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Abstract. This paper is devoted to the introduction of a new variant of the extended finite element
method (Xfem) for the approximation of elastostatic fracture problems. This variant consists in a
reduced basis strategy for the definition of the crack tip enrichment. It is particularly adapted when
the asymptotic crack-tip displacement is complex or even unknown. We give a mathematical result
of quasi-optimal a priori error estimate and some computational tests including a comparison with
some other strategies.
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1. Introduction
The aim of this paper is to introduce a new variant of the eXtended Finite Element Method (Xfem).
This latter method was introduced in [22, 21] in order to bypass some difficulties coming from clas-
sical finite element strategies to approximate the deformation of cracked elastic bodies (refinement
of the mesh around the crack tip, remeshing after crack propagation). In fact, many approaches
have been developed in the past decades to try make the finite element methods more flexible for
such applications. The pioneer work is the one of Strang and Fix, 1973 [25] in which a nonsmooth
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enrichment of the finite element method is introduced using a cut-off function to limit the influence
zone of the enrichment. Since then, different approaches had been analyzed such the Pufem (the
Partition of Unity Finite Element Method) [20], the Arlequin method [9], the Gfem (Generalized
Finite Element Method) [26], the Xfem and the patches enrichment approach [12].

The Xfem becomes popular due to its flexibility. It consists in the enrichment of the classical
finite element basis by a step function along the crack line, to take into consideration the discon-
tinuity of the displacement field, and by some nonsmooth functions to represent the asymptotic
displacement in a vicinity of the crack tip. This enrichment strategy allows the use of a mesh in-
dependent of the crack geometry. Since the introduction of the Xfem, a rapidly growing literature
have been produced in order to explore or improve the method (see [16] [2] and the references
therein for instance).

So far, modeling cracked domains with Xfem approaches required a knowledge on the exact
nonsmooth displacement at the crack tip. This becomes a serious difficulty when the asymptotic
displacement at the crack tip is complicated or even unknown, e.g. for a bi-material interface crack.
These issues were already pointed out in [6] where we introduced the Spider Xfem that needs only
a partial knowledge on the asymptotic displacement.

Furthermore, the so-called Reduced Basis method has been introduced by Noor and Peters
[23] in 1980. Then, the idea was developed by Maday and Rønquist in [19]. This method uses
some pre-computed generic solutions as basis functions for the approximation. These numerical
functions are obtained, once for all, for some values of parameters depending on the material char-
acteristics and geometric properties. Meanwhile, a sufficient number of pre-computed functions
are necessary. These pre-computed functions have also to be sufficiently independent the ones
from the others. A good approximation of the solution can be obtained with this method with only
a few number of pre-computed functions.

Inspired by the Reduced Basis method, we introduce in this paper, what we call the Reduced
Basis enrichment eXtended Finite Element Method (or RB-Xfem) which is an Xfem variant with
a reduced basis type nonsmooth enrichment. The main objective is to be able to treat unknown
crack tip asymptotic displacement. In this method, the exact nonsmooth enrichment is replaced by
some pre-computed finite element functions on very refined meshes. These functions should be
able to approximate accurately the asymptotic displacement. They are computed once for all and
are rather few in comparison with the classical Xfem enrichment in complex situations.

The outline of the paper is the following. Section 2 describes the problem and the new variant
RB-Xfem. In section 3, a quasi-optimal result of convergence is obtained. Finally, in section
4, some numerical experiments are presented for an homogeneous isotropic crack and for a bi-
material interface crack.

2. Reduced extended finite element method via a cut-off func-
tion

Let Ω ⊂ R2 be a bounded cracked polygonal domain which represents the reference configuration
of a cracked linearly isotropic elastic body in plane stress approximation. The boundary of Ω,
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denoted ∂Ω, is partitioned into three parts ΓD, ΓN and ΓC open in Ω. A Dirichlet condition is
prescribed on ΓD and a Neumann one on ΓN and ΓC . The part ΓC of the boundary is representing
the crack (see Figure 1). We denote x∗ the crack tip and Ω∗ = Ω ∪ ΓC ∪ {x∗} the uncracked
domain.

