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Abstract

We establish some optimal a priori error estimate on some variants of the eXtended
Finite Element Method (Xfem), namely the Xfem with a cut-off function and the stan-
dard Xfem with a fixed enrichment area. The results are established for the Lamé
system (homogeneous isotropic elasticity) and the Laplace problem. The convergence
of the numerical stress intensity factors is also investigated. We show some numerical
experiments which corroborate the theoretical results.
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1 Introduction

Inspired by the Pufem [26], the Xfem (extended finite element method) was introduced by
Moés et al. in 1999 [28, 27] for plane linear isotropic elasticity problems (Lamé system) in
cracked domains. The main advantage of this method is the ability to take into account
the discontinuity across the crack and the asymptotic displacement at the crack tip by
addition of special functions into the finite element space. It allows the use of a mesh which
is independent of the geometry of the crack. This avoids the remeshing operations when
the crack propagates and the corresponding re-interpolation operations which can cause
numerical instabilities. In the original method, the asymptotic displacement is incorporated
into the finite element space multiplied by the shape function of a background Lagrange
finite element method. However, we deal also with a variant, introduced in [12], where
the asymptotic displacement is multiplied by a cut-off function. This variant is similar to
the classical singular enrichment method introduced in 1973 by Strang and Fix [32] but it
additionally preserves the independence of the mesh to the geometry of the crack which is
indeed the essential contribution of Xfem.

Another classical method to take into account a singular behavior of the solution is the
dual singular function method introduced by M. Dobrowolski et al. in [5] (see also [19, 10])
or a more recent variant the singular complement method introduced by P. Ciarlet Jr. et
al. in [17] (for a L-shape domain, see [29]). These methods require the use of dual singular
functions which can be difficult to obtain in some situations (even for the Lamé system)
or quite impossible to obtain when just the asymptotic behavior is known (for non-linear
elasticity [2] or Mindlin plate model for instance).

The Xfem strategy can be adapted to various situations. See among many other refer-
ences [3, 6, 7, 8, 23, 25, 36, 37, 35, 38]. In particular, a fictitious domain method can be

!Université de Valenciennes et du Hainaut Cambrésis, LAMAV, FR CNRS 2956, Institut des Sci-
ences et Techniques de Valenciennes, F-59313 - Valenciennes Cedex 9 France, email: Serge.Nicaise@Quniv-
valenciennes.fr

2Corresponding author. Université de Lyon, CNRS
INSA-Lyon, ICJ UMR5208, LaMCoS UMRA5259, F-69621, Villeurbanne, France, Yves. Renard@insa-lyon.fr

3Laboratory for Nuclear Materials, Nuclear Energy and Safety Research Department, Paul Scherrer
Institute OVGA /14, CH-5232 Villigen PSI, Switzerland, elie.chahine@psi.ch.



derived from the principle of Xfem (see [24, 4]) and it is possible to adapt some strategies
when the asymptotic behavior is unknnown or only partially known (see [11, 13, 14]).

In the present paper, we improve the results given in [12] concerning the variant which
uses a cut-off function. We also give some additional error estimates concerning the stress
intensity factors and the standard Xfem. The theoretical results are established for both the
Lamé system and the Laplace problem. Some numerical tests that illustrate and confirm
the theoretical results are presented.

2 The model problems

The analysis will be performed on a cracked domain  C R? for two model problems: The
Laplace equation and the Lamé system. The crack I'¢ is assumed to be straight. In both
cases, the boundary 9 of Q is partitioned into I'p, I'yy and T'¢ (see Fig. 1). A Dirichlet
condition is prescribed on I'p, a Neumann one on I'yy while on the crack I'c we consider
an homogeneous Neumann condition.

I'p

Figure 1: The cracked domain Q.

The weak formulation of the (scalar) Laplace equation on this domain reads as follows:

Find w eV such that a(u,v) =1(v) Yv eV,
a(u,v) = / Vu - Vudz,
)

l(v):/fvdx —|—/ guv drI,
Q I'y
V={ve H (Q); v = 0onTp}.

(1)

While the one of the Lamé (vectorial) system (linear elasticity problem on this domain for
an isotropic material) is:

Find w eV such that a(u,v) =1(v) Vv eV,
a(u,v) = / o(u):e(v) de,
Q

l(v) = /Qf-vdﬂ: +/F g-vdl, (2)
o(u) = AMr(e(uw)I + 2ue(u),

V={v e H (%R?); v = 0onI'p},

where o(u) denotes the stress tensor, e(u) = $(Vu + Vu') is the linearized strain tensor,



f and g are some external load densities on €2 and I'y respectively, and A > 0, u > 0 are
the Lamé coefficients.
In both cases, we suppose €2, f and g smooth enough for the solution u of Problem (1)
or (2) to be written as a sum of a singular part us and a regular part u — us (see [22, 21])
satisfying:
uw—u, € H*(RY), (3)

with
d=1 and wus=K,u,, (4)

for the solution to the Laplace equation (1), and
d=2 and us=K,u,+K,,u,,, (5)

for the solution to the Lamé system (2). The scalars K, , K, and K, are the so-called stress
intensity factors and the functions u,, u, and u,, are given in polar coordinates relatively
to the crack tip (Fig. 2) by:

u,(r,0) = +/rsin—, (6)

