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SUMMARY

We consider a variant of the eXtended Finite Element Method (XFEM) in which a cut-off function is
used to localize the singular enrichment surface. The goal of this variant is to obtain numerically an
optimal convergence rate while reducing the computational cost of the classical XFEM with a fixed
enrichment area. We give a mathematical result of quasi-optimal error estimate. One of the key points
of the paper is to prove the optimality of the coupling between the singular and the discontinuous
enrichments. Finally, we present some numerical computations validating the theoretical result. These
computations are compared to those of the classical XFEM and a non-enriched method. Copyright
c© 2006 John Wiley & Sons, Ltd.
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1. Introduction

The benefits of computational methods using classical finite element strategies are limited
when solving problems defined over cracked domains and that for at least two reasons: the
mesh should be sufficiently refined around the crack tip to model the singular strain, and the
domain should be remeshed step by step according to the geometry of the crack propagation.
To overcome these difficulties and to make the finite element methods more flexible, many
approaches have been studied. In 1973, Strang and Fix [1] introduced a singular enrichment
method using a cut-off function for a mesh dependent on the domain geometry. Since then,
different approaches had been analyzed such the PUFEM (the Partition of Unity Finite
Element Method, see [2]), the Arlequin method (see [3]), the GFEM (Generalized Finite
Element Method, see [4, 5]), the XFEM (eXtended Finite Element Method) and the patches
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enrichment approach (see [22]).

Inspired by the PUFEM, the XFEM was introduced by Moës and al. in 1999 (see [6, 7]).
The idea of XFEM consists in enriching the basis of the classical finite element method
by a step function along the crack line to take into consideration the discontinuity of the
displacement field across the crack and by some non-smooth functions representing the
asymptotic displacement around the crack tip. The latter enrichment is the so-called singular
enrichment. This enrichment strategy allows the use of a mesh independent of the crack
geometry. Since the introduction of the XFEM, many works have been achieved in order to
explore the capabilities of the XFEM and improve its accuracy as in [15, 16, 17, 18, 19, 20, 21].
Other works studied XFEM with some 3D applications as [8, 9, 10, 11, 12, 13, 14].

In spite of the singular enrichment of the finite element basis, the obtained convergence
error of XFEM remains only in

√
h if linear finite elements are used (see [23], h being the

mesh parameter). To improve this result and obtain an optimal accuracy, many developments
have been performed. A first idea was to enrich the degrees of freedom of a whole area around
the crack tip by the singular functions (see [23, 24]). In a second variant, a global enrichment
strategy is considered in order to reduce the number of the enrichment degrees of freedom and
improve the conditioning of the linear system. Such a variant is a non-conforming method to
deal with the difficulty of transition between the enriched area and the remaining elements of
the mesh [23].

We consider in this paper another variant of XFEM which allows to benefit from the
advantages of the latter one while preserving the conformity of the method. One of the
difficulties is the mathematical analysis of the coupling between the two types of enrichment.
The detailed proof of the optimal convergence results, that were announced in [25], is studied
in the present paper. Moreover, these results are validated by some numerical computations
and comparisons with a non-enriched method and the classical XFEM. These numerical
results show that the proposed variant preserves an optimal convergence even though its
computational cost is lower than that of XFEM.

The elastostatic problem is presented in Section 2 for a two-dimensional cracked domain. In
Section 3, we introduce the proposed variant in which the linear finite element basis is enriched
with singular functions using a cut-off function. In Section 4, a mathematical result is given
showing the accuracy of the method. To prove the error estimate, the domain Ω is splitted
into two subdomains and an interpolation operator is defined using an extension operator
over each subdomain. Then we obtain a quasi-optimal rate of convergence by means of this
interpolation operator considered on every type of triangles: triangle containing the crack tip
and triangles partially or totally enriched with the discontinuous function. In Section 5, some
numerical results are presented including a comparison with a non-enriched method and the
XFEM using a singular enrichment over a whole area. These results show an optimal rate of
convergence and a satisfactory conditioning.
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2. The model problem

Let Ω be a bounded cracked domain in R
2; the crack ΓC is assumed to be straight. We

consider the linear elasticity problem on this domain for an isotropic material. The boundary
of Ω, denoted ∂Ω, is partitioned into ΓD where a Dirichlet condition is prescribed, ΓN with a
Neumann condition and ΓC (the crack) where a traction free condition is considered (Fig. 1).