Let
V = {v ∈ H1(Ω;R2);v = 0 on ΓD} (2.1)

be the space of admissible displacements and let us define

a(u,v) =

∫

Ω

σ(u) : ε(v) dx, l(v) =

∫

Ω

ξ.v dx +

∫

ΓN

ζ.v dΓ,

σ(u) = λtrε(u)I + 2µε(u),

where σ(u) is the stress tensor, ε(u) is the linearized strain tensor, ξ and ζ denote some given
force densities on Ω and ΓN respectively, finally, λ > 0, µ > 0 are the Lamé coefficients (which
may have different values on one side and on the other side of the crack for the bi-material case).
The elastostatic problem reads as

Find u ∈ V such that a(u,v) = l(v) ∀v ∈ V. (2.2)

We suppose that the solution u to this problem is a sum of a regular part and a nonsmooth part

u = ur + us, (2.3)

such that ur is regular in the sense
ur ∈ H2+ε(Ω;R2) (2.4)

for a fixed ε > 0 (see [1] for the definition of the Sobolev space Hs(Ω;R2), s ∈ R). The nons-
mooth part us is of the form

us = KIuI + KIIuII , (2.5)

where the vector field uI (resp. uII) denotes the fracture opening mode (resp. shear mode) and the
scalars KI and KII are the corresponding stress intensity factors. In the following, we assume that

uI ,uII ∈ H1+s(Ω;R2), for some 0 < s < 1. (2.6)

These assumptions are satisfied in the homogeneous case at least when ξ and ζ are sufficiently
smooth, for a straight crack and when the uncracked domain Ω∗ has a regular boundary (see [14,
13]). In this case, s = 1/2 − η for any η > 0 and the expression of the asymptotic displacement
is available in many references such as [14, 17]. Note that, since Ω∗ admits some corners, some
additional nonsmooth displacements may appear at these corners which may also be taken into
account with additional enrichment in an Xfem like approach. We neglect this aspect in this study
and consider that the solution is smooth outside the crack tip. Furthermore, we will need the
following regularity property

uI ,uII ∈ C∞(Ω;R2), (2.7)
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which is satisfied only for a homogeneous (but not necessarily isotropic) material. When the frac-
ture propagates along the interface between two different materials, the asymptotic displacement
us can be also written as in (2.5) with more intricate expressions of the two modes uI and uII than
in the homogeneous case [10, 28].

��������
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��������ΓD

ΓN

ΓN

ΓN

ΓC

x
∗ the crack tip

.

Figure 1: The domain Ω which represents the reference configuration of a cracked elastic body.

Let Th be a regular family of triangulations (in the sense of Ciarlet [8]) of the non-cracked
domain Ω∗ (h being the mesh parameter). Let us emphasize that the mesh is independent of
the crack path. Let (ϕi)i∈I be the scalar basis functions of a P1 classical finite element method
defined on Th. In order to localize the nonsmooth enrichment, we consider Ωc ⊂ Ω a polygonal
subdomain of simplified geometry, containing the crack tip x∗ (see Fig. 2). Let χ be a cut-off
function satisfying 




χ(r) = 1 if r < r0,
0 < χ(r) < 1 if r0 < r < r1,
χ(r) = 0 if r1 < r,

(2.8)

where r0, r1 are two parameters (0 < r0 < r1) such that the ball B(x∗, r1) is included in Ωc.
Assume that

χ ∈ W 3,∞(Ω∗). (2.9)

The definition of the Sobolev space W 3,∞(Ω∗) can be found in [1].
The RB-Xfem displacement field will be defined as

uh =
∑
i∈I

aiϕi +
∑
i∈IH

biHϕi +
2∑

j=1

cjwjχ, (2.10)

where ai, bi ∈ R2 and cj ∈ R are the degrees of freedom. In this expression, the discontinuity of
the displacement field along the crack is taken into consideration by the presence of the enrichment
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functions ϕiH where H is a step function given by (n denoting a given unit normal to the crack)

