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ABSTRACT. In this paper, we introduce a new variant of the extended finite element method
(Xfem) allowing an optimal convergence rate when the asymptotic displacement is partially
unknown at the crack tip. This variant consists in the addition of an adapted discretization
of the asymptotic displacement. We give a mathematical result of quasi-optimal a priori error
estimate which allows to analyze the potentialities of the method. Some computational tests are
provided and a comparison is made with the classical Xfem.

RÉSUMÉ. Dans cet article, nous introduisons une nouvelle variante de la méthode des éléments
finis étendus (Xfem) permettant l’obtention d’un taux de convergence optimal lorsque le dépla-
cement asymptotique en pointe de fissure est partiellement inconnu. Cette variante consiste en
l’addition d’une discrétisation adaptée du déplacement asymptotique. Nous donnons un résultat
mathématique d’estimation d’erreur a priori quasi optimal qui permet d’analyser les potentia-
lités de la méthode. Des tests numériques sont présentés et une comparaison est faite avec la
méthode Xfem classique.
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1. Introduction

In order to overcome some difficulties coming from classical finite element strate-

gies (refinement of the mesh around the crack tip, remeshing after crack propagation)

many approaches have been developed to make the finite element methods more flex-

ible. In 1973, a nonsmooth enrichment method using a cut-off function for a mesh de-

pendent on the domain geometry is introduced in (Strang et al., 1973). Since then, dif-

ferent approaches had been analyzed such the Pufem (the Partition of Unity Finite El-

ement Method) (Melenk et al., 1996), the Arlequin method (Bendhia, 1998), the Gfem

(Generalized Finite Element Method) (Strouboulis et al., 2000), the Xfem (eXtended

Finite Element Method) and the patches enrichment approach (Glowinski et al., 2003).

Inspired by the Pufem, the Xfem was introduced in (Moës et al., 1999b; Moës et
al., 1999a)). It consists on the enrichment of the classical finite element basis by a

step function along the crack line to take into consideration the discontinuity of the

displacement field and on some nonsmooth functions to represent the asymptotic dis-

placement in a vicinity of the crack tip. This enrichment strategy allows the use of

a mesh independent of the crack geometry. Since the introduction of the Xfem, a

rapidly growing literature have been produced in order to explore the capabilities of

the method and improve its accuracy, two examples of which are (Laborde et al., 2005)

and (Béchet et al., 2005).

In this paper, we propose and analyze a new variant of Xfem. It consists in the

addition of an adapted patch to the classical Xfem method in order to approximate the

asymptotic displacement at the crack tip. There is some similarities with the patches

enrichment approach proposed in (Glowinski et al., 2003) but with significant differ-

ences. The interest of the method is to avoid the enrichment of the finite element space

with the complete asymptotic displacement when the latter is too much complicated

or when its complete expression is not available. Only a partial knowledge of the form

of the asymptotic displacement is necessary. We give a mathematical result of a priori
error estimate which allows to analyze the potentialities of the method. These results

are validated by some numerical computations and comparisons with the classical

Xfem.

2. The Spider eXtended Finite Element Method (SpiderXfem)

We denote Ω ⊂ R
2 the reference configuration of a cracked linearly isotropic elas-

tic body in plane stress approximation. The boundary of Ω, denoted ∂Ω, is partitioned

into three parts ΓD, ΓN and ΓC . A Dirichlet condition is prescribed on ΓD and a

Neumann one on ΓN and ΓC . The part ΓC of the boundary is representing the crack

(see Fig. 1).

Let V = {v ∈ H1(Ω,R2);v = 0 on ΓD} be the space of admissible displace-

ments and let us define

a(u,v) =

∫

Ω

σ(u) : ε(u) dx, l(v) =

∫

Ω

ξ.v dx +

∫

ΓN

ζ.v dΓ,
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Figure 1. The cracked domain Ω which represents the reference configuration of a

cracked elastic body.

