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Abstract

In this work we propose, analyse and implement a residual a posteriori error esti-
mator for the elasticity system in two space dimensions approximated by the eXtended
Finite Element Method (XFEM). The XFEM allows to perform finite element compu-
tations on multi-cracked domains using meshes of the non-cracked domain by adding
supplementary basis functions of Heaviside type and singular functions in order to take
into account the crack geometry and the singularity at the crack tip respectively.

Key words: elasticity, eXtended Finite Element Method, cracked domain, error estimators,
residuals.
Abbreviated title: XFEM residual estimators in elasticity.
MOS subject classification: 65N30, 65N15

1 Introduction and notation

The eXtended Finite Element Method (XFEM) was initially introduced in [24, 23] (in
the linear elasticity context) in order to avoid remeshing in domains with evolutionary
cracks. The idea of the method is to enrich the classical finite element basis with both non-
smooth functions representing the singularities at the reentrant corners (as in the singular
enrichment method introduced in [30]) and also with step functions (of Heaviside type) along
the crack since the finite element mesh does not coincide with the cracked domain. After
numerous numerical works developed in various contexts of mechanics, the first convergence
results with a priori error estimates were recently obtained in [9, 10]: in the convergence
analysis, a difficulty consists in evaluating the local error in the elements cut by the crack
by using appropriate extension operators and specific estimates. In the latter references,
the authors obtain an error estimate of order h (h denotes the discretization parameter)
with a H2+ε regularity assumption on the regular part of the solution keeping in mind that
the solution is only H3/2−ε regular for any positive ε. A more recent work in [25] proves an
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optimal error estimate of order h under a H2-regularity hypothesis of the regular part of
the solution.

Some remarkable numerical work has been performed on a posteriori error estimation
for XFEM. A simple derivative recovery technique and its associated a posteriori error
estimator have been proposed in [6], [14], [7] and [27]. These recovery based a posteriori error
estimations outperform the superconvergent patch recovery technique (SPR) introduced by
Zienkiewicz and Zhu. In the present work, we propose and analyze an error estimator of
residual type (see [3] for the early ideas and analyzes and e.g., [2, 31] and the references
therein for a more complete overview) for the XFEM applied to the linear elasticity system.
Since the meshes do not coincide with the domain near the crack we need to introduce and to
study a specific quasi-interpolation operator of averaging type (see e.g., [4, 11, 13, 21, 28, 29]
for various averaging type operators). The use of such an operator allows us to obtain an
upper bound of the discretization error. Unfortunately we are not able to obtain a lower
bound of the discretization error. In the last section, we present several numerical results,
achieved with the finite element library Getfem++ ([26]). The numerical experiments show
that the error estimator and the discretization error admit similar convergence rates as the
discretization parameter vanishes.

We introduce some useful notation and several functional spaces. As usual, we denote
by (L2(.))d and by (Hs(.))d, s ≥ 0, d = 1, 2 the Lebesgue and Sobolev spaces in one and
two space dimensions (see [1]). The usual norm of (Hs(D))d is denoted by ∥ · ∥s,D and we
keep the same notation when d = 1 or d = 2. For shortness the (L2(D))d-norm will be
denoted by ∥ · ∥D when d = 1 or d = 2. In the sequel the symbol | · | will denote either
the Euclidean norm in R2, or the length of a line segment, or the area of a plane domain.
Finally the notation a . b means here and below that there exists a positive constant C
independent of a and b (and of the mesh size of the triangulation) such that a ≤ C b. The
notation a ∼ b means that a . b and b . a hold simultaneously.

2 The elasticity problem on a cracked domain

Let Ω be an open subset of R2 having a crack, with a polygonal boundary ∂Ω where ΓC ⊂ ∂Ω
denotes the crack (the crack ΓC consists of two distinct straight line segments having the
same location). We consider a “partition” of ∂Ω into three open disjoint subsets ΓD, ΓN

and ΓC so that ∂Ω = Γ̄D∪ Γ̄N ∪ Γ̄C . A homogeneous Dirichlet condition is prescribed on ΓD

and a homogeneous Neumann condition holds on ΓN ∪ ΓC . The homogeneous conditions
on ΓD and ΓN are chosen to simplify and the extension to the nonhomogeneous case is
straightforward. We further suppose that the measures of ΓD and ΓC are positive (see
Figure 1).

In this paper we consider the elasticity problem: for f ∈ (L2(Ω))2 let u be the displace-
ment field solution to 

−div σ(u) = f in Ω,
u = 0 on ΓD,
σ(u)n = 0 on ΓN ∪ ΓC ,

(1)

where σ(u) = Cε(u) denotes the stress tensor field obtained from the elasticity operator C
and from the linearized strain tensor field ε(u) = (∇u+∇uT )/2 and n stands for the unit
outward normal on ∂Ω. Set

V =
{
v ∈ (H1(Ω))2 : v = 0 on ΓD

}
.
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Figure 1: The geometry of the cracked domain Ω

Then, the variational solution of (1) is the unique solution u of

u ∈ V,

∫
Ω
σ(u) : ε(v) dx =

∫
Ω
f · v dx, ∀v ∈ V,(2)

where the notation · (resp. :) stands for the inner product in R2 (resp. in the space of
second order symmetric tensors of R2). The solution u to the elasticity problem can be
written as a sum of a regular part ur and a singular part us = KIuI +KIIuII where KI and
KII are the stress intensity factors (see for instance [22]) and the functions uI and uII are
defined in polar coordinates (r, θ) as follows in the case of a horizontal crack with a crack
tip at the right extremity (as in Figure 1):

uI =
λ+ µ

µ(3λ+ 2µ)

√
r

2π

 cos
θ

2

sin
θ

2

 (a+ b cos θ),(3)

uII =
λ+ µ

µ(3λ+ 2µ)

√
r

2π

 sin
θ

2
(c+ 2 + cos θ)

cos
θ

2
(2− c− cos θ)

 .(4)

In the previous definition r denotes the distance to the crack tip, λ and µ are the Lamé
coefficients and

a = 2 +
2µ

λ+ 2µ
, b = −2

λ+ µ

λ+ 2µ
, c =

λ+ 3µ

λ+ µ
.

Note that the normal (resp. tangential) component of uI (resp. uII) is discontinuous across
the crack (i.e., θ = π). It can be checked that for any positive ε, the functions uI and uII
lie in (H

3
2
−ε(Ω))2 (see, e.g. [18, 19]).