H(x) =

{
+1 if (x− x∗) · n ≥ 0,

−1 elsewhere,
(2.11)

and (ϕi)i∈IH
are the shape functions whose support is totally cut by the crack. Moreover, the vec-

tor enrichment functions w1 and w2 are some chosen pre-computed functions defined on Ωc. The
motivation of such an enrichment is that the nonsmooth modes uI and uII are often unknown or
very complicated (especially in anisotropic or nonhomogeneous cases). Instead, the precomputed
functions w1 and w2 will be the result of a finite element computation on Ωc with a very refined
mesh whose parameter is denoted h′ (see Figure 2). These functions does not have to approximate
directly uI and uII . The need is that there should exist a linear combination of w1 and w2 whose
asymptotic behavior at the crack tip approximate uI and another one whose asymptotic behavior
approximate uII . Thus, w1 and w2 will be taken to be the solution to two finite element approxi-
mations of some elasticity problems posed on Ωc. In other words, w1 and w2 will approximate the
solutions w

I
and w

II
of two continuous problems. These problems can be chosen to be roughly a

opening and a shear experiment on Ωc.

Refined mesh for the
pre-computed solutions

Coarse mesh

Crack

Ωc

Figure 2: Reduced Xfem enrichment strategy.

The nonsmooth part of the approximated solution (2.10) is

uh′
s = (c1w1 + c2w2)χ. (2.12)

The classical Xfem may become very expensive to model bi-material interface cracks ([28]) be-
cause the number of nonsmooth functions generating the exact asymptotic displacement increases
significantly compared to the homogeneous case ([14], [13]). In RB-Xfem, the number of pre-
computed functions will be the same than in the homogeneous case, i.e. only two functions w1

and w2 approximating an opening mode and a shear mode. This makes RB-Xfem rather cheaper
than the classical Xfem for complex asymptotic displacements.
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3. Error estimates
The approximate problem can be written

Find uh ∈ Vh such that a(uh,vh) = l(vh) ∀vh ∈ Vh, (3.1)

where Vh is the RB-Xfem discrete space given by

Vh =

{
vh =

∑
i∈I

aiϕi +
∑
i∈IH

biHϕi +
2∑

j=1

cjwjχ; ai, bi ∈ R2, cj ∈ R
}

. (3.2)

We will denote ε1 (resp. ε2) the approximation error between the pre-computed finite element
function w1 (resp. w2) and wI (resp. wII) such that

{
w1 = wI + ε1,

w2 = wII + ε2.
(3.3)

Since wI (resp. wII) is the exact solution to an elastostatic problem considered on the cracked
domain Ωc, it can also be written as follows

{
wI = wIr + d1

IuI + d1
IIuII ,

wII = wIIr + d2
IuI + d2

IIuII ,
(3.4)

where dj
I and dj

II are some scalars and wIr (resp. wIIr) denotes the regular part of wI (resp. wII).
We suppose that

wIr,wIIr ∈ H2+ε(Ωc;R2). (3.5)

Let us note that the scalars d1
I and d1

II (resp. d2
I and d2

II ) are the components of wI (resp. wII) on
the vector spaces vect{uI} and vect{uII}. We suppose that

∣∣∣∣
d1

I d2
I

d1
II d2

II

∣∣∣∣ 6= 0, (3.6)

which implies that the two functions wI and wII are linearly independent.

In order to define a RB-Xfem interpolation operator I h, the nonsmooth part of the interpolate
I hu ∈ Vh of the displacement field u satisfying (2.3), (2.5) can be written

I h
s u =

2∑
j=1

cjwjχ, (3.7)

where the scalars cj satisfy
(

d1
I d2

I

d1
II d2

II

) (
c1

c2

)
=

(
KI

KII

)
. (3.8)
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The regular part of I h will be defined from the modified regular part of the displacement (2.3)

ur = u− (c1wI + c2wII) χ. (3.9)

By using (3.4) and (3.8) we have

ur = ur + (1− χ)us − χ (c1wIr + c2wIIr) . (3.10)

Thanks to the smoothness assumptions (3.5) and (2.9), the functions χwIr and χwIIr satisfy