σ(u) = λtrε(u)I + 2µε(u),

where σ(u) is the stress tensor, ε(u) is the linearized strain tensor, ξ and ζ are some

given force densities on ΓN and Ω respectively, and λ > 0, µ > 0 are the Lamé

coefficients (which may have different values on one side and on the other side of the

crack for the bi-material case). The elastostatic problem reads as

find u ∈ V such that a(u,v) = l(v) ∀v ∈ V. [1]

We suppose that the solution u to this problem is a sum of a regular part and a nons-

mooth part

u = ur + us,

such that ur is regular in the sense ur ∈ H2+ε(Ω; R2) for a fixed ǫ > 0 (see (Adams,

1975) for the definition of Hs(Ω; R2), s ∈ R) and us is of the form

us = (rαfi(r)gi(θ))i=1,2 , [2]

where (r, θ) are the polar coordinates relatively to the crack tip, fi, gi, i = 1, 2 are

some regular functions and α ≥ 1/4.

This assumption is satisfied in the homogeneous case at least when ξ, ζ are suf-

ficiently smooth, for a straight crack and when the uncracked domain Ω := Ω ∪ Γ
C

has a regular boundary (see (Grisvard, 1992; Grisvard, 1986)). In this case, for which

α = 1/2, the expression of the asymptotic displacement is available in many refer-

ences such as (Lemaitre et al., 1994). Note that, when Ω admits some corners, some

additional nonsmooth displacements may appear at these corners which may also be

taken into account with additional enrichment in an Xfem like approach.

The main idea of SpiderXfem is to approximate the nonsmooth behavior around

the crack tip of Ω by another overlapping mesh. We consider a Lagrange finite element

method defined on a triangulation T h of the uncracked domain Ω. In accordance with

the Xfem method (Moës et al., 1999b), the appropriate degrees of freedom of T h

are enriched using a Heaviside function H equal to 1 on one side of the crack and



4 1re soumission à la Revue Européenne de Mécanique Numérique

−1 on the other side. This means that the regular part of the displacement field is

approximated by a linear combination of the form

∑

i∈I

aiφi +
∑

i∈IH

biHφi, [3]

where ai ∈ R
2, bi ∈ R

2, I is the set of the indices of the classical finite element

nodes, IH is the set of the indices of the nodes enriched by the Heaviside function and

φi denotes the shapes functions of the scalar finite element method. We define now

another rectangular domain Ωc = ]− π, π[×]0, r1[ in a cartesian coordinate system in

r and θ (see Fig. 2). Then, we consider a bi-linear Lagrange finite element method

defined on a structured mesh composed of quadrilateronsQhc of Ωs (hc is the size of

the quadrilaterons). In order to take into account the “nonsmooth part” rα, the shape

functions of this finite element method are multiplied by the term rα. Then we apply

a geometric transformation to Ωc defined by

{
x = r cos θ + x0

y = r sin θ + y0,
[4]

(x0, y0) being the coordinates of the crack tip. This allows us to have a "circular"

mesh denoted Ωs as depicted in Fig. 2. In order to make a smooth transition between

the enriched area and the nonenriched one, we introduce a C2 cut-off functionχ which

satisfies for 0 < r0 < r1





χ(r) = 1 if r < r0,
0 < χ(r) < 1 if r0 < r < r1,
χ(r) = 0 if r1 < r,

[5]

which can be, for instance, a piecewise fifth degree polynomial in r. The asymptotic

displacement at the crack tip is approximated on Ωs by a linear combination of the

form ∑

i∈Is

ciχ(r)ψi(r, θ), [6]

where ci ∈ R
2, Is is the set of the indices of the finite element nodes on Ωs and

ψi(r, θ) is obtained by applying the geometric transformation to the finite element

shape function of the bi-linear finite element method defined on Qhc . The shape

functions ψi can be written as follows:

ψi(r, θ) = rαpj(r)qk(θ), [7]

where pj(r) and qk(θ) are some piecewise first degree polynomial which represent

the shape functions of a P1 finite element method defined on [0, r0] and [0, 2π], re-

spectively. Finally we overlap Ω and Ωs such that the center of Ωs coincides with the

crack tip, and the two sides π and −π coincides with the crack (Fig. 3). Thus, the

resulting finite element approximation space over Ω can be written

Vh = {uh =
∑

i∈I

aiφi +
∑

i∈IH

biHφi +
∑

i∈Is

ciχ(r)ψi(r, θ)}. [8]
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Figure 2. Geometric transformation