3 Discretization of the elasticity problem with the XFEM

We approximate problem (1) by the so called XFEM (eXtended Finite Element Method)
introduced in [24]. Namely we consider a regular family of triangulations Th, h > 0 of the
noncracked domain made of closed triangles T such that Ω̄ = ∪T∈Th

T (see [8, 12, 15]). For
T ∈ Th we recall that hT is the diameter of T and h = maxT∈Th

hT . The regularity of the
mesh implies in particular that for any edge E of T one has hE = |E| ∼ hT . Since the
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triangles in Th do not coincide with the crack we define the family of generalized elements
Gh, h > 0 containing the following elements (see Figure 2):

• the triangles in T ∈ Th whose interior does not intersect ΓC ,

• the (non closed) triangles and quadrangles obtained when the crack cuts (into two
parts) a triangle in Th,

• the (non closed) cracked triangle containing the crack tip.
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Figure 2: Standard elements T ∈ Th and generalized elements G ∈ Gh

This implies that Ω̄ = ∪G∈Gh
Ḡ and ∪G∈Gh

◦
G ⊂ Ω where

◦
G denotes the interior of G.

We next give an important definition:

Definition 3.1 Let Nh be the set of nodes of the triangulation Th. We say that a node
x ∈ Nh is enriched if the patch ωx surrounding x: ωx = ∪T :x∈Th

T is cut in (at least) two
subsets by the crack (see Figure 3) and we denote by NH

h ⊂ Nh the set of enriched nodes.
We say that a triangle T ∈ Th is enriched (resp. partially enriched) if its three nodes (resp.
one or two nodes) are enriched.

We denote by hx the diameter of the patch ωx. If T ∈ Th we denote by ωT the union of all
elements in Th having a nonempty intersection with T . Similarly for an edge E of a triangle
in Th we denote by ωE the union of all elements in Th having a nonempty intersection with
Ē. Set ND

h = Nh ∩ Γ̄D (note that the extreme nodes of Γ̄D belong to ND
h ).

Let Eh denote the set of edges of the elements in Gh (the edges are supposed to be
relatively open) and Eint

h = {E ∈ Eh : E ⊂ Ω} be the set of interior edges of Gh, E
ext
h =

Eh \ Eint
h . We denote by EN

h = {E ∈ Eh : E ⊂ ΓN}, EC
h = {E ∈ Eh : E ⊂ ΓC} the set

of exterior edges included into the part of the boundary where the Neumann condition is
prescribed. For a generalized element G ∈ Gh (resp. standard element T ∈ Th), we will
denote by EG the set of edges of G (resp., by ET the set of edges of T ) and according to the
above notation, we set Eint

G = EG ∩ Eint
h , EN

G = EG ∩ EN
h , EC

G = EG ∩ EC
h . For each edge

E ∈ Eh we fix one of the two normal vectors to the element and we denote it by nE . The
jump of some scalar or vector valued function v across an edge E ∈ Eh at a point y ∈ E is
defined as

[[v(y)]]E =

{
lim

α→0+
v(y + αnE)− v(y − αnE) ∀E ∈ Eint

h ,

v(y) ∀E ∈ Eext
h .

The main idea of the extended finite element method is to enrich the classical finite
element space by:
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Figure 3: Enriched nodes x ∈ NH
h

• singular functions at the crack tip in order to take into account the singularity of the
displacement field,

• discontinuous functions located along the crack in order to take into account the
discontinuity of the solution across the crack.

Following [24], the singular functions at the crack tip are constructed using the four
singular basis functions:

F1 =
√
r sin(θ/2),

F2 =
√
r cos(θ/2),

F3 =
√
r sin(θ) sin(θ/2),

F4 =
√
r sin(θ) cos(θ/2).

The discontinuous functions are constructed from a Heaviside like function H which is equal
to 1 on one side (of the straight extension, see Figure 4) of the crack and to −1 on the other
side. This allows the following definition of the extended finite element space:

Vh =

{
vh ∈ (C(Ω))2 : vh =

∑
x∈Nh

axλx +
∑

x∈NH
h

bxHλx + χ

4∑
i=1

ciFi

= vh,r + χvh,s, ax, bx, ci ∈ R2

}
⊂ V,(5)

where λx denotes the classical finite element P1 shape functions at node x ∈ Nh satisfying
λx(x

′) = δx,x′ , for any x′ ∈ Nh and χ ∈ C2(Ω̄) is a cutoff function satisfying

χ(r) =


1 if r ≤ r0,
ρ ∈ (0, 1) if r0 < r < r1,
0 if r ≥ r1,

(6)

where r denotes the the distance to the crack tip and r0 and r1 are given positive numbers
such that r0 < r1. Such a cutoff function χ was introduced in [9, 10] in order to improve
the performances (in terms of convergence) of the original method in [24].

The finite element approximation of (2) consists of finding uh such that

uh ∈ Vh,

∫
Ω
σ(uh) : ε(vh) dx =

∫
Ω
f · vh dx, ∀vh ∈ Vh.(7)
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Note that the Lax-Milgram lemma implies the existence of a unique solution to problem
(7).

Remark 3.2 A quasi-optimal a priori error estimate is obtained in [9, 10] for the XFEM
involving the cutoff function χ. Under a (H2+ε(Ω))2 regularity assumption for u − χus
(for some positive ε), the authors prove that ∥u − uh∥1,Ω . h∥u − χus∥2+ε,Ω. This result
has been recently improved in [25] where a convergence of order h is proved with (H2(Ω))2

regularity for u − χus. Note that when using a classical finite element method one obtains
a convergence rate of only h1/2−ε since u lies in (H3/2−ε(Ω))2 for any ε > 0.

4 The quasi-interpolation operator

The aim of this section is to introduce a quasi-interpolation operator which will be used in
the forthcoming a posteriori error analysis.

4.1 Definition

Quasi-interpolation operators of averaging type are a common tool for residual a posteriori
error analysis (see e.g., [4, 11, 13, 21, 28, 29] for various operators). At a node x, the value
of the quasi-interpolation is often an ”average” of the function on the patch ωx surrounding
x. To simplify the forthcoming discussion we suppose (as in Figure 1) that the end points
of the crack belonging to ∂Ω̄ are not submitted to Dirichlet conditions. For the sake of
simplicity, we first build the quasi-interpolation operator πh in the scalar case: let us set

X =
{
v ∈ H1(Ω) : v = 0 on ΓD

}
and

Xh =

{
vh ∈ C(Ω) : vh =

∑
x∈Nh

αxλx +
∑

x∈NH
h

βxHλx, αx, βx ∈ R

}
⊂ X.

The quasi-interpolation operator πh will be defined as

πh : X → Xh.