Figure 1. The cracked domain Ω.

Let ϑ = {v ∈ H1(Ω); v = 0 on ΓD} be the space of admissible displacements and

a(u, v) =

∫

Ω

σ(u) : ε(v) dx,

l(v) =

∫

Ω

f.vdx +

∫

ΓN

g.v dΓ,

σ(u) = λtrε(u)I + 2µε(u),

(1)

where σ(u) denotes the stress tensor, ε(u) the linearized strain tensor, f and g are some given
force densities on Ω and ΓN respectively, and λ > 0, µ > 0 are the Lamé coefficients. To
simplify the mathematical analysis, we consider a homogeneous Dirichlet boundary condition
on ΓD. The extension to a non-homogeneous condition is straightforward. The problem can
be written

Find u ∈ ϑ such that a(u, v) = l(v) ∀v ∈ ϑ. (2)

We suppose that f and g are smooth enough to let the solution u of the elasticity problem be
written as a sum of a singular part us and a regular part u − us in Ω (see [26, 27]) satisfying
for a fixed ǫ > 0 (see [30] for the definition of Hs(Ω), s ∈ R):

u − us = u − (KIuI + KIIuII) ∈ H2+ǫ(Ω), (3)

where KI and KII denote the stress intensity factors. The asymptotic displacement at the
crack tip is defined from functions uI and uII , respectively the opening mode and the sliding
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Figure 2. Polar coordinates respectively to the crack tip Ω.

mode for a two-dimensional crack given in polar coordinates by (see [28, 29]):

uI(r, θ) =
1

E

√
r

2π
(1 + ν)

(
cos θ

2 (δ − cos θ)

sin θ
2 (δ − cos θ)

)
, (4)

uII(r, θ) =
1

E

√
r

2π
(1 + ν)

(
sin θ

2 (δ + 2 + cos θ)

cos θ
2 (δ − 2 + cos θ)

)
, (5)

where ν denotes the Poisson ratio, E the Young modulus, δ = 3 − 4ν in the plane stress
problem and (r, θ) the polar coordinates respectively to the crack tip (fig. 2). The normal
(respectively tangential) component of function uI(respectively uII) is discontinuous along
the crack. Note that uI and uII belong to H3/2−η(Ω) for any η > 0 (see [26]) which limits the
order of the convergence rate of the classical finite element method to h1/2.

3. Discrete problem

The idea of the classical XFEM (see [6, 7]) is to use a finite element space enriched with some
additional functions. The finite element method is defined independently from the crack on a
mesh of the non-cracked domain Ω. At the nodes whose corresponding shape function support
is cut by the crack, an enrichment function of Heaviside type is considered:

H(x) =

{
+1 if (x − x∗) · n ≥ 0,

−1 elsewhere,
(6)

where x∗ denotes the crack tip and n is a given normal to the crack. Moreover, the nodes of
the triangle containing the crack tip are enriched with the following singular functions given
in polar coordinates:

{Fj(x)}1≤j≤4 = {
√

r sin
θ

2
,
√

r cos
θ

2
,
√

r sin
θ

2
sin θ,

√
r cos

θ

2
sin θ }, (7)

(fig.3). We recall that
Fj ∈ H3/2−η(Ω), ∀η > 0, j = 1, .., 4. (8)

In the following, we use the fact that

Fj ∈ C2(Ω \ {x∗}). (9)

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–15
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Figure 3. Enrichment strategy.