Figure 3. The resulting mesh

The discrete problem reads as

find uh ∈ Vh such that a(uh,vh) = l(vh) ∀vh ∈ Vh. [9]

3. A priori error estimates

In order to establish an a priori error estimate, we first define an adapted interpo-

lation operator. It is based, as in (Chahine et al., 2006; Chahine et al., submitted) on a

decomposition of the solution u to Problem [1] as follows:

u = urd + χus.
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The part urd = ur + (1 − χ)us is still regular in the sense urd ∈ H2+ε(Ω; R2)
because (1−χ)us vanishes in a vicinity of the crack tip and is regular elsewhere. The

expression of the interpolation operator over the whole domain Ω is the following:

Πhu =
∑

i∈I

aiϕi +
∑

i∈IH

biHϕi +
∑

i∈Is

ciψi(r, θ)χ(r). [10]

The coefficients ai ∈ R
2, bi ∈ R

2 are determined by:

if i ∈ {I \ IH} then ai = urd(xi),

if i∈IH and xi∈Ωk(k∈{1, 2}, l 6=k) then





ai=
uk

rd(xi) + ũl
rd(xi)

2
,

bi=
uk

rd(xi) − ũl
rd(xi)

2
H(xi),

[11]

where xi denotes the node associated to ϕi, and where it is assumed that there exists

a continuation of the crack which splits Ω into two parts denoted Ω1 and Ω2. The

notations u1
rd, u2

rd stand for the restriction of urd to Ω1 and Ω2 respectively and

ũ1
rd, ũ2

rd ∈ H2+ε(Ω; R2) are some given regular extensions on Ω of u1
rd and u2

rd

respectively. The coefficients ci ∈ R
2 are simply defined by

ci = r−α
i us(ri, θi),

where (ri, θi) is the finite element node corresponding to ψi.

An estimate of the regular part is presented in (Chahine et al., 2006; Chahine et
al., submitted). It holds for a constant C > 0 independent of h (for a straight crack):

‖urd − Πhurd‖1,Ω ≤ Ch‖urd‖2+ǫ,Ω,

where ‖.‖s,Ω stands for the norm of the spaceHs(Ω; R2). Thus, it remains to estimate

‖χus − Πhχus‖1,Ω = ‖χ(us −
∑

i∈Is

ciψi)‖1,Ω,

which has only a contribution inside the enriched area (r < r1). The following lemma

gives a first estimate of this term.

Lemma 3.1 If α ≥ 1/2, then there exists C > 0 a constant independent of hc (but
which may depend on r0 and |||χ||| = 1 + sup

0≤r≤r0

|χ′(r)|) such that denoting es =

r−α(us −
∑

i∈Is

ciψi) the following estimate holds:

‖χrαes‖1,Ω ≤ C (‖es‖0,Ωc
+ ‖r∂res‖0,Ωc

+ ‖∂θes‖0,Ωc
) .

If 1/4 ≤ α < 1/2, then there exists C > 0 a constant independent of hc such that the
following estimate holds:

‖χrαes‖1,Ω ≤ C
(
‖es‖L4(Ωc) + ‖r∂res‖L4(Ωc) + ‖∂θes‖L4(Ωc)

)
,

where ‖ · ‖L4(Ωc) denotes the norm of the space L
4(Ωc,R

2).
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Proof. One has, for some constant C > 0 independent of hc

‖χrαes‖1,Ω ≤ C|||χ||| ‖rαes‖1,Ωs
.

But

‖rαes‖2
1,Ωs

=

∫

Ωs

(rαes)
2dΩs +

∫

Ωs

|∇(rαes)|2dΩs

=

∫

Ωc

r2α−1
(
r|es|2 + |αes + r∂res|2 + |∂θes|2

)
drdθ

If α ≥ 1/2 the term r2α−1 can be bounded by r2α−1
0 which gives the first estimate

and if 1/4 ≤ α < 1/2 the second estimate is obtained thanks to Schwarz’s inequality.