1 [r cos &(6 — cos 0)
0) = —/—0+ 2 , 7
(1 6) E 27‘('( V) ( sin (0 — cos0) ) @)
1 [r sin 2(6 + 2 + cos 0)
0) = —/—0+ 2 , 8
r (1,6) E 27‘('( V) ( cos (6 — 2+ cos ) ) ®)
Ap(A + 1)

where v = denotes the Poisson ratio, £ =

A+2p A+ 2
0 = 3 —4v (plane stress approximation). Note that u,, v, and u,, belong to H3/2*’7(Q)
for any n > 0 (see [22]) which limits the order of the convergence rate of a classical finite
element method to O(h'/?) where h is the mesh parameter.

the Young modulus and

0
e A

crack tip

Figure 2: Polar coordinates respectively to the crack tip Q.

3 Xfem with a cut-off function

The Xfem variant which uses a cut-off function was proposed in [12]. The principle of the
standard Xfem (see [28, 27]) is to consider a mesh independent of the crack geometry. An
Heaveaside type function is used to represent the discontinuity across the straight crack:

+1 if(x—2")- n >0,
H(z) = (9)

—1 elsewhere,



where z* denotes the crack tip and n is a given normal to the crack. Moreover, the
nonsmooth functions u, , u, and u,, are integrated to the discrete space to take into account
the asymptotic behavior at the crack tip.

The crack tip triangle Non-enriched
(non enriched by H) ¥, A triangles

enriched by H enriched by H
@ Heaviside enrichment

Figure 3: Enrichment strategy.

We consider an affine Lagrange finite element method defined on a regular triangula-
tion .7, (in the sense of the Ciarlet [16]) of the non-cracked domain ©, h being the mesh
parameter i.e. the largest diameter of the elements of .7;,. The piecewise P; basis functions
are denoted ¢;. In this section, We consider the variant of Xfem proposed in [12] for which
a whole area around the crack tip is enriched by using a cut-off function denoted y. The
approximation of the Laplace equation reads as

(Find " € V* such that a(u”,o?) =1(0") Wl e VI,
a(ul, o) = / Vul - Volde,
Q

l(vh):/gfvhdx + /F gu™ dr, (10)

Vh — Uh — Zalgpl + Z szSOz + KL,thL; ai7bi7KL7h eR
el i€l

where I is the set of node indices of the P; finite element method, Iy is the sub-set of
node indices whose corresponding shape functions have their supports completely cut by
the crack (see Fig. 3) and y is a W2>(Q) cut-off function verifying for fixed 0 < ro < 71

x(r)=1if r <o,
0<x(r)<lifrg<r<ry, (11)
x(r)=0ifr; <r.

Note that Iz, the set of finite element shape functions enriched by the Heaviside function
H, cannot be larger. In particular, it cannot contain the shape functions having the ele-
ment which contains the crack tip in their support. Otherwise, the geometry of the crack
would not be well represented since it is prolongated one element forward. In fact, the
representation of the discontinuity across the crack inside the element containing the crack
tip is ensured by the nonsmooth functions.



Concerning now the Lamé system, we consider two different ways to incorporate the
asymptotic displacement. The first one is directly based on a vectorial enrichment with u,
and u,,:

Find u” € V" such that a(u®,o") =1(v") Yot € Vh,

auhvh: O'uhIEUh X
(u, ") A () : (") da,

I(vh) = /f-vhdx +/ g-odr,
Q 'y
a(uh) = )\tr&?(uh)[ + Q/w(uh),

Vvh =yt = Zai% + Z biHp; + K, ,xu, + K, , xu,; ai,b; € RZ,KM,KHJL eR
icl icly

(12)
The second one corresponds to a more classical Xfem approximation with a scalar enriche-
ment of each component:

Find u” € V" such that a(u®,o") =1(v") Yot € VP,
a(ul, ") = / o(u) : e(v") du,
Q

I(wh) = /Qf-vhdx + /FNg-vh dr, (13)
o) = Mre(u")I + 2ue(u”),

4
vh =P = Zaiwi + Z b;Hp; + ZCijX; a;, bi,cj € R? ,
el i€l 7=1

where the set of functions {F(x)}1<j<4 is defined by

{Fj(x)h<j<a = {\/Fsing,ﬁcosg,\/Fsingcosﬂ,ﬁcosgcosﬂ }. (14)

Note that the nonsmooth functions u, and u,, can be decomposed on this set of functions.

