uh ∈ R

n, p
h
∈ R

m, with MC
h uh � 0 and

(Aλ,huh,vh − uh)Rn + (
BT

h p
h
,vh − uh

)
Rn � (lh,vh − uh)Rn, ∀vh ∈ R

n, MC
h vh � 0, (5.1)

Bhuh − 1

λ
Mhp

h
= 0. (5.2)

In (5.1), (·, ·)Rn is the inner product inRn, Aλ,h = A0 + λA1 the matrix of the bilinear formaλ(·, ·)
which is symmetric and positive definite, the matrixBh is associated withb(·, ·), T is the transposition
symbol,M is the mass matrix for the hydrostatic pressure and the vectorl ∈ R

n is the representatio
h h
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of the exterior load involved in the linear form
. The system (5.1), (5.2) can be viewed as the optima
conditions of themin–maxproblem

L(uh,p
h
) = min

MC
h vh�0

max
q

h

L(vh,q
h
),

(uh,p
h
) being the saddle point of the Lagrangian functional given by

L(vh,q
h
) = 1

2
(Aλ,hvh,vh)Rn + (qh,Bhvh)Rn − (lh,vh)Rn .

The solver adopted in our C++ finite element code GETFEM++ (see [25]) is based on the Uzawa alg
rithm (see [14]). We build up a sequence(ur

h,pr

h
)r in a recurrent way,pr

h
being known, we computeur+1

h

as the solution of the convex optimization problem

L
(
ur+1

h ,pr

h

) = min
MC

h vh�0
L

(
vh,pr

h

)
. (5.3)

Then, the pressure is updated as follows

Mhpr+1
h

= Mhpr

h
+ ρrBhur+1,

for some coefficientρr appropriately chosen to ensure the convergence of the iterative proces
minimization problem (5.3) is handled using the Polak–Ribière Conjugate Gradient method with
search (see [24,8]), the details of this procedure so as of some others employed to solve the appr
mixed problem will be exposed in [7]. Observe that even thoughAλ,h depends on the parameterλ, the
convergence speed of the internal CG-solver of the minimization problem (5.3) is not affected b
values of that parameter. Indeed, only a single eigenvalue of the matrixAλ,h grows likeλ and it is well
known that the CG method cancels the component of the residual in the corresponding eigen-dire
one step, most often in the first internal iterations for high eigenvalues. Recall that when the elast
is submitted to a Neumann condition along a part of its boundary there is no need that the hyd
pressure be null-averaged. In this case, the termλ(

∫
ΓC

u · n)(
∫
ΓC

v · n) depending onλ is taken into
account by aggragating it to the pressurep, and instead ofAλ,h we have a matrix independent ofλ.

The numerical tests we present are realized on a square-shaped elastic bodyΩ = (0,1)2 which is
originally in rest on the ground considered as a rigid foundation. The solid is slightly and uniformly
from its above edge, it may be modeled by a Dirichlet boundary conditionu = uD = (0, α) imposed on
ΓD = {1}×[0,1]. Under the effect of its own weight the solid undergoes an elastic deformation and
of its bottom edgeΓC = {0} × [0,1] may leave the ground, therefore the Signorini boundary condit
are recommended onΓC . On the vertical edges the body is free of any external solicitation and is
subjected to a homogeneous Neumann condition. Fig. 3 shows, with an exaggerated scale, the
the solid before (still a squared shape) and after deformation (the body is made thinner on its ab
while the extreme portions take off the ground).

For different materials, having different properties of incompressibility (the associated Poisson
cients are different) and for the standardP1, P2 and for the mixedP2 ×P1 Taylor–Hood approximation
we depict, in logarithmic scales, themaximumof the error (at the mesh points) on the displacement
with respect to the mesh size. In each case, the error is evaluated by comparing the computed so
the current mesh to a reference displacement calculated by the Taylor–Hood finite element app
tion using a sufficient fine mesh (each edge is subdivided into 256 elements). Actually, the comp
resolution for the reference solution is fixed after having measured the gap between the Taylo
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Fig. 3. Shape of the elastic solid before (dashed lines) and after deformation (continuous lines).

Fig. 4. Numerical locking of the linear finite element dis-
placement.

Fig. 5. Accuracy of the quadratic finite element displa
ment. The deterioration forν=0.499999875is caused by the
ill-conditioning of the system.

finite element displacement with that obtained by aP4 standard finite element displacement where
Signorini condition is enforced point-wisely onΓC . The difference between both solutions is sufficien
small which makes us confident in the quality of the computed displacement on that fine me
adopt it as a reference solution since it is widely known that, for the more classical Dirichlet/Neu
conditions, the high order finite elements is locking-free in nearly incompressible elasticity. Notic
for bothP1- andP2-approximations the displacement is calculated as the finite element solution
standard Signorini variational inequality by the Polak–Ribière CG procedure.
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Fig. 6. Monotonic decaying of the error of the Taylor–Hood
finite element displacement. No locking and no alteration
caused by the conditioning of the system are observed.

Fig. 7. Convergence curves for the standard finite elem
and the Taylor–Hood element solutions.

The effect of the Poisson numerical locking whenν comes close to12 (equivalently whenλ goes to
infinity) can be observed in Fig. 4. Forν = 0.4999875 andν = 0.499999875 there is no longer a decre
of the error given by the linear approximation as we remark that the corresponding curve is almo

The quadratic discretization, leads to a better accuracy, which is illustrated in Fig. 5, but we
that forν = 0.499999875 a significant deterioration appears when the number of the degrees of f
increases. To our opinion, the reason of such an undesirable behavior is that the CG fails to ca
satisfactory solution of the Signorini variational inequality because the condition number of the st
matrix is drastically increased.

In the contrary, Fig. 6 shows that for the mixed Taylor–Hood finite element solution we did not ob
any slow down of the convergence rate of the internal CG iterative solver nor of the Uzawa algo
The mixed finite element error on the reference displacement decays monotonically, which expres
it is locking-free.

Finally, we plot in the same frame (of Fig. 7) the convergence curves when the Poisson coe
ν = 0.49999999875 in order to stress the trends observed for the previous experiences and to
better insight on the efficiency of the mixed approach. The linear finite element displacement suffe
numerical locking, the condition number of the quadratic finite element system seems even wo
we are not able to solve it accurately, the bad impact on the computed displacement is clearly re
The mixed approximation still give satisfactory results.

6. Concluding remarks and future work

An efficient device to take into account the (near) incompressibility for the Signorini system in e
ity is to use the hydrostatic pressure as an independent variable, in addition to the displacement fi
resulting mixed formulation involves a variational inequality expressing the motion equation to
with a variational equation stating the connection between the pressure and the displacement. T
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of this system requires a substantial adaptation of the saddle point theory to the case of ineq
This aim is brought into a successful conclusion in this work. Indeed, the abstract framework pre
fits to the Signorini problem in nearly incompressible elasticity, where the well posedness is ob
and the Taylor–Hood discretization provides the expected optimal convergence rates. Some nu
experiences discussed in the previous section are in accordance with the theoretical predictions.

This paper may stimulate some theoretical work in several directions for the unilateral conta
instance, an interesting challenge is the theoretical analysis of the matching of meshes for the nu
simulation of the displacement of two elastic bodies subjected to a unilateral contact along a c
zone, when one of them is at least constituted of (nearly) incompressible material (see [6,21,5
represents one of the future perspectives of our team.
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