Remark 4.1 Note that Xh does not involve any singular function at the crack tip.

The first idea would be to use such an operator on the regular mesh Th. In such an approach,
terms such as ∥u − uh∥1,ωT (where T ∈ Th) do appear and unfortunately u and uh do not
lie in (H1(Ω̄))2 (hence u−uh does in general not lie in (H1(ωT ))

2) due to the discontinuity
across the crack.

A second idea would be to define πhv (with v ∈ H1(Ω)) separately on each side of the
crack. If we divide Ω into Ω1 and Ω2 using the crack and a straight extension of the crack
(see Figure 4) one could first try to define πhv on Ω1 (resp. Ω2) by using the only values of
v on Ω1 (resp. Ω2). This consists of defining πhv on each generalized element G ∈ Gh. It
is easy to see that this approach leads to technical difficulties since the elements in Gh are
sometimes quadrangles.

As a consequence, we choose an approach which consists in determining πhv separately
on each side of the crack by defining πhv|G , G ∈ Gh and by using the values of v on both
sides of the crack. This leads us to use extension operators.
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Figure 4: Domain decomposition using a straight extension of the crack

As already mentioned, let us divide Ω into Ω1 and Ω2 using the crack and a straight
extension of the crack (see Figure 4). Let v ∈ H1(Ω) and let v1 = v|Ω1

∈ H1(Ω1) and

v2 = v|Ω2
∈ H1(Ω2) be the restrictions of v on Ω1 and Ω2, respectively. Let us consider an

extension of v1 defined on Ω (see [1, 16]) denoted ṽ1 such that

∥ṽ1∥1,Ω . ∥v1∥1,Ω1 ≤ ∥v∥1,Ω(8)

and an extension ṽ2 (defined on Ω) of v2 such that

∥ṽ2∥1,Ω . ∥v2∥1,Ω2 ≤ ∥v∥1,Ω.(9)

For any v ∈ H1(Ω), we define πhv as the unique element in Xh

πhv =
∑
x∈Nh

αx(v)λx +
∑

x∈NH
h

βx(v)Hλx,(10)

satisfying the following conditions:

• Step 1. Definition of πhv at the nodes Nh of the triangulation Th.

(i) (not enriched nodes) If x ∈ Nh \ ND
h is such that ωx is not cut (i.e., not divided

into more than one part) by the crack then

πhv(x) =
1

|ωx|

∫
ωx

v(y) dy.

From the Cauchy-Schwarz inequality, we get

|πhv(x)| . |ωx|−1/2∥v∥ωx ∼ h−1
x ∥v∥ωx ≤ h−1

x ∥v∥ωx + ∥∇v∥ωx .

Note that the three nodes of the triangle containing the crack tip are concerned
with the latter case (see Figure 3).

(ii) (enriched nodes) If x ∈ Nh \ ND
h , x ∈ Ω̄ℓ, ℓ = 1, 2, is such that ωx is cut by the

crack then we set

πhv(x) =
1

|ωx|

∫
ωx

ṽℓ(y) dy.
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We deduce

|πhv(x)| . |ωx|−1/2∥ṽℓ∥ωx ∼ h−1
x ∥ṽℓ∥ωx ≤ h−1

x ∥ṽℓ∥ωx + ∥∇ṽℓ∥ωx .

Note that if x lies on the crack and (ii) is satisfied then there are two possible
values for πhv(x): one corresponding to πhv(x) on Ω̄1 and the other one to πhv(x)
on Ω̄2. See step 2 for the determination of πh in this case.

(iii) If x ∈ ND
h , denote Γx = ωx ∩ ΓD (recall that Γ̄C ∩ Γ̄D = ∅ to simplify the

discussion) and set:

πhv(x) =
1

|Γx|

∫
Γx

v(y) dΓ.

By using a scaled trace inequality (see, e.g., [18, 20]):

∥v∥E . h
−1/2
E ∥v∥T + h

1/2
E ∥∇v∥T , ∀v ∈ H1(T ),∀T ∈ Th,∀E ∈ ET ,(11)

we get

|πhv(x)| . |Γx|−1/2∥v∥Γx ∼ h−1/2
x ∥v∥Γx . h−1/2

x

(
h−1/2
x ∥v∥ωx + h1/2x ∥∇v∥ωx

)
. h−1

x ∥v∥ωx + ∥∇v∥ωx .

• Step 2. Definition of πhv on Ω.

With the previous nodal expressions we define by linear interpolation the function
πhv on any triangle T ∈ Th excepted those cut by the crack. Note that a triangle
can be totally enriched (i.e., its three nodes are enriched) and not cut by the crack.
If the triangle is cut by the crack then it is either enriched (three nodes enriched) or
partially enriched (one or two enriched nodes). The definition on the triangles cut by
the crack is given hereafter.

Consider first a totally enriched triangle T with e.g., x1 ∈ Ω1 and x2, x3 ∈ Ω2. In
order to determine (πhv)|Ω1∩T

, we write:

π̃1
hv(x) =

1

|ωx|

∫
ωx

ṽ1(y) dy.(12)

for x = x1, x2, x3. Then π̃1
hv is defined by linear interpolation on T and then πhv is

defined on T ∩ Ω1 as the restriction of π̃1
hv on T ∩ Ω1.

Similarly we define (πhv)|Ω2∩T
to be the restriction on T ∩ Ω2 of π̃2

h defined for x =
x1, x2, x3 by

π̃2
hv(x) =

1

|ωx|

∫
ωx

ṽ2(y) dy.(13)

A similar construction is achieved for the partially enriched triangles: if a node x is
not enriched then we compute the value of πhv(x) at this node and if it is enriched
then we compute both quantities (12) and (13) corresponding to ṽ1 and ṽ2 at this
node.
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Remark 4.2 From the previous construction of πhv and expression (10) we see that αx(v) =
πhv(x) if x ∈ Nh \ NH

h . If x ∈ NH
h , x ∈ Ω̄k and denoting ℓ = 3− k, we have

αx(v) + βx(v)H(x) =
1

|ωx|

∫
ωx

ṽk(y) dy, and αx(v)− βx(v)H(x) =
1

|ωx|

∫
ωx

ṽℓ(y) dy.

Hence

αx(v) =
1

2|ωx|

∫
ωx

(ṽk(y) + ṽℓ(y)) dy, and βx(v) =
H(x)

2|ωx|

∫
ωx

(ṽk(y)− ṽℓ(y)) dy.

4.2 Stability

Next we consider the stability properties of the quasi-interpolation operator on the gener-
alized elements.