Since the mesh is independent of the crack geometry, the Heaviside function represents the
discontinuity of the displacement field along the crack and the singular functions allow to take
into account the asymptotic displacement at the crack tip. Such a method enables to discretize
the domain without explicitly meshing the crack surfaces, and hence the crack propagation
simulations can be done without remeshing.

For the model problem, we consider a Lagrange finite element method of first order defined
on a regular triangulation of the non-cracked domain Ω. The piecewise P1 basis functions are
denoted ϕi (P1 is the set of first degree polynomials). In the proposed variant of XFEM, we
intend to enrich a whole area around the crack tip by using a cut-off function denoted χ. The
XFEM enriched space of this variant is then

ϑh =



vh =

∑

i∈I

aiϕi +
∑

i∈IH

biHϕi +

4∑

j=1

cjFjχ; ai, bi, cj ∈ R
2



 , (10)

where

• h is the mesh parameter and Th is a regular triangulation (in the sense of the Ciarlet [31])
of the non-cracked domain Ω,
• I is the set of node indices of the classical finite element method,
• IH is the set of node indices enriched by the Heaviside function given by (6)
• Fj , j = 1, .., 4, are the singular functions given by (7)
• χ is a C2 cut-off function such that there exists 0 < r0 < r1 with





χ(r) = 1 if r < r0,
0 < χ(r) < 1 if r0 < r < r1,
χ(r) = 0 if r1 < r.

(11)
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The discrete problem can be written as follows

Find uh ∈ ϑh such that a(uh, vh) = l(vh) ∀vh ∈ ϑh. (12)

The proposed enrichment can be compared to the one of the classical XFEM, where the
singular enrichment term of (10) is replaced by

∑
i∈Is

∑4
j=1 cijFjϕi and where Is denotes the

set of degrees of freedom of the element containing the crack tip. It can be compared also
to the XFEM with pointwise matching (introduced in [23]). In the latter one, the singular

enrichment term is written
∑4

j=1 cjFjΛ, where Λ is equal to one on the enriched area, and
zero otherwise. On the node of the interface between the enriched zone and the rest of the
mesh, a bonding condition is considered on the displacement field.

4. Error estimate

The mathematical result obtained in this work is the following:

Theorem 4.1. Assume that the displacement field u, solution to Problem (2), satisfies
Condition (3). Then, for any ǫ > 0, the following estimate holds

‖u − uh‖1,Ω ≤ Ch‖u − χus‖2+ǫ,Ω, (13)

where uh is the solution to Problem (12), ‖.‖s,Ω, s ∈ R stands for the norm in Hs(Ω) (see [30]
for the definition of ‖.‖s,Ω), us is the singular part of u (see (3)), χ is the C2 cut-off function
and finally C > 0 is a constant independent of h.

Remark. When using a classical finite element method over a cracked domain, the error
is of order

√
h while the displacement field belongs to H3/2−η, ∀η ≥ 0. The convergence rate

obtained here is identical to the one obtained when using a classical finite element method
of first order with a regular problem. The error estimate is not completely optimal due to
the requirement u − χus ∈ H2+ε(Ω) instead of u − χus ∈ H2(Ω). This is strictly a technical
difficulty.

In order to compute the interpolation error, we introduce an interpolation operator Πh

adapted to the problem. This is done by using an extension of the displacement field across
the crack over Ω, then defining the interpolation of the displacement field using the extension
(Lemma 4.3). The interpolation error estimates are then computed locally over every different
type of triangles: triangles totally enriched by the discontinuous function (Lemma 4.4),
triangles totally enriched by the singular functions (Lemma 4.5), triangles partially enriched
by the discontinuous function (Lemma 4.6) and finally non-enriched triangles.