χwIr, χwIIr ∈ H2+ε(Ωc;R2). (3.11)

The same holds for (1−χ)us from expression (2.5) and the regularity assumption (2.6). The latter
properties, together with condition (2.4) lead to

ur ∈ H2+ε(Ω;R2). (3.12)

Let Ω be divided into Ω1 and Ω2 according to the crack and a straight extension of the crack
such that the value of H is (−1)k on Ωk, k = 1, 2. Let uk

r be the restriction of ur to Ωk, k ∈ {1, 2}.
As a result of the extension operator theorem (see [18, 1]), there exists an extension ũk

r of uk
r on

the uncracked domain Ω∗ such that

ũk
r ∈ H2+ε(Ω∗;R2), ‖ũk

r‖2+ε,Ω∗ ≤ Ck‖uk
r‖2+ε,Ωk

. (3.13)

Definition 1. Given a displacement field u satisfying (2.4), (2.6) and two extensions ũ1
r and ũ2

r

respectively of u1
r and u2

r in H2+ε(Ω;R2), let I hu be the element of Vh such that

I hu =
∑
i∈I

aiϕi +
∑
i∈IH

biHϕi +
2∑

j=1

cjwjχ, (3.14)

where ai and bi are given as follows (xi denotes the node associated to ϕi):

if i ∈ {I \ IH}, then ai = ur(xi),

if i ∈ IH and xi ∈ Ωk then (l 6= k)

{
ai = 1

2

(
uk

r(xi) + ũl
r(xi)

)
,

bi = 1
2

(
uk

r(xi)− ũl
r(xi)

)
(−1)k,

(3.15)

and cj is defined by (3.8).

A similar construction of an interpolation operator for Xfem with a cut-off function was intro-
duced in [5]. In the expression (3.14) of the RB-Xfem interpolate, let us denote the regular part
by

I h
r u =

∑
i∈I

aiϕi +
∑
i∈IH

biHiϕi. (3.16)

The values (3.15) of ai and bi imply that the regular part I h
r u coincides with the classical inter-

polate of ur (resp. of ũk
r ) on a non-enriched triangle (resp. on a triangle totally enriched by the
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Heaviside function).

The main modification compared to the definition introduced in [5] is that the nonsmooth part∑2
j=1 cjwjχ of the RB-Xfem interpolate is an approximation of the exact asymptotic displacement.

Moreover, another difference appears in the definition (3.9) of ur without changing its regularity.
We now give an error estimate essentially based on the result obtained in [5]. In what follows

C denotes a generic constant.

Theorem 2. Let u be the solution to Problem (2.2) satisfying (2.4) and (2.6). Suppose the precom-
puted functions fulfil the condition (3.5), then

‖u−I hu‖1,Ω ≤ C
{

h‖ur‖2+ε,Ω + (h′)s (‖wI‖s+1,Ωc + ‖wII‖s+1,Ωc)
}

, (3.17)

where C := C(χ) is independent of h and h′.

Proof. From equations (3.14) and (3.16), one has

I hu = I h
r u +

2∑
j=1

cjwjχ. (3.18)

Then, considering (3.3), one obtains

I hu = I h
r u + χ (c1wI + c2wII) +

2∑
j=1

cjεjχ. (3.19)

Now, the definition (3.9) implies that the interpolation error is bounded as follows:

‖u−I hu‖1,Ω ≤ ‖ur −I h
r u‖1,Ω +

2∑
j=1

|cj|‖χεj‖1,Ω. (3.20)

This, together with (3.12) and the convergence result obtained in [5] for the regular part, leads to

‖u−I hu‖1,Ω ≤ Ch‖ur‖2+ε,Ω +
2∑

j=1

|cj|‖χεj‖1,Ω. (3.21)

Now, using the Cauchy-Schwarz inequality and since χ and its derivatives are bounded, one can
write

‖χεj‖1,Ω ≤ C‖εj‖1,Ωc . (3.22)

Moreover, the pre-computed finite element solutions w1 and w2 approximate displacements wI

and wII lying in Hs+1(Ωc;R2) from (3.4), (3.5) and (2.6). Then, the classical convergence results
allow to bound the approximation errors ε1 and ε2 as follows (see [8],[11]):