Lemma 4.3 For all v ∈ H1(Ω) and all T ∈ Th one has:
(i) if none of the nodes of T is enriched (so the crack does not cut T ) then:

∥πhv∥T . ∥v∥ωT + hT ∥∇v∥ωT ,

(ii) if the three nodes of T are enriched, then for ℓ = 1 and ℓ = 2, we have:

∥πhv∥T∩Ωℓ
. ∥ṽℓ∥ωT + hT ∥∇ṽℓ∥ωT ,

(iii) if one or two nodes of T are enriched and if ωT is cut by the crack (so T ⊂ Ω̄ℓ for
ℓ = 1 or ℓ = 2) we have:

∥πhv∥T . ∥ṽℓ∥ωT + hT ∥∇ṽℓ∥ωT ,

(iv) if one or two nodes of T are enriched and if ωT contains the crack tip then for ℓ = 1
or ℓ = 2, we have:

∥πhv∥T∩Ωℓ
. ∥ṽℓ∥ωT + ∥v∥ωT + hT ∥∇ṽℓ∥ωT + hT ∥∇v∥ωT .

Remark 4.4 Due to the mesh regularity there is a mesh independent bounded number of
triangles satisfying (iv): more precisely this set is contained in ωT ∗ where T ∗ is the triangle
containing the crack tip. Some of the triangles in this set are cut by the crack and others
not.

Proof: (i). If none of the nodes is enriched then for each of the three nodes of T , we have:

|πhv(x)| . h−1
x ∥v∥ωx + ∥∇v∥ωx .

Writing πhv =
∑

x∈T πhv(x)λx on T and using ∥λx∥T ∼ hT ∼ hx implies the result.
(ii). Set e.g., ℓ = 1. Noting that for any of the three nodes of T , we have

|π̃1
hv(x)| . h−1

x ∥ṽ1∥ωx + ∥∇ṽ1∥ωx ,

and using the same estimates as in (i) yields the result. The same result holds when ℓ = 2.
(iii) and (iv). These estimates are obtained as the previous ones.

Now we consider the stability properties of πh on the edges of the generalized elements
not located on the crack.
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Lemma 4.5 For all v ∈ H1(Ω) and all edge E of a triangle T ∈ Th one has:
(i) if both end points of E are not enriched:

∥πhv∥E . h
−1/2
E ∥v∥ωE + h

1/2
E ∥∇v∥ωE ,

(ii) if both end points of E are enriched then for ℓ = 1 or ℓ = 2, we have:

∥πhv∥E∩Ω̄ℓ
. h

−1/2
E ∥ṽℓ∥ωE + h

1/2
E ∥∇ṽℓ∥ωE ,

(iii) if only one end point of E is enriched and if ωE is cut by the crack (so E ⊂ Ω̄ℓ for
ℓ = 1 or ℓ = 2), we have:

∥πhv∥E . h
−1/2
E ∥ṽℓ∥ωE + h

1/2
E ∥∇ṽℓ∥ωE ,

(iv) if only one end point of E is enriched and if ωE contains the crack tip then for ℓ = 1
or ℓ = 2, we have:

∥πhv∥E∩Ω̄ℓ
. h

−1/2
E ∥ṽℓ∥ωE + h

−1/2
E ∥v∥ωE + h

1/2
E ∥∇ṽℓ∥ωE + h

1/2
E ∥∇v∥ωE .

Remark 4.6 There is a mesh size independent bounded number of edges satisfying (iv).
More precisely, all these edges have an end point belonging to the triangle containing the
crack tip.

Proof: (i). For both end points of E, we have:

|πhv(x)| . h−1
x ∥v∥ωx + ∥∇v∥ωx .

Writing πhv =
∑

x∈E πhv(x)λx and using ∥λx∥E ∼ h
1/2
E , hE ≤ hx implies the result.

(ii). Suppose first that E lies in Ω̄ℓ. Then E ∩ Ω̄ℓ = E and for both end points of E, we
have:

|π̃ℓ
hv(x)| . h−1

x ∥ṽℓ∥ωx + ∥∇ṽℓ∥ωx .

The estimate is obtained as in (i). If E is cut by the crack the discussion is the same.
(iii) and (iv). Straightforward (see (i) and (ii)).

Now we need to study the stability of the quasi-interpolation operator πh on the crack.
We denote by Fh ⊂ Eh the set of edges lying on the crack (these edges are the ones of the
generalized elements on the crack).

Lemma 4.7 For all v ∈ H1(Ω) and all edge F ∈ Fh one has:
(i) If F ⊂ T ∈ Th where T is totally enriched, then for ℓ = 1 and ℓ = 2, we have:

∥(πhv)|Ωℓ
∥F . h

1/2
F h−1

T ∥ṽℓ∥ωT + h
1/2
F ∥∇ṽℓ∥ωT ,

(ii) If F ⊂ T ∈ Th where T is partially enriched, then for ℓ = 1 and ℓ = 2, we have:

∥(πhv)|Ωℓ
∥F . h

1/2
F h−1

T ∥ṽℓ∥ωT + h
1/2
F ∥∇ṽℓ∥ωT + h

1/2
F h−1

T ∥v∥ωT + h
1/2
F ∥∇v∥ωT ,

(iii) If F ⊂ T ∈ Th where the crack tip lies in the interior of T , (then (πhv)|Ω1
= (πhv)|Ω2

on F ), we have:

∥πhv∥F . h
1/2
F h−1

T ∥v∥ωT + h
1/2
F ∥∇v∥ωT .

10



Proof: Consider an edge F = (a, b) and fix ℓ = 1 or ℓ = 2. On F , we have

(πhv)|Ωℓ
= (πhv)|Ωℓ

(a)λa + (πhv)|Ωℓ
(b)λb,

where λa and λb are the edge basis functions at a and b. Let T = x1x2x3 ∈ Th be the triangle
containing F . Since (πhv)|Ωℓ

is constructed by the restriction of an affine extension on T ,

it is straightforward that (πhv)|Ωℓ
(a) and (πhv)|Ωℓ

(b) are convex combinations of π̃ℓ
hv(xi) or

πhv(xi) depending on the fact that xi is enriched or not. So we have either:

|π̃ℓ
hv(xi)| . h−1

xi
∥ṽℓ∥ωxi

+ ∥∇ṽℓ∥ωxi
,

or
|πhv(xi)| . h−1

xi
∥v∥ωxi

+ ∥∇v∥ωxi
.

Using ∥λa∥F ∼ ∥λb∥F ∼ h
1/2
F , implies the result in (i), (ii) and (iii).