As mentioned above, the proof of Theorem 4.1 requires the definition of an interpolation
operator adapted to the proposed method. Since the displacement field is discontinuous across
the crack over Ω, we divide Ω into Ω1 and Ω2 according to the crack and a straight extension
of the crack (fig.4). Let us denote ur = u−χus, and uk

r the restriction of ur to Ωk, k ∈ {1, 2}.
As a result of (3), we can write that ur ∈ H2+ǫ(Ω). There exists in H2+ǫ an extension ũk

r of
uk

r across the crack over Ω such that (see [30])

‖ũ1
r‖2+ǫ,Ω ≤ C1‖u1

r‖2+ǫ,Ω1
, (14)

‖ũ2
r‖2+ǫ,Ω ≤ C2‖u2

r‖2+ǫ,Ω2
. (15)

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–15
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Figure 4. Domain decomposition.

The use of such extensions allows us to interpolate over complete triangles and not over sub-
triangles or quadrangles that are inducted because of the presence of a crack.

In the following, C denotes a generic constant that might be different at each occurrence
but is independent of h.

Definition 4.2. Given a displacement field u satisfying (3) and two extensions ũ1
r and ũ2

r

respectively of u1 and u2 in H2+ǫ(Ω), we define Πhu as the element of ϑh such that

Πhu =
∑

i∈I

aiϕi +
∑

i∈IH

biHϕi +

4∑

i=1

ciFiχ, (16)

where ai, bi are given as follows (xi denotes the node associated to ϕi):

if i ∈ {I \ IH} then ai = ur(xi),

if i ∈ IH and xi ∈ Ωk then (k ∈ {1, 2}, l 6= k)

{
ai = 1

2

(
uk

r (xi) + ũl
r(xi)

)
,

bi = 1
2

(
uk

r(xi) − ũl
r(xi)

)
H(xi),

(17)

and ci, i = 1, .., 4 are derived from (4) and (5) such that
∑

i ciFi = us.

Lemma 4.3. The function Πhu (Definition 4.2) verifies
(i) Πhu = Ihur + χus over a triangle non-enriched by H,
(ii) Πhu|K∩Ωk

= Ihũk
r + χus over a triangle K totally enriched by H,

where Ih denotes the classical interpolation operator for the associated finite element method.

Remark. Obviously, the definition of Πhu depends on the chosen extension ũk
r . From Lemma

4.3, the function Πhu is called the XFEM interpolation of u. Note that (16) and equations
(i) and (ii) of Lemma 4.3 define a unique XFEM interpolation function Πhu over the whole
domain Ω. A similar construction of an interpolation operator taking only into account the
discontinuity across the crack was done in [32]. The definition of Πhu that we introduce is
adapted to the presence of singularities.
Proof. Equation (i) is directly derived from the first equation of (17) since Ih is the classical
interpolation operator (see [31]). It means that a classical degree of freedom is equal to the
node value of ur if it is not enriched by H .

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–15
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Figure 5. (a) Totally enriched triangle and (b) partially enriched triangle (fig.3).

In order to prove (ii), we consider a triangle K totally enriched by the discontinuous function.
Using local indexing, let the first node x1 of K be in Ω1 and the two others x2 and x3 be in
Ω2 (fig.5 (a)). Using (16), we have

Πhu|K =

3∑

j=1

ajϕj +

3∑

i=1

bjHϕj + χus, (18)

where j denotes the local index of the degrees of freedom. Let pk be the two polynomials
defined by (k ∈ {1, 2}):

pk = Πhu|K∩Ωk
− χus. (19)

thus, we have 



p1 =

3∑

j=1

ajϕj +

3∑

j=1

bjϕj ,

p2 =
3∑

j=1

ajϕj −
3∑

j=1

bjϕj .

(20)

Then, combining (20) and (17), we obtain
{

p1(xj) = aj + bj = ũ1
r(xj),

p2(xj) = aj − bj = ũ2
r(xj).

(21)

We conclude that pk is the classical interpolation of ũk
r over K, which gives (ii). 2

In order to find the global interpolation error, we will proceed by computing local error
estimates over the triangles totally enriched by H , triangle containing the crack tip, triangles
partially enriched by H and non-enriched triangles (fig.3). In what follows, let

hL = diam(L) = maxx1,x2∈L|x1 − x2|, (22)

and
ρL = {sup(diam(B)); B ball of R

2, B ⊂ L}, (23)

where L is a subset of Ω.