�

3.1. The regular case

Standard results on Lagrange interpolation operator (see (Ciarlet, 1978; Ern et
al., 2002)) lead to the following result.

Proposition 3.1 If α ≥ 1/2, fi ∈ H2(0, r0), i = 1, 2 and gi ∈ H2(0, 2π), i = 1, 2

then the following estimate holds for es = r−α(us −
∑

i∈Is

ciψi):

‖χrαes‖1,Ω ≤ Chc‖f(r)g(θ)‖2,Ωc
.

If 1/4 ≤ α < 1/2, fi ∈ H2(0, r0), i = 1, 2 and gi ∈ H2(0, 2π), i = 1, 2 then the
following estimate holds:

‖χrαes‖1,Ω ≤ Chc‖f(r)g(θ)‖W 2,4(Ωc) ,

whereW 2,4(Ωc) is the standard Sobolev space (see (Adams, 1975)).

This result indicates that if the functions fi, i = 1, 2 and gi, i = 1, 2 are some

regular functions with respect to r and θ respectively then the SpiderXfem allows

to have an optimal convergence rate provided that hc is of the same order of h (i.e.
∃ η > 0, hc ≤ ηh).

Note that in the homogeneous case (constant lamé coefficients), functions fi, i =
1, 2 are not necessary. Thus, the functions pj(r) can be omitted in the definition of

ψi [7]. Which means that only a discretization with respect to the variable θ is neces-

sary. This, of course, greatly reduces the number of degrees of freedom necessary to

represent the asymptotic behavior of the displacement.
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3.2. The bi-material case

In the bi-material case (lamé coefficients having different values from one side of

the crack to the other), the typical form of the asymptotic displacement at the crack

type is (see (Rice, 1988; Chang et al., 2007) for instance)

√
r sin(β log r)g̃(θ) +

√
r cos(β log r)g(θ), [12]

where g̃ and g are some regular (trigonometric) functions of θ. Unfortunately, the

functions sin(β log r) and cos(β log r) are not sufficiently regular for the result of the

previous section to apply. A rapid analysis allows to note that the term ‖r∂res‖0,Ωc
in

Lemma 3.1 only gives a convergence rate of order
√
hc.

The conclusion of this mathematical analysis is that it seems necessary to enrich

the SpiderXfem with the whole nonsmooth behavior in r. In the bi-material case, both

the enrichment with
√
r sin(β log r) and with

√
r cos(β log r) are necessary. How-

ever, once these enrichments are considered, no supplementary dependence of the

SpiderXfem in r is necessary, similarly to the previous section. Thus, the necessary

enrichment in order to obtain an optimal convergence rate is given by the following

definition of functions ψk
i :

ψ1
i =

√
r sin(β log r)qi(θ), ψ2

i =
√
r cos(β log r)qi(θ).

The resulting enriched finite element space is

Vh = {uh =
∑

i∈I

aiφi +
∑

i∈IH

biHφi +
∑

i∈Is,k=1,2

ck
i χ(r)ψk

i (r, θ)}. [13]

4. Numerical experiments

The computational tests are performed on the simple non-cracked domain Ω =
[−0.5; 0.5]×[−0.5; 0.5] and with a crack being the line segment ΓC = [−0.5; 0]×{0}.

The tests are done for an homogeneous material. The opening mode displacement

field is the exact solution prescribed as a Dirichlet condition on the domain boundary.

This solution is shown on Fig. 5. The cut-off function is a piecewise fifth degree

polynomial with r0 = 0.01 and r1 = 0.4 (see [5]). The computations are made with

the SpiderXfem as described in Section 2 and with the classical Xfem with a fixed

enrichment area both over a structured triangulation as depicted on Fig. 4. We make

the use of Getfem++, our object oriented C++ finite element library (see (Renard et
al., http://www-gmm.insa-toulouse.fr/getfem)).