4.3 Error estimates

We now consider the local error estimates in the L2-norms.

Lemma 4.8 For all v ∈ H1(Ω) and all T ∈ Th one has:
(i) if none of the nodes of T is enriched then

∥v − πhv∥T . hT ∥∇v∥ωT ,

(ii) if the three nodes of T are enriched then for ℓ = 1 or ℓ = 2, we have:

∥v − πhv∥T∩Ωℓ
. hT ∥∇ṽℓ∥ωT ,

(iii) if one or two nodes of T are enriched and if ωT is cut by the crack (so T ⊂ Ω̄ℓ for
ℓ = 1 or ℓ = 2) we have:

∥v − πhv∥T . hT ∥∇ṽℓ∥ωT ,

(iv) if one or two nodes of T are enriched and if ωT contains the crack tip then for ℓ = 1
or ℓ = 2, we have:

∥v − πhv∥T∩Ωℓ
. hT

√
− ln(hT ) (∥∇ṽℓ∥Ω + ∥∇v∥Ω) .

Proof: We first note that πh preserves the constant functions (note that we can suppose
that constant functions are extended on the other side of the crack by the same constant
functions). Hence, for any v ∈ H1(Ω) and any constant function c(x) = c we can write:

v − πhv = v − c− πh(v − c).

(i) In this case

∥v − πhv∥T ≤ ∥v − c∥ωT + ∥πh(v − c)∥T . hT ∥∇v∥ωT ,

where we use Lemma 4.3(i) and we choose c = |ωT |−1
∫
ωT

v(x)dx together with hT ∼ hωT .

11



(ii) We write, for any constant function c:

∥v − πhv∥T∩Ωℓ
≤ ∥ṽℓ − c∥ωT + ∥πh(v − c)∥T∩Ωℓ

. ∥ṽℓ − c∥ωT + hT ∥∇ṽℓ∥ωT

. hT ∥∇ṽℓ∥ωT

where c = |ωT |−1
∫
ωT

ṽℓ(x)dx and we conclude as in (i) using Lemma 4.3(ii).
(iii) As the previous cases.
(iv) This estimate is obtained as follows using Lemma 4.3(iv) and choosing

c = |ωT |−1
∫
ωT

ṽℓ(x)dx:

∥v − πhv∥T∩Ωℓ
≤ ∥ṽℓ − c∥ωT + ∥πh(v − c)∥T∩Ωℓ

. ∥ṽℓ − c∥ωT + ∥v − c∥ωT + hT ∥∇ṽℓ∥ωT + hT ∥∇v∥ωT

. ∥ṽℓ − v∥ωT + hT ∥∇ṽℓ∥ωT + hT ∥∇v∥ωT .

Moreover, denoting by 1X the characteristic function of the set X, we write

∥ṽℓ − v∥ωT = ∥(ṽℓ − v)1ωT ∥Ω
≤ ∥ṽℓ − v∥Lq(Ω)∥1ωT ∥

L
2q
q−2 (Ω)

. h
1− 2

q

T ∥ṽℓ − v∥Lq(Ω)

. q
1
2h

1− 2
q

T ∥ṽℓ − v∥1,Ω

. q
1
2h

1− 2
q

T ∥∇(ṽℓ − v)∥Ω

. q
1
2h

1− 2
q

T (∥∇ṽℓ∥Ω + ∥∇v∥Ω)

where 2 < q < ∞ and we used the Sobolev inequality ∥w∥Lq(Ω) ≤ Cq1/2∥w∥1,Ω, see e.g.
[17]. We obtain the final estimate by choosing q = − ln(hT ).

Lemma 4.9 For all v ∈ H1(Ω) and all edge E of a triangle T ∈ Th one has:
(i) if both end points of E are not enriched:

∥v − πhv∥E . h
1/2
E ∥∇v∥ωE ,

(ii) if both end points of E are enriched then for ℓ = 1 or ℓ = 2, we have:

∥v − πhv∥E∩Ω̄ℓ
. h

1/2
E ∥∇ṽℓ∥ωE ,

(iii) if only one end point of E is enriched and if ωE is cut by the crack (so E ⊂ Ω̄ℓ for
ℓ = 1 or ℓ = 2), we have:

∥v − πhv∥E . h
1/2
E ∥∇ṽℓ∥ωE ,

(iv) if only one end point of E is enriched and if ωE contains the crack tip then for ℓ = 1
or ℓ = 2, we have:

∥v − πhv∥E∩Ω̄ℓ
. h

1/2
E

√
− ln(hE)(∥∇ṽℓ∥Ω + ∥∇v∥Ω).
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Proof: (i) Since πh preserves the constant functions we have for all v ∈ H1(Ω) and all
constant function c(x) = c: v − πhv = v − c− πh(v − c). So by the scaled trace inequality
(11) and Lemma 4.5(i), we obtain

∥v − πhv∥E ≤ ∥v − c∥E + ∥πh(v − c)∥E . h
−1/2
E ∥v − c∥ωE + h

1/2
E ∥∇v∥ωE ,

and we choose c = |ωE |−1
∫
ωE

v(x)dx together with hE ∼ hωE .
(ii, iii) As in the previous cases.
(iv) This estimate is obtained as follows by using Lemma 4.5(iv) and choosing c =

|ωE |−1
∫
ωE

ṽℓ(x)dx. We then achieve the same calculations as in Lemma 4.8(iv):

∥v − πhv∥E∩Ω̄ℓ
≤ ∥ṽℓ − c∥E + ∥πh(v − c)∥E∩Ω̄ℓ

. h
−1/2
E ∥ṽℓ − c∥ωE + h

−1/2
E ∥v − c∥ωE + h

1/2
E ∥∇ṽℓ∥ωE + h

1/2
E ∥∇v∥ωE

. h
−1/2
E ∥ṽℓ − v∥ωE + h

1/2
E ∥∇ṽℓ∥ωE + h

1/2
E ∥∇v∥ωE

. h
1/2
E

√
− ln(hE)(∥∇ṽℓ∥Ω + ∥∇v∥Ω).

The next lemma consists of estimating the error committed by the averaging operator
on the edges of the generalized elements located on the crack. We recall that the set of such
edges is denoted Fh.