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–15
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CRACK TIP ENRICHMENT IN XFEM USING A CUT-OFF FUNCTION 9

Lemma 4.4. Let T H
h be the set of triangles totally enriched by H (fig.3) and σK = hKρ−1

K .
For all K in T H

h , and for all u satisfying (3) we have the estimates

‖u − Πhu‖1,K∩Ω1
≤ ChKσK‖ũ1

r‖2,K , (24)

and
‖u − Πhu‖1,K∩Ω2

≤ ChKσK‖ũ2
r‖2,K . (25)

In fact, the triangles totally enriched by H are cut into two parts. Using the extensions of u1
r

and u2
r, we associate three interpolation points to every part. Thus the interpolation operator

we defined, allows us to make a classical interpolation on every part of the triangle, and have
the same optimal rate of convergence obtained in the classical global interpolation theorem
(see [1, 33]). Thus, Lemma 4.4 is a direct consequence of this theorem.

Lemma 4.5. Let K be the triangle containing the crack tip and K∗ = K \ΓC. Using the same
notations, we have the following estimate over K∗

‖u − Πhu‖1,K∗ ≤ ChKσK‖u − χus‖2+ǫ,Ω, (26)

where σK = hKρ−1
K .

Proof. Since we added singular functions to the discrete space (around the crack tip), the
singular part of u (see (3)) will be eliminated when we try to estimate ‖u − Πhu‖1,K∗ . Thus
it is sufficient to estimate ‖ur − Πhur‖1,K∗ where ur = u − χus. In fact

‖ur − Πhur‖2
1,K∗ = ‖ur − Πhur‖2

0,K∗ + |ur − Πhur|21,K∗ , (27)

where | · | denotes the H1 semi-norm. Using Sobolev imbedding theorems (see [30]), the
space H2+ǫ(Ω) (and not H2(Ω)) is continuously imbedded in C1

B(Ω), where C1
B(Ω) = {v ∈

C1(Ω) such that ∇v ∈ L∞(Ω)} (see [30]). Thus

‖∇ur‖L∞(Ω) ≤ C‖ur‖2+ǫ,Ω = Cα (28)

where

‖∇Πhur‖L∞(K∗) ≤
Cαd

ρK
, (29)

where d ≤ h denotes the maximal distance between a node of K∗ and the crack tip. In fact,
(ur − Πhur)(x) vanishes on the nodes, thus

‖ur − Πhur‖L∞(K∗) ≤
Cαh2

K

ρK
, (30)

then

‖ur − Πhur‖0,K∗ ≤
[ ∫

K∗

(
Cαh2

Kρ−1
K

)2
dx

]1/2

= Cαh2
Kρ−1

K

√
meas(K∗), (31)

and

|ur − Πhur|1,K∗ ≤
[ ∫

K∗

(
CαhKρ−1

K

)2
dx

]1/2

= CαhKρ−1
K

√
meas(K∗). (32)

Finally we can write the following estimates

‖ur − Πhur‖0,K∗ ≤
(
Ch3

Kρ−1
K

)
‖ur‖2+ǫ,Ω,

|ur − Πhur|1,K∗ ≤
(
Ch2

Kρ−1
K

)
‖ur‖2+ǫ,Ω.

(33)

Using (27) we obtain (26).

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–15
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Figure 6. Triangulation of Ω.