‖χε1‖1,Ω ≤ C(h′)s‖wI‖s+1,Ωc , (3.23)
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and
‖χε2‖1,Ω ≤ C(h′)s‖wII‖s+1,Ωc , (3.24)

where h′ is the mesh parameter of the refined mesh used to evaluate the pre-computed functions.
Combining the latter estimates with inequality (3.21) allows to conclude. ¤

Remark 3. For a bi-material interface crack, the regularity (2.7) is not satisfied anymore on the
interface between the two materials. Therefore, special enrichment functions should be added to
capture the displacement field at this interface.

Corollary 4. Let u be the solution to Problem (2.2) and uh be the solution to Problem (3.1). With
the hypotheses of Theorem 2 and assuming that there exists c > 0 such that h′ < ch1/s, we have

‖u− uh‖1,Ω ≤ Ch, (3.25)

where C := C(u, χ,wI ,wII) is a constant independent of h and h′.

The proof is a direct application of the latter theorem together with Cea’s lemma.

Remark 5. In the homogeneous case, the asymptotic displacement satisfies s = 1/2 − η for any
η > 0. In practice, the condition h′ ≤ ch2 is sufficient for the optimal convergence.

4. Numerical experiments
We perform some numerical experiments in order to compare the RB-Xfem to other Xfem type
methods. The numerical computations are achieved using the C++ finite element library Getfem++
[24]. The cracked domain is represented by

Ω =]− 0.5; 0.5[ × ]− 0.5; 0.5[ \ ΓC ,

where ΓC denotes the crack which reads as

ΓC = (−0.5; 0)× {0}.

A P1 finite element method is prescribed on a structured mesh of Ω. Figure 3 shows the
refined mesh of Ωc used for the pre-computations. An adapted refinement procedure is performed
using a classical a posteriori error estimate. This adapted refinement is used in order to reduce
the cost of the pre-computations. The pre-computed function w1 and w2 are some finite element
approximation of two problems chosen to be approximatively a opening and a shear mode Ωc. For
the RB-Xfem computations, the cut-off function used is defined such that

{
χ(r) = 1 if r < r0 = 0.01,
χ(r) = 0 if r > r1 = 0.3,

and χ is identical to a fifth degree polynomial for r0 ≤ x ≤ r1.
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Figure 3: Refined mesh of Ωc used for the pre-computations.
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Figure 4: L2-error with respect to the number of cells in each direction for a mode I homogeneous
crack problem with enriched P1 elements (logarithmic scales).
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Figure 5: H1-error with respect to the number of cells in each direction for a mode I homogeneous
crack problem with enriched P1 elements (logarithmic scales).
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Figure 6: Condition number of the stiffness matrix with respect to the number of cells in each
direction for a homogeneous crack.
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4.1. Isotropic homogeneous elastic media
The first numerical experiment treats an isotropic homogeneous elastic media. Two situations are
tested. On the first one, the exact mode I solution (i.e. u

I
whose expression is well known in this

case, see [17] for instance) is prescribed as Dirichlet condition on the boundary of Ω. The second
one correspond to a mixed mode problem. The exact solution is a linear combination of the mode
I, the mode II and a given regular solution on the non-cracked domain. Figure 7 is a representation
of the Von Mises stress on the resulting deformed mesh for the mixed mode problem.

Figure 7: Von Mises stress using P1 elements for a mixed mode and an homogeneous crack prob-
lem.

Figures 4 and 5 (respectively Figures 8 and 9) show the convergence curves of the L2-norm
and the H1-norm obtained with the mode I problem (respectively the mixed mode problem) for the
classical finite element method, Xfem with surface enrichment [16, 2] and the RB-Xfem. As ex-
pected, the error level of Xfem is better than the RB-Xfem since in the latter, the space is enriched
by approximations of the asymptotic displacement instead of the exact nonsmooth functions. In
the same time, the RB-Xfem reduces significantly the error of the classical finite element method.
It shows also a convergence rate very close to the optimal one. Furthermore, the RB-Xfem is in-
troduced via a cut-off function which reduces significantly the number of additional nonsmooth
enrichment functions. The condition number of the associated linear system is very much im-
proved compared to Xfem (see Figure 6 for the mode I problem).
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Figure 8: L2-error with respect to the number of cells in each direction for a mixed mode homoge-
neous crack problem with enriched P1 elements (logarithmic scales).