Lemma 4.10 For all v ∈ H1(Ω) and all edge F ∈ Fh one has:
(i) If F ⊂ T ∈ Th where T is totally enriched, then for ℓ = 1 and ℓ = 2, we have:

∥(v − πhv)|Ωℓ
∥F . h

1/2
T ∥∇ṽℓ∥ωT ,

(ii) If F ⊂ T ∈ Th where T is partially enriched, then for ℓ = 1 and ℓ = 2, we have:

∥(v − πhv)|Ωℓ
∥F . h

1/2
T

√
− ln(hT )(∥∇ṽℓ∥Ω + ∥∇v∥Ω),

(iii) If F ⊂ T ∈ Th where the crack tip lies in the interior of T , (then (πhv)|Ω1
= (πhv)|Ω2

on F ), we have:

∥v|Ωℓ
− πhv∥F . h

1/2
T ∥∇v∥ωT .

Proof: (i) Since πh preserves the constant functions we have for all v ∈ H1(Ω) and all
constant function c(x) = c: v − πhv = v − c − πh(v − c). By the generalized scaled trace
inequality (see [18, 20]):

∥w∥F . h
−1/2
T ∥w∥T + h

1/2
T ∥∇w∥T ,

and Lemma 4.7, we obtain

∥(v − πhv)|Ωℓ
∥F ≤ ∥ṽℓ − c∥F + ∥πh(ṽℓ − c)∥F

. h
−1/2
T ∥ṽℓ − c∥T + h

1/2
T ∥∇ṽℓ∥T + h

1/2
F h−1

T ∥ṽℓ − c∥ωT + h
1/2
F ∥∇ṽℓ∥ωT .

Hence the conclusion. The proof of (ii) and (iii) are the same as previously.

Having defined and analyzed the quasi-interpolation operator πh : X → Xh in the scalar
case, the extension to the vector valued case is straightforward: we define

π∗
h : V = X ×X → Xh ×Xh

such that for any v = (v1, v2) ∈ X × X we have π∗
hv = (πhv1, πhv2). Of course the error

estimates in Lemmas 4.8, 4.9 and 4.10 also hold for π∗
h.
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5 Error estimators

5.1 Definition of the residual error estimators

Writing uh = uh,r + χuh,s as in (5), the element residual is defined by

RG = f + div σ(uh) = f + div σ(χuh,s)

on each generalized element G ∈ Gh. Since div σ(uh,s) = 0 we deduce that the expression
div σ(χuh,s) vanishes excepted on the elements (distant from the crack tip) having an
nonempty intersection with the ring shaped area where χ maps onto (0, 1). To simplify we
denote by n instead of nE the normal vectors to the elements on the edges E.

Definition 5.1 (Residual error estimator) Let G ∈ Gh and T ∈ Th be the triangle
containing G. The local and global residual error estimators are defined by

η1G = hTC(hT )∥f + div σ(χuh,s)∥G,

η2G = h
1/2
T D(hT )

 ∑
E∈Eint

G ∪EN
G∪EC

G

∥[[σ(uh)n]]E∥
2
E

1/2

,

ηG =
(
η21G + η22G

)1/2
,

η =

 ∑
G∈Gh

η2G

1/2

,

where C(hT ) =
√

− ln(hT ) for the elements in case (iv) of Lemma 4.8, otherwise C(hT ) = 1
and D(hT ) =

√
− ln(hT ) for the elements in case (iv) of Lemma 4.9 or in case (ii) of Lemma

4.10, otherwise D(hT ) = 1.

Remark 5.2 The presence of the ln(hT )-terms in the estimator results from technical rea-
sons and appears only for a bounded number (independent of the mesh) of elements near
the crack tip. From a numerical point of view, these ln(hT )-terms are negligible. In the
case of a standard finite element method with coinciding finite element meshes on the crack
we have Gh = Th and G = T (obviously the XFEM is not a generalization of a standard
finite element method with noncoinciding finite element meshes on the crack). In the case of
coinciding meshes on the crack it is easy to show that the cases involving the ln(hT )-terms
disappear (i.e., C(hT ) = D(hT ) = 1) and we recover the classical residual estimator (see
e.g., [5, 31]).

5.2 Upper error bound

Theorem 5.3 Let u ∈ V be the solution of (2) and let uh ∈ Vh be the solution of (7). Then

∥u− uh∥1,Ω . η.

Proof: Denoting the error by
e = u− uh,

14



we have, according to (2), (7) and Korn inequality:

∥e∥21,Ω .
∫
Ω
σ(u) : ε(u− uh)−

∫
Ω
σ(uh) : ε(u− uh)

=

∫
Ω
f · (u− uh)−

∫
Ω
σ(uh) : ε(u− uh)

=

∫
Ω
f · (u− vh)−

∫
Ω
σ(uh) : ε(u− vh), ∀vh ∈ Vh.

Splitting up the integrals on each generalized element G ∈ Gh and writing uh = uh,r+χuh,s,
we arrive at

∥e∥21,Ω .
∑
G∈Gh

∫
G
f · (u− vh)

−
∑
G∈Gh

∫
G
σ(uh,r) : ε(u− vh) −

∑
G∈Gh

∫
G
σ(χuh,s) : ε(u− vh)

=
∑
G∈Gh

∫
G
(f + div σ(χuh,s)) · (u− vh)

−
∑

E∈Eint
h

∫
E
[[σ(uh,r)n]]E · (u− vh)−

∑
E∈EN

h ∪EC
h

∫
E
σ(uh)n · (u− vh), ∀vh ∈ Vh,(14)

where we used the Green formula on each generalized element (note that although the
triangle containing the crack tip has a boundary which is not Lipschitz, it can be divided
in two parts by using a straight extension of the crack and then one can use separately
Green’s formula on each part to obtain the desired result) as well as div σ(uh,r) = 0 on G
and [[σ(χuh,s)n]]E = 0 for all E ∈ Eint

h .
At this stage we fix the choice of vh. We set

vh = uh + π∗
h(u− uh).

We consider (14): with the above choice we are able to estimate each term of the right-hand
side of the previous expression. The Cauchy-Schwarz inequality implies∑

G∈Gh

∫
G
(f + div σ(χuh,s)) · (u− vh) ≤

∑
G∈Gh

∥f + div σ(χuh,s)∥G∥u− vh∥G.

Therefore it remains to estimate ∥u − vh∥G for any generalized element G. Let T ∈ Th be
the triangle containing G. Using Lemma 4.8, we obtain for the triangles considered in cases
(i)–(iii):

∥u− vh∥G = ∥e− π∗
he∥G . hT ∥e∥1,ωT(15)

or
∥u− vh∥G = ∥e− π∗

he∥G . hT ∥ẽ∥1,ωT ,(16)

where ẽ is an extension of the error across the crack (see (8), (9)). If T belongs to the finite
set of triangles (iv) in Lemma 4.8, we have

∥u− vh∥G = ∥e− π∗
he∥G . hT

√
− ln (hT ) (∥ẽ∥1,Ω + ∥e∥1,Ω) .(17)
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So, depending on the cases (i)–(iv) of Lemma 4.8 and using estimates (15)–(17), we can
write ∑

G∈Gh

∫
G
(f + div σ(χuh,s)) · (u− vh)(18)

.