4 Optimal Error estimate for the Xfem with a cut-off func-
tion

We use the notation a < b to signify that there exists a constant C' > 0 independent of the
mesh parameter of the solution and of the crack-tip position such that a < Cb. For a non
negative real number s let H*(D) denote the standard Sobolev space of order s in D of
norm (resp. semi-norm) denoted by || - ||s,p (resp. |- |s,n), see for instance [1].

The aim of this section is to establish the following result which is the optimal version
of Theorem 1 in [12]:

Theorem 1 Assume that the displacement field u, solution to Problem (1) (resp. Problem
(2)), satisfies Condition (3). Then, the following estimate holds

e — uM[[1.0 < Allu — xusl|2.0, (15)

where u” is the solution to Problem (10) (resp. to Problem (12) or to Problem (13)), us is
the singular part of u (see (3)) and x is the W?*°(Q) cut-off function introduced before.



The outline of the proof globally follows the one of Theorem 1 in [12]. Some sub-optimal
intermediary results are here replaced by optimal ones.

We recall the definition of the adapted interpolation operator II". The interpolation
error estimates are then computed locally over every different type of triangles: triangles
totally enriched by the Heaveaside function, triangles partially enriched by the Heaviside
function and the triangle containing the crack-tip.

Figure 4: Domain decomposition.

The domain €2 is divided into 1 and €25 according to the crack and a straight extension
of the crack (Fig.4) such that the value of H is (—=1)* on Q, & = 1,2. Let us denote
U, = u— XU, and u¥ the restriction of u, to Q, k € {1,2}. Then, there exists in H?(Q;R?)
an extension ¥ of u* on Q such that (see [1])

a5 < lupllzen (16)

17,5 < llull2.0,- (17)

Definition 1 (from [12]) Given a displacement field w satisfying (3) and two extensions
ut and u? respectively of ul and u? in H*(Q;RY), we define I1"u as the element of V" such
that
T = Y aipi + > biHei + xus, (18)
el 1€l
where a;, b; are given as follows (x; denotes the node associated to p;):
if i € {I\In} then a; = u,(x;),
1 k ~1
— a; = 5 (Up(T;) + up (T
ifi € Iy and x; € Q, then (k € {1,2}, 1 # k) { b’ 12( 7 (@) + 1 (27))
()

From this definition, the following result holds:

Lemma 1 (from [12]) The function TT"u satisfies

(i) 1"y = I"u, + xus over a triangle non-enriched by H,

(i3) T'u| g nq, = I"UF + xus over a triangle K totally enriched by H,

where I denotes the classical interpolation operator for the associated finite element method.



T

T3

T2
(a) (b)

Figure 5: (a) Totally enriched triangle and (b) partially enriched triangle (Fig.3).

For K a subset of Q, we denote hx = diam(K) = maxy, z.cx|r1 — 22| and pg =
{sup(diam(B)); B ball of R?, B C K}. The following lemma, established in [12], derives
simply from the classical interpolation of the extensions of u! and u2.

Lemma 2 (from [12]) Let ZH be the set of triangles totally enriched by H (Fig.3) and
oK = thI_(l. For all K in ﬂhH, and for all u satisfying (3) we have the estimates

Ju — "l kno, S hioklldr2x, (20)

and
lu — T"ull1 K0y S hrok |22,k (21)

The optimal convergence is of course obtained for non enriched triangles. It remains to
treat the partially enriched triangles and the triangle containing the crack tip. We will now
detailled the optimal intermediary results which are original in this paper.

Let us start with the Laplace equation and recall that in that case ul and u? satisfy

Oputr = O,u? =0 on I'c. (22)

Since the extension %} and 42 are H2(Q)) extension, they also satisfy the Neumann boundary
condition on I'¢, namely
Ontit = 9,2 = 0 on T'c. (23)

r =

We now give the main technical result.

Lemma 3 Assume that x1 € Q1 is a node belonging to a triangle K containing the crack
tip. Then

lup(21) — @i (21)] S hicliy — 2|2, B0, hge) - (24)

Proof: For shortness write v = %! — @2. Using a Taylor expansion, we have

1
v(xy) = / (xgl)(?lv(tml) + xf)agv(txl)) dt,
0

(1) (2

where x; = (z7/,2;"). Without loss of generality and modulo an orthonormal change of
coordinates we assume that the position of the crack tip is (0,0) and the crack I'c is a
part of (R_,0). By setting v = 91v and v = v, and making the change of variable
s = tx1, the above identity is equivalent to

v(xy) = /(ngv(l)(s) —n1o?(s)) ds, (25)

7



where e is the edge joining the crack tip and z7 and n = (ny,n2) is (one of) the normal
vector to e. Denote by C the truncated sector determined by e and the crack:

C ={(rcosf,rsinf):0<r<h; 6y<6<m},

when z1 = (hy cos by, hy sinfy), see Fig. 6. Now setting es = {(hj cosf,hysinf): 0y < 0 <
7}, by Green’s formula we remark that

/ 01v? dg = / ' ds = /nlv(Z) ds —i—/ nv® ds,
C oC e €2

because n1 = 0 on I'. Hence

/nlv@) ds = / ov? dx —/ niv® ds. (26)
e C ()

The first term of this right-hand side will be estimated by a simple Cauchy-Schwarz in-
equality. For the second term by a scaling argument, we show that

[ s S BT 7
€2
0
T es
e
2 c & D -
I'c = -7 Le
=7
Qy

Figure 6: The truncated sector C.

Indeed by construction v satisfies
v® =0 on T'c.

Therefore the change of variable z = hyz maps B(0,hy) to the unit ball. By setting
2@ (2) = v (), we deduce that

/\U(Q)Ids < / 1w®]| ds
es 0B(0,h1)

= I / 6@ ds
0B(0,1)

1
2
hy </ yw@)y?d@) .
B(0,1)

This last estimate follows from the property

AN

8@ (2) =0 on {(z1,0) : =1 < z; < 0},



and the compact embedding of H*(B(0,1)) into L?(B(0,1)). Coming back to B(0, 1), we
obtain (27).
Using the estimate (27) into (26) and Cauchy-Schwarz inequality, we have shown that

| / 10 ds) < 7 Vo [ 50 ny). (28)

Let us now pass to the estimate of [ novM(s)ds: Denote by D the truncated sector
determined by e and the extended crack:

D ={(rcosf,rsinf):0<r <h; 0<80<86y},

when we recall that 1 = (hjcosfy, hisinfy) (see Fig. 6). As before setting e3 =
{(h1cosf,hisinf):0 < 6 < 6y}, we remark that

/320(1) dw:/ vt ds:/nzv(l) ds+/ ngv ds,
D oD e e3

because v = 0 on ' = {(z1,0) : z; > 0}, the extension of the crack I'c to z; > 0. Hence

/ngv(l) ds = / o0V dx —/ nov® ds. (29)
e D es3

It suffices to estimate the second term of this right-hand side. Again using a scaling argu-
ment, we show that

| 0 1ds £ bVl o (30
es
Indeed by construction v(!) satisfies

v =0 on fc.

Therefore the same scaling arguments as before lead to (30).
Using the estimate (30) into (29) and Cauchy-Schwarz inequality, we have shown that

| / nagv® ds) < 7| VoD [ 50 py). (31)

The estimates (28) and (31) into the identity (25) lead to the estimate (24) because
hi < hg. O

Let us go on with the Lamé system and recall that in that case u) and u? satisfy

o(ul)-n=o? -n=0onT¢. (32)

I

Since the extension %! and @2 belong to H?(2;R?), they also satisfy the traction free
boundary condition on I'¢, namely

o(il)-n=o(@)-n=0onT¢. (33)

Lemma 4 Assume that ©1 € Q1 is a node belonging to a triangle K containing the crack
tip. Then the estimate (24) holds.



Proof: The proof starts as before with the identity (25).
We notice that by (33) and since n = (0,1)" on I'¢, v = @} — @2 satisfies

A(O1v1 + Dave) + p(01v2 + Gav1) = 0 on I, (34)
(A +2p)02v2 + A0jv1 =0 on ', (35)

where v1, v9 are the two components of v, i.e., v = (vy, vg)T. Note that by construction, we
also have v = 0 on I'¢ and therefore

812}1 == 812}2 =0on fC- (36)
Since v(M still satisfies .
v =0 on Te,

the arguments of the previous lemma show that (31) is valid.

For the estimate of the term involving v(}), since ny = 0 on I'¢, as before the identity
(26) holds. To estimate the second term of the right-hand side of (26), we again use a
scaling argument: The change of variable x = hy& maps B(0, h;) to the unit ball and by

setting w(z) = Vu(x), where
< 812}1 622}1 >
Vo = ,

O1v2 O

we deduce that

/ w®|ds < / @] ds
e OB(0,h1)
< / |Vl ds
8B(0,h1)
<

I / 1] ds.
2B(0,1)

Now we notice that the conditions (34), (35) and (36) satisfied by v lead to

AWy + Wag) + p(way + w12) = 0 on {(21,0) : =1 < 1 < 0}, (37)
(N + 2u)92 + Awyp = 0 on {(x1,0) : =1 < x1 < 0}, (38)
w11 = wie2 = 0 on {(561,0) <z < 1} (39)

Hence the compact embedding of H*(B(0, 1)) into L?(B(0, 1)) and a contradiction argument
lead to

/8 il ds 5wl son) 5 wlss00)

)

This last estimate holds since otherwise we would find a vector field v € H'(B(0,1))?*?
satisfying (37) to (39) such that

lwl1,Bo,1) =0 and |lwl|o po,1) = 1.