19 25 29 35 39 45 49

2.62144%     

5.24288%     

10.4858%     

20.9715%     

41.943%      

Number of cells in each direction

H
1  r

el
at

iv
e 

er
ro

r

FEM, slope = −0.48526
Reduced Basis, slope = −0.74306
XFEM, slope = −1.0084

Figure 9: H1-error with respect to the number of cells in each direction for a mixed mode homo-
geneous crack problem with enriched P1 elements (logarithmic scales).
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4.2. Bi-material interface crack
The second numerical experiment is relative to a bi-material interface crack. Non-homogeneous
Neumann conditions are prescribed on the boundary. The comparison is done with respect to a
refined classical finite element solution. For the sake of simplicity, the discontinuity of the gradient
on the interface between the two solids is taken into account by the fact that the interface do not
cross the elements. To keep the complete independence of the mesh with respect to the interface it
should be necessary to add an enrichment on the part of the mesh where the two material remain
stuck by the mean of a function representing the distance to the interface (see [3]).

Figure 10 shows the variation of the Von Mises stress on the deformed structure obtained with
RB-Xfem. Figures 11 and 12 show a comparison between the convergence rates of the classical
finite element method, the Spider Xfem [6] and the RB-Xfem. The Spider Xfem gives the lower er-
ror values since a part of the exact asymptotic displacement is present in the approximation space.
Meanwhile, the RB-Xfem error level is only 3% higher while showing an optimal convergence rate.

Figure 10: Von Mises stress using P1 elements for a bi-material interface crack problem.

The great advantage of RB-Xfem in these experiments is that the optimal performance is ob-
tained without requiring any knowledge on the exact nonsmooth displacement field. Moreover, for
complex problems, such as bi-material interface cracks, the RB-Xfem computational cost in terms
of number of degrees of freedom is very close to the classical finite element method one since it
adds only two vector enrichment functions.
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Figure 11: L2-error with respect to the number of cells in each direction for a bi-material interface
crack problem with enriched P1 elements (logarithmic scales).

16 20 26 30 36 40

5.24288%     

10.4858%     

20.9715%     

41.943%      

Number of cells in each direction

H
1  r

el
at

iv
e 

er
ro

r

FEM, slope = −0.67817
Reduced Basis, slope = −0.92649
SpiderFEM, slope = −0.91444

Figure 12: H1-error with respect to the number of cells in each direction for a bi-material interface
crack problem with enriched P1 elements (logarithmic scales).
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Figure 13: Condition number of the stiffness matrix with respect to the number of cells in each
direction for a bi-material interface crack.

Concluding remarks
The RB-Xfem offers an interesting framework for modeling complex or even unknown crack
asymptotic displacements. The first numerical results are very promising. A better approximation
than classical finite element method and an optimal convergence rate are obtained with a reduced
computational cost and without any a priori required knowledge on the asymptotic displacement
at the crack tip. Therefore, when the asymptotic displacement is unknown, the RB-Xfem is a good
alternative since the use of the classical Xfem becomes impossible in such cases. Moreover, the
study in the present paper is limited to the RB-Xfem with a cut-off function, but the approach can
be extended to the RB-Xfem with integral matching, which is supposed to give better numerical
results (see [4] and [7]).

An interesting perspective to this work is the adaptation to large deformations problems and
three-dimensional cracks. In this cases, it will be necessary to have a greater number of enrichment
functions.

Note that the reduced basis strategy used in the method we propose is limited to the crack tip
enrichment, unlike a more conventional use of the reduced basis strategy presented in [15].

This work is supported by ”l’Agence Nationale de la Recherche”, project ANR-05-JCJC-0182-01.
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