 ∑
G∈Gh,cases(i)−(iii)

h2T ∥f + div σ(χuh,s)∥2G

1/2 ∑
G∈Gh,cases(i)−(iii)

(∥ẽ∥1,ωT + ∥e∥1,ωT )
2

1/2

+

 ∑
G∈Gh,case(iv)

h2T (− ln(hT ))∥f + div σ(χuh,s)∥2G

1/2 ∑
G∈Gh,case(iv)

(∥ẽ∥1,Ω + ∥e∥1,Ω)2
1/2

. η∥e∥1,Ω.

Let us now pass to the estimate of the remaining terms: as above the application of the
Cauchy-Schwarz inequality leads to

−
∑

E∈Eint
h

∫
E
[[σ(uh,r)n]]E · (u− vh)−

∑
E∈EN

h ∪EC
h

∫
E
σ(uh)n · (u− vh)

= −
∑

E∈EN
h ∪Eint

h ∪EC
h

∫
E
[[σ(uh)n]]E · (e− π∗

he)

≤
∑

E∈EN
h ∪Eint

h ∪EC
h

∥[[σ(uh)n]]E∥E∥e− π∗
he∥E .(19)

Using Lemmas 4.9 (i,ii,iii) and 4.10 (i,iii) and denoting by T ∈ Th a triangle containing E,
we obtain

∥e− π∗
he∥E . h

1/2
T (∥ẽ∥1,ωT + ∥e∥1,ωT ) .(20)

If E belongs to the finite set of triangles in Lemma 4.9(iv) or in Lemma 4.10(ii), we have

∥e− π∗
he∥E . h

1/2
T

√
− ln (hT ) (∥ẽ∥1,Ω + ∥e∥1,Ω) .(21)

Using estimates (20) and (21) with (19) as well as (18) ends the proof of the theorem.

Remark 5.4 Unfortunately we are not able to obtain a lover bound of the discretization
error. This comes especially from the presence of some flat triangles near the crack which
do not satisfy the classical regularity assumption. Nevertheless the forthcoming numerical
experiments clearly show that the discretization error behaves as the estimator.

6 Numerical experiments

In this section we implement the residual estimator of Definition 5.1 on three examples
using Getfem++ (see [26]). We suppose that the body Ω is homogeneous isotropic so that
Hooke’s law σ(v) = Cε(v) becomes

σ(v) = λtr(ε(v))I + 2µε(v)

where I represents the identity matrix, tr is the trace operator, λ ≥ 0 and µ > 0 denote the
Lamé coefficients.
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6.1 The opening mode (Mode I)

In the first example we choose the domain Ω = (0, 1)2 depicted in Figure 5 with a crack
[0, 0.5] × {0.5} and ΓN = ∅. Here the mesh coincides with the crack so that Th = Gh.
We impose nonhomogeneous Dirichlet conditions on the boundary ΓD. The coefficients of
Lamé are λ = 200 and µ = 150. The cutoff function χ in (6) is chosen polynomial of degree
five with r0 = 0.01 and r1 = 0.49 and it is defined by

χ(r) =
−6r5+15(r0+r1)r4−10(r20+4r0r1+r21)r

3+30r0r1(r0+r1)r2−30r21r
2
0r+r30(r

2
0−5r1r0+10r21)

(r1−r0)5

if r0 ≤ r ≤ r1.

Γ

ΓD

Γ
D

Γ
D

D

ΓC Ω

Figure 5: First example. The cracked body

6.1.1 Uniform refinement

The domain is discretized with a family of uniform triangular meshes. In the following we
denote by ND the number of elements of the mesh on a side of the square (0, 1)2. Since we
use uniform meshes, the parameter ND measures the size of the mesh. The exact solution
u = uI is known (given by (3)) so we can evaluate the norm ∥u− uh∥1,Ω and consequently
the effectivity index which is equal to η/∥u− uh∥1,Ω (see Table 1).

ND 8 16 32 48 64 80 96 112 128

η (×10−2) 7.48248 4.34222 2.46972 1.74772 1.35644 1.10928 0.938618 0.813512 0.717829

∥u− uh∥1,Ω 6.99878 4.39294 2.4652 1.71217 1.31164 1.06293 0.893545 0.770712 0.677583
(×10−4)

Effectivity 106.91 98.84 100.18 102.07 103.41 104.36 105.04 105.55 105.93
index

Table 1: Values of η, ∥u− uh∥1,Ω and effectivity index for the first example.
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Figure 6 depicts the convergence rates of η and ∥u−uh∥1,Ω of Table 1. The error estima-
tor η admits a similar convergence rate as the error norm ∥u− uh∥1,Ω and the convergence
behaves (up to a constant) like h as the discretization parameter vanishes.
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ro

rs

Number of elements on a side of the square

 

 
estimator, slope= −0.89232
error norm, slope= −0.93296

Figure 6: Convergence of the estimator η and of the error norm ∥u− uh∥1,Ω

The main part of the error in η is located near the crack tip (0.5, 0.5) (see Figure 7).

18



Figure 7: Map of the local error estimators ηG with ND = 16 (left) and ND = 80 (right)

6.1.2 Refinement with a threshold

Now we use the error estimator with an adaptive mesh refinement procedure. The criterion
to refine the mesh is as follows: we define a threshold and the element G is refined if ηG
is greater than the threshold. Mesh refinement is stopped as soon as ηG is lower than the
threshold for all G. An initial uniform mesh is chosen. Taking a threshold of 10−5 or of
10−6 and an exponential cutoff function χ(r) = exp (−2075r4) in Ω leads to the meshes
depicted in Figure 8. Choosing now as cutoff χ the previously defined polynomial function
of degree five leads to the meshes in Figure 9. Finally the error estimator η obtained at each
intermediate mesh with a threshold equal to 10−6 is reported in Table 2 (for the exponential
cutoff function) and in Table 3 (for the polynomial cutoff function of degree five). In this
example the different cutoff functions lead to different refined meshes with a satisfactory
error reduction in both cases.