Such a matrix field does not exist because w would be a constant matrix and by (37) to
(39), it would be zero.
This estimate leads to (27) and we conclude as in the previous Lemma. O

These lemmas allow to treat the non-optimal cases from [12] as follows:

10



Corollary 1 Let K be a triangle partially enriched and let K* = K \ T'c. Then
Ju — Tl i+ S e (| lo, Bo.2nse) + |Tnl2,Bo.2hx))- (40)

Proof: It is sufficient to estimate ||u, — IT"u,||; g+ since the singular part of u — IT"u
vanishes. We treat the situation of Fig. 5 (b). Other situations can be treated similarly.
We have

T, = ul (1)1 + u?(22) s + 62(x3) @3 on Ky = K Ny,

or equivalently

M, = @2(z1)e1 + ul(z2)ps + 02 (x3) s + (up (1) — g (z1))e1 on Ko
= Hhﬂ% + (u,l,(xl) — ﬂf(xl))gol on K.

By the triangular inequality, we may write

= TG 1,y + Jup (1) = @3 (1) lon [k

<
< @k =T 1k + fup(21) — @7 (21)].

[, — Hhur||1,1<2

By a standard interpolation error estimate and Lemma 3 (or 4), we conclude that
luy =Ty 1,x, S P12, + [r = L2, B0,rc))-

For the part on K; = K Ny, we remark that

W, = up(a1)er + w7 (@2)92 + up(3) s on K
= "al + (al(z1) — u?(z1))p2 on Ko.
And we conclude as before because @} — u? satisfies the same conditions than u! — @2 on
I'c and T'c. ]
Corollary 2 Let K be the triangle containing the crack tip. Then
|u — HhUHLK* S hK(WHzB(o,hK) + ’ﬁg‘lB(O,hK))- (41)

Proof: In this case we have
", = ul(21)p1 + ul(2)s + ul(23)ps on K.

Without loss of generality, we may assume that K has one vertex x; in {2; and the two
other ones x9, x3 in 2y. In this case on K1 = K N2y, we have

Jup — T3 5, + |ub(22) — @ (22) |2l x, + |ur(2s) — @(23)][[ @3]k,

1

ur — M|, <
< gl el 1 -1 1 -
~ ‘ur ur‘LK + ”ur(xQ) ur(xQ)H + ‘ur(x?)) ur(x?))"

)

We then conclude as in the previous Corollary. The estimate on Ko = K N () is treated
similarly. O

As in [12], these two Corollaries and Lemma 2 lead to the global error estimate of
Theorem 1.

11



5 Optimal error estimate for the standard Xfem

We give now an a priori error estimate for the standard Xfem with a fixed enrichment area.
In the original method proposed in [28] the enrichment with the asymptotic displacement at
the crack tip is done only on the element containing the crack tip. The rate of convergence
of this method is the same than the one without the enrichment (i.e. O(v/h), see [31, 25])
since the area of enrichment tends to vanish when the mesh parameter decreases. Of course,
this rate of convergence is not difficult to establish. Instead, we prove here an optimal error
estimate for the strategy introduced independently in [25] and [3] and called “Xfem with a
fixed enrichment area” in the first reference and “Xfem with geometrical enrichment” in the
second one and consisting in an enrichment area for the asymptotic displacement whose
size is independent of the mesh parameter. The approximation of the Laplace equation
with this method reads as

Find u" € V* such that a(u” ") =1(0") Yot € V!,
a(ul o) = / Vuh . Volde,
Q

l(vh):/gfvhdx + /1“ gul dr, (42)

Vh=doh = "aipi+ Y biHei+ Y cipiFi; aibic €R ),

el 1€l i€lp

and the one of the Lamé system is:
Find " € V" such that a(u”,v") =1(v") Voh € VP,
a(ul M) = / o(u) : (o) du,

Q

hy h h
(") = /Qf.v dr + /FNg.v ar, (43)
o(uh) = Mre(uM)I + 2us(uh),

4
VE =" = "aipi+ Y biHpi+ > > cijoiFy; aibicij € R?
el i€l i€lp j=1

where I is the set of finite element nodes which are inside a disk centered on the crack
tip and of a fixed radius r9 independent of the mesh parameter. Let us prove now the
optimality of this method.

Theorem 2 Assume that the displacement field u, solution to Problem (1) (resp. Problem
(2)) , satisfies Condition (3). Then, the following estimate holds

lu — w10 S hlllu = usllzg + luslie + luslly,o s 22)), (44)

where u” is the solution to Problem (42) (resp. to Problem (43)).