Lemma 4.6. Let K be a triangle partially enriched by H (fig.5 (b)), and K∗ = K \ΓC . Over
this triangle, the interpolation error can be bounded as follows

‖u − Πhu‖1,K∗ ≤ ChKσK‖u − χus‖2+ǫ,Ω. (34)

Proof. We will estimate ‖ur −Πhur‖1,K∗ when K is the triangle partially enriched showed in
fig.5 (b). The same work can be done for every other triangle partially enriched. In fact, Πhur

over K∗ can be written

Πhur =

2∑

i=1

ui(xi)ϕi +
u1(x3) + ũ2(x3)

2
ϕ3 +

u1(x3) − ũ2(x3)

2
Hϕ3, (35)

thus

Πhur =

3∑

i=1

ur(xi)ϕi +
ũ2(x3) − u1(x3)

2
ϕ3 +

u1(x3) − ũ2(x3)

2
Hϕ3. (36)

Using the imbedding result and the continuity of the extension operator, we can say that

u1(x3) − ũ2(x3)

2
≤ Cdα, (37)

d ≤ 2h denotes the maximal distance between a node of K and the crack tip, thus,

‖∇Πhur‖∞,K ≤ Cαd

ρK
. (38)

By repeating the same arguments of the proof of Lemma 4.5, we obtain the following

‖ur − Πhur‖0,K∗ ≤
(
Ch3

Kρ−1
K

)
‖ur‖2+ǫ,Ω,

|ur − Πhur|1,K∗ ≤
(
Ch2

Kρ−1
K

)
‖ur‖2+ǫ,Ω.

(39)

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–15
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Figure 7. Von Mises stress for the opening mode using a cut-off function.

Finally, using (3), we can conclude the lemma’s result. 2

Proof of theorem 4.1. Using Cea’s lemma, it is known that there exists C0 ≥ 0 such that

‖u − uh‖1,Ω ≤ C0‖u − vh‖1,Ω ∀vh ∈ ϑh, (40)

thus

‖u − uh‖1,Ω ≤ C0‖u − Πhu‖1,Ω (41)

since Πhu ∈ ϑh. Using the local interpolation errors, the global error can be written

‖u − Πhu‖2
1,Ω =

∑

K∗∈Th

‖u − Πhu‖2
1,K∗ . (42)

where K∗ = K \ ΓC . The local interpolation error over the non-enriched triangles can
obviously be derived from the global classical interpolation theorem, since we make a classical
interpolation over these triangles. Then, for every non-enriched triangle K we have

‖u − Πhu‖1,K ≤ ChKσK‖u − χus‖2,K . (43)

Finally, the result of theorem 4.1 can be obtained using (43) and the lemmas 4.4, 4.5 and
4.6. 2

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 00:1–15
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5. Numerical results

The non-cracked domain studied here is defined by Ω = [−0.5; 0.5]× [−0.5; 0.5] and the crack
is the line segment ΓC = [−0.5; 0] × {0}. The opening mode displacement field is the exact
solution prescribed as a Dirichlet condition on the domain boundary. The cut-off function
χ ∈ C2(Ω) is defined such that

{
χ(r) = 1 if r < r0 = 0.01,
χ(r) = 0 if r > r1 = 0.49,

(44)

and χ is identical to a fifth degree polynomial if r0 ≤ r ≤ r1. Note that by decreasing the
difference between r0 and r1, the stiffness of χ increases and then the interpolation error is
higher because of the presence of ‖u − χus‖2+ǫ,Ω in the estimate of Theorem 4.1. Finally, the
finite element method is the one defined in section 3 over a structured triangulation of Ω (see
Figure 6 for an example of a structured mesh of Ω). Note that the numerical tests are achieved
using GETFEM++, an object oriented C++ finite element library (see [34]).

Figure 7 shows the von Mises stress over the opening mode deformed mesh of the model
problem. As expected, the von Mises stress is concentrated at the crack tip (at the singularity).
Figures 8 and 9 show a comparison between the convergence rates of the classical finite element
method without enrichment, the XFEM method with a fixed enrichment area independent of
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Figure 9. H
1 error with respect to the number of cells in each direction (ns) for enriched P1 elements

using a logarithmic scale.

the parameter h and the cut-off enrichment strategy for the L2 and the H1 norms. These
errors are obtained by running the test problem for some values of the parameter ns, where
ns is the number of subdivisions (number of cells) in each direction (h = 1/ns). The rate
of convergence for the L2-norm is better than the one for the H1-norm which is quite usual.
However, The Aubin-Nitsche lemma cannot be directly applied here due to the weak regularity
of the solution. Figure 9 confirms that the convergence rate for the energy norm is of order√

h for the classical finite element method without enrichment and of order h for the XFEM
method over a fixed area. It shows also the optimal convergence obtained with the cut-off
enrichment strategy.