Fig. 6 shows the convergence curves for an isotropic homogeneous cracked do-

main in L2(Ω)-norm and H1(Ω)-norm (energy norm). The two mesh parameters for

the SpiderXfem are taken proportional (hc = h/2). The convergence rate is optimal

for both the two methods. The classical Xfem still gives slightly better results than

the SpiderXfem. However, only a partial knowledge of the asymptotic displacement
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Figure 4. A structured triangulation of

the domain Ω.

Figure 5. Von Mises stress for the

opening mode for an homogeneous

material.

is used with the SpiderXfem. Moreover, the condition number of the stiffness matrix

is greatly better in the case of the SpiderXfem as shown on Fig. 7.

Fig. 8 shows the convergence curve for a bimaterial interface crack in H1(Ω)-norm.

The SpiderXfem enrichment considered here is the one given in Section 3.2 and the

comparison is done with respect to a refined classical finite element solution. The op-

timal convergence rate is obtained as in the isotropic homogeneous case even though

all the dependency of the singular part of the solution in θ is approximated.

5. Concluding remarks

The presented theoretical and numerical studies emphasize that with the proposed

strategy, the dependence in r of the asymptotic displacement has to be known and

added to the expression of the enrichment functions. Conversely, the dependence in θ
can be approximated with a one-dimensional finite element. Note that a spectral ap-

proximation should also be possible, even if it leads to a more dense stiffness matrix.

The coefficients α from [2] and β from [12] are determined by a transcendental equa-

tion whose solution is α + iβ (see (Chang et al., 2007) for instance). The advantage

of the proposed method is that it is sufficient to find α and β. Indeed, the search of

the complete expression of the asymptotic displacement and the extraction of a base

in the classical Xfem approach can be a complex process which is avoided with the

SpiderXfem.
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Figure 6. Convergence curves for an isotropic homogeneous cracked material in

L2(Ω)-norm and H1(Ω)-norm comparing the SpiderXfem and the classical Xfem.

For the SpiderXfem we consider hc = h/2.

The conclusions of sections 3.1 and 3.2 indicate that, in most of the cases, one can

make the economy of the finite element method describing the dependence in r of the

SpiderXfem (i.e. pj(r) can be omitted in [7]). However, it can also be advantageous

to keep it. Indeed, the higher degree nonsmooth modes describing the asymptotic

displacement at the crack tip differ from an integer power of r compared to the first

one. So, according to the theoretical results, by keeping the finite element method

in r the whole asymptotic displacement is optimally approximated, not only the first

nonsmooth mode. This could be an interesting property, especially to build higher

order finite element methods.
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Figure 7. Condition number of the stiffness matrix.
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Figure 8. Convergence curves for a bimaterial interface crack in H1(Ω)-norm com-

paring the SpiderXfem and a classical fem. For the SpiderXfem we consider hc =
h/2.

A perspective to improve the method is to replace the use of a cut-off function by

a pointwise or an integral matching condition. This usually leads to a better approxi-

mation (see (Laborde et al., 2005)).

This work is supported by "l’Agence Nationale de la Recherche", project ANR-05-

JCJC-0182-01.
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Melenk J., Babuška I., “ The partition of unity finite element method: Basic theory and appli-

cations”, Comput. Meths. Appl. Mech. Engrg., vol. 139, p. 289-314, 1996.

Moës N., Belytschko T., “ X-FEM: Nouvelles Frontières Pour les Eléments Finis”, Revue eu-
ropéenne des éléments finis, vol. 11, p. 131-150, 1999a.

Moës N., Dolbow J., Belytschko T., “ A finite element method for crack growth without remesh-

ing”, Int. J. Numer. Meth. Engng., vol. 46, p. 131-150, 1999b.

Renard Y., Pommier J., Getfem++, An open source generic C++ library for finite element meth-

ods, http://www-gmm.insa-toulouse.fr/getfem.

Rice J., “ Elastic fracture mechanics concepts for interfacial cracks”, Journal of Applied Me-
chanics, vol. 55, p. 98-103, 1988.

Strang G., Fix G., An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs,

1973.

Strouboulis T., Babuska I., Copps K., “ The design and analysis of the Generalized Finite Ele-

ment Method”, Comput. Meths. Appl. Mech. Engrg., vol. 181, p. 43-69, 2000.