Proof: Let y be a W2 cut-off function satisfying (11) such that r; < 7 and 7o > 2

2
Let
X" = 1"y,
be the interpolate of x on the P, finite element method. Using the notation of Section 4,
the following interpolation operator

ng = Ihur + Xhus,

12



clearly satisfies I1%u € V" for V" defined by (42) (resp. by (43)) at least for h sufficiently
small since 1 < ro. Then,

[T — 1 0 10¢ = x"uslle
h
1Ox = X" lwee [Jus 1,0

<
S Plixdlwee lluslle,

using a classical error estimate on the interpolation of y with a P; finite element method
(see for instance [20]). Thus, using the estimates established in section 4, one has

lu—Tulle < fu—TullLo + 1" — Tul10
S hllu = xusll2.0 + llus]1o
< Al = usllzg + 11— xlhwaos sl + sl pe- 22)
Which ends the proof thanks to Céa’s lemma. O

An interpretation of the proof of Theorem 2 is that the standard Xfem performs a
better approximation than the Xfem with a cut-off function because the cut-off function
used in the proof is arbitrary. As a consequence, the error bound of the standard Xfem is
less than the infimum taken on all the W2 cut-off functions satisfying (11). This is also
corroborated with the result on Fig. 8. Nevertheless, the standard Xfem is more expensive
than the Xfem with a cut-off function since the number of enrichment degrees of freedom
can be greatly higher (see next section).

6 Numerical experiments

The analysis presented in the two previous sections is corroborated by the numerical tests
also presented in [12]. We reproduce on Fig. 8 the convergence curves obtained in this
paper for the approximation (13).

These numerical tests were done on a non-cracked domain defined by Q = [~0.5;0.5] x
[—0.5;0.5] and the crack was the line segment I'c = [—0.5;0] x {0}. The cut-off function
X € C%(Q) was defined such that

(45)

x(r)=1ifr <rg=0.01,
x(r)=0ifr >r; =0.49,

and x was identical to a fifth degree polynomial for ro < r < rq.

13



“Won Mises Stress

I50.0
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Figure 7: The reference solution, a mized mode (from [12]).

The exact solution was a combination of a regular solution to the elasticity problem,
the mode I and the mode II analytical solutions and a higher order mode (for the deformed
configuration, see Fig. 7 with the Von Mises stress). Fig. 8 shows a comparisons of the
convergence curves of the non-enriched classical method, the standard Xfem and the cut-off
strategy. The optimal rate is obtained for both the cut-off enrichment and the standard
Xfem with a fixed enrichment area.

41.943% - e —©— Without enrichment, slope = -0.49493 -
—#— XFEM (Enrichment radius = 0.2), slope = -1.0023
—A— Cutoff, slope = —-0.956

20.9715% S e A o o

L0]
(0]
(]
6

10.4858% [ o o o e

relative error

= 5.24288%

2.62144%

1.31072% 5 L L L L L
39 45 49 55 59 65 69 75 79
Number of cells in each direction

Figure 8: H' error with respect to the number of cells in each direction (ns) for a mized
mode and different enrichment strategies of a P1 elements (from [12]).

Table 6 is also reproduced from [12]. It shows a comparison between the number of
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the degrees of freedom for different refinements of the classical method, the XFEM with a
fixed enrichment area and the cutoff method. In accordance with the theoretical analysis
presented in Section 5, the standard Xfem is more accurate but needs more degrees of
freedom than the variant with the cut-off function. One might also remark that the choice
between the two variants should account for the fact that the stiffness matrix is sparser for
the standard Xfem.

Table 1: Number of degrees of freedom

Number of cells | Classical FEM XFEM Cutoff enrichment
in each direction (enrichment radius =0.2)

40 3402 4962 3410

60 7502 11014 7510

80 13202 19578 13210

Fig. 9 and 10 present some new numerical tests on the comparison between strategies
(12) and (13) (i.e. between a scalar and a vectorial enrichment) for the same experimental
situation. The discrete space corresponding to the scalar enrichment (13) strictly includes
the one for the vectorial enrichment (12). However, the gain in H'(€2) norm for the error is
rather small (Fig. 9). Consequently, the vectorial enrichment appears to be a better choice
since the number of additional degrees of freedom is lower and the condition number of the
linear system obtained is better (Fig. 10).

—A— Scalar enrichment with Cutoff, slope = —-0.956

10.4858% | —&— Vectorial enrichment with Cutoff, slope = —0.96151(]
S
o
2

'(_*_g 5.24288% | b
(]
T

2.62144% | : : : =

39 45 49 55 59 65 69 75 79

Number of cells in each direction

Figure 9: H' error with respect to the number of cells in each direction (ns). Comparison
of strategies (12) and (13).
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Figure 10: Condition number of the linear system. Comparison of strategies (12) and (13).