The cut-off enrichment strategy improves the convergence rate of the method without
enrichment and reduces the committed errors without a significant additional computational
cost. This latter result represents an improvement of the classical XFEM method where the
convergence rate remains of order

√
h for many reasons detailed in [23]. Compared to the

XFEM method with a fixed enrichment area (see [23] for more details), the convergence rate
is very close but the error values are larger. The reason seems to be the influence of the ”stiff”
part of the cutoff function χ in the sense that its H2(Ω)-norm influences the error estimate
bound given by Theorem 4.1. On the other hand, the cutoff enrichment reduces significantly the
computational cost of XFEM with a fixed enrichment area where every degree of freedom over
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Figure 10. Cutoff comparison using a logarithmic scale.

this area is enriched by the singular displacement. This latter enrichment leads to a significant
increase of the number of degrees of freedom method, but it eliminates the inconvenient of the
classical XFEM where the support of the crack tip enrichment functions vanishes when h goes
to 0. Table 5 shows a comparison between the number of the degrees of freedom for different
refinements of the classical method, the XFEM with a fixed enrichment area and the cutoff
method.

Table I. Number of degrees of freedom

Number of cells Classical FEM XFEM Cutoff enrichment
in each direction (enrichment radius =0.2)

40 3402 4962 3410
60 7502 11014 7510
80 13202 19578 13210

In order to test the influence of the cut-off enrichment radius, Figure 10 shows a comparison
between different situations. The convergence rate is slightly modified. Although, the error level
is better when the cut-off function is smoother. In other words the error level is influenced by
the transition layer of the enrichment. This is again due to the influence of the H2(Ω)-norm
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of the cutoff function (see (4.1)).

Figure 11 shows the variation of the von Mises stress over the vertical line of abscises 0.6 for
the P1 method presented above and also for a P2 XFEM method still using a cut-off function.
In the same time, as we can see in Figure 12, the conditioning of the linear system associated
to the cut-off enrichment is very much better than the one associated to the XFEM with a
fixed enrichment area. This is in particular due to the non-unisolvence of the XFEM classical
enrichment (see [23]).

In order to explore the capabilities of the proposed variant, we consider a more sophisticated
problem. In the following test, the exact solution is a combination of a regular solution to the
elasticity problem, the mode I and the mode II analytical solutions and a higher order mode
(for the deformed configuration, see Figure 13). The von Mises stress for this test is presented
in Figure 13. Figure 14 shows a comparisons of the convergence curves of the non-enriched
classical method, the XFEM and the cutoff strategy. The optimal rate is preserved for the
cutoff enrichment.

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

Von Mises P1 Cutoff

Von Mises Exact

Von Mises P2 Cutoff

Figure 11. Von Mises on the vertical 0.6.
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Figure 12. Condition number of the linear system with respect to the number of cells in each direction
(ns) using a logarithmic scale.

Concluding remarks

The originality of this study consists mainly in the mathematical analysis of the transition
between the crack tip singular enrichment and the discontinuous Heaviside enrichment.
Concerning the XFEM with a fixed enrichment area, the mathematical analysis remains an
open problem. However, the result presented here reinforces the confidence on the reliability
of the XFEM methods. The presented cutoff strategy is limited to the 2D case. An adaptation
to 3D problem is not straightforward and would require the use of a system of coordinates
along the crack front. However, it is an appropriate method for 2D problems like cracked plate
problems.
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Figure 13. Von Mises stress for a mixed mode using a cut-off function with P2 elements.
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