Figure 8: Case of an exponential cutoff function χ: initial mesh (left), final mesh with a
threshold equal to 10−5 (middle) and final mesh with a threshold equal to 10−6 (right)
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Figure 9: Case of a polynomial cutoff function χ of degree five: initial mesh (left), final
mesh with a threshold equal to 10−5 (middle) and final mesh with a threshold equal to 10−6

(right)

Degrees of
freedom 730 1106 1472 1500 1526

η (×10−2) 4.45143 2.94918 2.07349 1.91532 1.82311

Table 2: Values of η with an exponential cutoff function χ

Degrees of
freedom 730 1666 1714 1734 1740

η (×10−2) 4.34222 2.30949 2.04415 1.93209 1.90008

Table 3: Values of η with a polynomial cutoff function χ of degree five

6.2 The shear mode (Mode II)

6.2.1 Uniform refinement

We choose the same geometry and material characteristics as in the previous example. But
now the exact solution u = uII is given by (4). In Table 4, we report the contributions of
η, ∥u− uh∥1,Ω and the effectivity indexes for a family a uniform triangular meshes.
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ND 8 16 32 48 64 80 96 112 128

η (×10−2) 8.65243 4.64238 2.44897 1.6639 1.26226 1.01857 0.855114 0.73785 0.649653

∥u− uh∥1,Ω 9.24249 5.68551 3.14573 2.17081 1.65698 1.33966 1.12436 0.968637 0.850816
(×10−4)

Effectivity 93.62 81.65 77.85 76.64 76.17 76.03 76.05 76.17 76.35
index

Table 4: Values of η, ∥u− uh∥1,Ω and effectivity index for the second example.

We report the convergence rates of η and ∥u− uh∥1,Ω in Figure 10. The conclusions are
the same as in the first example: the estimator and the H1-error norm are of order h as
h → 0. Moreover the main part of the error in η is still located near the crack tip (0.5, 0.5)
(see Figure 11).
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estimator, slope= −0.95802
error norm, slope= −0.94445

Figure 10: Convergence of the estimator η and of the error norm ∥u− uh∥1,Ω

21



Figure 11: Map of local error estimators ηG with ND = 16 (left) and ND = 80 (right)

6.2.2 Refinement with a threshold

The criterion to refine the mesh is the same as before. The initial and final meshes using an
exponential cutoff function for two different thresholds are depicted in Figure 12. Figure 13
depicts the same quantities when a polynomial cutoff function of degree five is used. Finally
the error estimator η obtained at each intermediate mesh with a threshold equal to 10−6 is
reported in Table 5 (for the exponential cutoff function) and in Table 6 (for the polynomial
cutoff function of degree five).

Figure 12: Case of an exponential cutoff function χ: initial mesh (left), final mesh with a
threshold equal to 10−5 (middle) and final mesh with a threshold equal to 10−6 (right)

Degrees of
freedom 730 1146 1782 1808 1850 1880

η (×10−2) 5.50767 3.87577 2.45115 2.26363 2.08548 2.07013

Table 5: Values of η with an exponential cutoff function χ
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Figure 13: Case of a polynomial cutoff function χ of degree five: initial mesh (left), final
mesh with a threshold equal to 10−5 (middle) and final mesh with a threshold equal to 10−6

(right)

Degrees of
freedom 730 1668 1848 1874 1944

η (×10−2) 4.64238 2.97789 2.49811 2.32357 2.08207

Table 6: Values of η with a polynomial cutoff function χ of degree five

6.3 The L-shaped body:

In the third example, we consider a cracked L-shaped body (which corresponds to three
quarters of the square (0, 1)2) represented in Figure 14. The crack tip is located at
(0.375, 0.25). Now the mesh doesn’t coincide with the crack. We set ΓD = (0, 0.5)×{1} and
ΓN elsewhere. A density of surface forces F=(0,-1) is applied on ΓN1 = (0, 1) × {0} ⊂ ΓN

and N stands for the number of elements of the mesh on ΓD. The material characteristics
and the cutoff function are the same as in the previous examples.

6.3.1 Uniform refinement

In this example, we don’t have at our disposal the exact solution. Therefore we only report
the values of η in Table 7 when using a family of uniform triangular meshes.

N 8 16 32 48 64 80 96

η (×10−2) 28.1005 15.7341 8.323 5.69931 4.34828 3.52219 2.96384

Table 7: Values of η for the third example

We observe in Figure 15 that the convergence rate of the estimator is close to one and
it is therefore similar to the ones in the previous examples. The main part of the error in
η is located near the crack tip (0.375, 0.25) (see Figure 16).

23



ΓD

ΓNΩ
ΓC

Γ

ΓN

ΓN

ΓN

N1

Figure 14: Third example. The cracked body

6.3.2 Refinement with a threshold

Using the same mesh refinement criterion as in the previous examples, we report the initial
and two final meshes using an exponential cutoff function in Figure 17. The initial and
two final meshes for a polynomial cutoff function of degree five are depicted in Figure 18.
Finally the error estimator η obtained at each intermediate mesh with a threshold equal
to 10−5 is reported in Table 8 (for the exponential cutoff function) and in Table 9 (for the
polynomial cutoff function of degree five).

Degrees of
freedom 1740 2978 3242 3296 3316

η 0.195918 0.131541 0.113071 0.105575 0.103496

Table 8: Values of η with an exponential cutoff function χ

Degrees of
freedom 1740 3156 3244 3312 3326

η 0.157341 0.117158 0.108942 0.103859 0.102766

Table 9: Values of η with a polynomial cutoff function χ of degree five
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Figure 15: Convergence of the estimator η

7 Conclusion

We propose, study and implement numerically a residual a posteriori error estimator for the
two dimensional elasticity system approximated by XFEM. The estimator is a generalization
of the existing one in the case of a classical finite element method with standard meshes.
An upper bound of the H1-error norm is obtained and the numerical experiments show that
the estimator and the H1-error norm admit similar convergence rates.

This work is supported by ”l’Agence Nationale de la Recherche”, project ANR-05-JCJC-
0182-01.
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[19] P. Grisvard, Problèmes aux limites dans les polygones - mode d’emploi. EDF Bull.
Direction Etudes Rech. Sér. C. Math. Inform., 1 (1986) 21–59.

[20] J. Haslinger and Y. Renard, A new fictitious domain approach inspired by the extended
finite element method. Siam J. Numer. Anal., 47 (2009) 1474–1499.

[21] S. Hilbert, A mollifier useful for approximations in Sobolev spaces and some appli-
cations to approximating solutions of differential equations, Math. Comp., 27 (1973)
81–89.

27



[22] J. Lemaitre, J.-L. Chaboche, Mechanics of Solid Materials, Cambridge University Press,
1994.
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