7 Error estimate on the stress intensity factor

In this section, we show an error estimate between the exact stress intensity factors and
the approximated ones. Let us start with the Laplace equation. Recall that we write

u=u, + K, xu,,
and that our Galerkin solution u; € V3, solution to (12) admits the splitting
Up = Upp, + K} XU,
where u,, € S", the space S" being defined by
Sh =< = Za,«pi + Z biHyp;; a;j,b; e R |
i€l i€ly

so that our approximation space V} is spanned by S” plus the singular function yu L
Adapting the arguments from Theorem 9.1 of [9] we have the next error estimate:

Theorem 3 Assume that the triangulation is quasi-uniform in the sense that
h<hxg VKE€EJI.

Then we have

N

|KL - KL,h| 5 hz. (46)
Proof: As in Theorem 9.1 of [9], we have

o = Ghur, (I = Gp)(xuL))
a((I - Gh)(XuL)7 (I - Gh)(XuL))7

where Gju is the Galerkin approximation of u on S”, namely Gpu € S" is the unique
solution of

KL - KL,h =

a(Gpu,vp) = a(u,vy) Yo, € Sh.
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By Cauchy-Schwarz’s inequality, we deduce that

(I = Gr)url10

K, — K, ,| < , (47)
PP T = Gr) (xug) e
Since u, belongs to H2(Q2) by Theorem 1, we have
(I = Gr)urlio < Plurl20, (48)

and it remains to estimate from below the denominator of (47). For that purpose, we need
to adapt the arguments from Lemma 7.1 of [9] because here the triangulation is not aligned
with the crack. The main point is to find a small truncated cone C, included into the
triangle K containing the crack tip with p equivalent to h. Let us denote by z;,71 = 1,2,3
the three nodes of K. First we remark that by a scaling argument we have

PK N A
e, loil V2 it123 [#: =0l

where |z;| is the Euclidean norm of z;, O is the pull back of the crack tip O by the affine
transformation F that sends the standard reference element K to K. Simple calculations
show that 1
Ol > =
iS15:3 2 2 4’

and therefore since the triangulation is regular we have

| 2 hi.
s il 2 huc

— 54y

We now fix j € {1,2,3} such that

x;| = max |z;| 2 hg.
‘ ]’ - ’3’ Z‘N K
Let e; and ez be the two edges of K having z; as vertex and denote by 7, ¢ = 1,2, the angle
between e, and the segment joining z; to O. Without loss of generality we may assume
that v1 > 79, and therefore

@Q

71277

where o € (0, §) is the minimal angle of all triangles of .7, (equivalent to the regularity
of the mesh thanks to Zlamal’s result [39]).

Figure 11: Sub-triangle K.
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We now consider the sub-triangle K of K of vertices O, x;, m, where m is the mid-point
of the edge e;. Denote that o and 3 the angle of K at O and m respectively (see Fig. 11).
Now if 2/ is the length of the edge e1, by the sinus formula, we notice that

This property and the fact that

20 <a+fB=m—-m SW—%7
leads to the existence of a minimal angle oy > 0 (independent of &) such that
o> Q1.

Denoting by p the distance from O to m, again by the sinus formula, we have

sin vy
sin «

lNhKa

due to the previous property and the fact that o < a4 <7 — .
We now denote by 6o the angle of the half-line containing the segment joining O to z;
and consider the truncated cone:

C,={(rcos,rsinf):0<r<p 0o <6<bp+ai}.

By construction, C,, is included into K, and degenerates only in the radial direction. Indeed,
by setting C' = {(scos#,ssinfl) : 0 < s <1 0<6 < a1} we can introduce the change of
variables

F:C—C,:(s,w) = (ps,00 +w).

Then for every wy, € V" we see that
Ixu, = wnlle > lluy, = whlho, 2 uy 0 F —wh o Flic
Since wy, o F' belongs to P1(C), we deduce that

HXUL - whHLQ Z |(I - P)(”L OF)|17C’

where P is the projection on P;(C) with respect to the inner product of H(C)/Py(C).
Since

1,
u, (r,0) =r2sin 2
we have

90—|—w
2

e sin(

u, o F(s,w) = p%s )

6 0
= p%(sin TOSD(s,w) + cos 7OSN(87W))7

where we have set

Sn(s,w) = 52 sing and Sp(s,w) = 57 cos g

With these notations, we have

(I-=P)(u, oF)= p%(sin 970(1 — P)Sp + cos 970(1 — P)Sn),
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and therefore
1. 90 90
I, — willia 2 plsin 2 (1 = P)Sp -+ cos (1 = P)sylic.
If we can show that
. o 0o
| sin 7(I—P)SD+COS 7(I—P)SN\17C 21, (49)
then

1 1
Ixu, —wnll10 2 p2 2 h2. (50)

This estimate with (48) in (47) then lead to the conclusion.
It remains to prove (49). For that purpose, we introduce the function g from [-7, 7]
into R defined by
9(7) = |siny(I = P)Sp + cosy(I — P)S[; ¢

We first notice that g(y) > 0 for all v € [~7, §] simply because sinySp + cos ySy is not a
polynomial. Moreover, g is clearly continuous. Therefore

min _g(v) = g(10) >0,

for some g € [-7, §]. The main point is that this minimum is now independent of 6 and
therefore the estimate (49) is proved, and the Theorem follows. g

In the same manner for the Lamé system approximated by (12) we recall that
u=u, + K, xu, + K, xu,,,
and that our Galerkin solution uj € V}, admits the splitting
Up, = Upp + K],thz + KH’hqu

where u,;, € (S")2.
As before, we can prove the

Theorem 4 Assume that the triangulation is quasi-uniform in the sense that
h<hxg VYKEJ.

Then we have

D=

|KI - KI,h| + |K11 - KII,h| 5 hz. (51)
Proof: Following [9], we introduce

V/* = (S")*& Span {xu,,} and V}; = (S")* & Span {xu, },

and denote by G pu and Gy pu the Galerkin approximation of u on Vlh and VIhI respectively.
By Theorem 9.1 of [9] we know that

a((I = Grp)ur, (I — Gra)(xu,))

K, - K, = _a((]_GLh)(XuI),(I—GI,h)(XUI))’
P _ a(([ — Gmh)ur, (I - GII,h)(XuII))
I I,k a((I = Grrp)xu,, ), (I —Grrp)(xu,))
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Therefore by Cauchy-Schwarz’s and Korn’s inequalities, we have

K K. | < (1 = Grp)urlo 7
’ (I = Grn)(xu,)lle

|KII —K11h| 5 ||(I—Gl’h)ur||17ﬂ .
’ (I = Grpn)(xu,)lhe

The remainder of the proof is the same as the one of the previous Theorem. ]

100,

1S3

g

St

5

S

)

d)

T:j -o-K, r,=0.01 r =0.4 (slope=0.68165)

< — - —

= Yo Kll r0—0.01 r1—0.4 (slope=0.69907)
'"+"‘K1 r0=0.2 r1=0.4 (slope=0.26214)

10 X KIl r0=0.2 r 1=0.4 (slope=0.2666) 7
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S Kll r0=0.01 r1=0.2 (slope=0.51597)

0.01 0.1

Figure 12: Numerical convergence of stress intensity factors with respect to the mesh pa-

rameter h.

Let us now present some numerical experiments obtained on the Lamé system with the
same reference solution as the one on Fig. 7. The implementation of the discrete problem
(12) uses Getfem++, the freely available C++ finite element library developed by our team
(see [30]). The two stress intensity factors have the same value. The approximation of the
stress intensity factor given by K, and K, in (12) is presented on Fig. 12. Different
values of the radiuses 9 and r; corresponding to the definition of the cut-off function (11) are
tested in order to show the crucial influence of the shape of the cut-off function. The optimal
rate of convergence is reached in the two cases (9, 1) = (0.01,0.4) and (rg,r1) = (0.01,0.2).
The sharper is the cut-off function, the worst is the approximation of the stress intensity
factors. In the case (rg,7m1) = (0.2,0.4), the optimal rate of convergence is not reached
in the range of values of h studied. This important sensitivity to the shape of the cut-off
function suggests to investigate in the future the variant with a pointwise matching [25] or
an integral matching [15, 11] which avoid the use of a cut-off function.

The convergence rate obtained is lower than the one obtained by J-integral and inter-
action integral (see [18, 28] for the principle and [33, 34, 25] for some numerical tests).
Such methods require a postprocessing but are superconvergent, for instance in [25] the
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order of convergence numerically observed for a P; finite element method is close to O(h?).
However, the advantage of the coefficients K, and K, of (12) is that they are directly
given by the approximation without any postprocessing. Moreover, there is no particular

difficulty when the crack tip is near a boundary of the domain.

Concluding remarks

In this paper we obtained new advances in the analysis of Xfem methods. First, in contrast
with [12] we provide optimal a priori error estimates. We also provide an a priori error
estimate on the standard Xfem with fixed enrichment area which shows the optimality of
this method. An error estimate on the stress intensity factors computed by the variant
with a cut-off function is also established. We prove that the convergence order is O(h'/?)
which is confirmed by numerical experiments. This order is rather low compared to the one
obtained with the J-integral (see [18, 33, 34, 28, 25]). However, it permits to have a first
estimate without post-treatment of the solution.

Another interesting perspective is the generalization to 3D cracks where the computation
of the stress intensity factors is more complex. However, a variant with an integral matching
or a cut-off function could be adapted.
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