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Summary
It has been shown numerically in previous works that the well-posedness of the spatial semi-
discretization plays a crucial role in obtaining stable numerical schemes for elastodynamic
frictionless contact problems. The purpose of this paper is thus to introduce a mass
redistribution method adapted to elastodynamic contact with Coulomb friction which
guarantees the well-posedness of the semi-discrete problem. It is shown that a differentiated
treatment has to be applied to the friction condition. Some numerical tests illustrating
the gain in stability for the midpoint time integration scheme are presented. They suggest
also that, although the differentiated treatment is necessary for the well-posedness, it is not
always mandatory from the numerical viewpoint.

keywords: elasticity, unilateral contact with friction, stability, mass redistribution method.

74M15, 74M10, 65M60, 35L87.

1. Introduction

The aim of this paper is to describe a spatial well-posed semi-discretization for elastodynamic
unilateral contact problems with Coulomb friction. This kind of problems is of interest in
computational mechanics, where situations with a frictional contact condition are fairly common.
Moreover, it is well known that the full discretization of elastodynamic contact problems induces
a number of difficulties.
Numerous works have already been dedicated to the construction of numerical schemes that

are as much as possible stable, respecting the contact constraint and not leading to spurious
oscillations. Among the strategies already proposed in the literature, we refer to (23) for a time
integration scheme which is adapted to take into account a restitution coefficient coming from an
impact law. Although this approach is better fitting to the case of rigid solids, the addition of an
impact law makes the semi-discrete problem also well posed. However, the nature of this problem is
a measure differential inclusion in time (see (21, 22, 23, 24)), which is a very low regular problem.
Another proposed strategy is to build energy dissipative schemes. This is the case in (6, 2), where
the contact force is implicited. The drawback of this method is that the kinetic energy of the
contacting nodes is canceled at each impact. A less radical solution is to build energy conserving
schemes. Such schemes are introduced in (18, 17, 9). However, energy conserving schemes either
introduce spurious oscillations on the contact boundary or allow a small interpenetration. It is
possible to build energy conserving schemes with a penalized contact condition (1, 7, 9), but this
also leads to important oscillations of the normal stress. In this context, it was early detected
that a key point is the satisfaction of the complementarity condition between the sliding velocity
and contact pressure, the so-called persistency condition (11, 1, 17). But a compromise has to be
made between the satisfaction of this condition and the nonpenetration condition.

Q. Jl Mech. Appl. Math. (2010) ?? (?), 1–21 c© Oxford University Press 2010
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A common point to all these works is that they are focused on finding a good time integration
scheme. However, in (15) and (29), it is shown that this is rather obtaining a well-posed and
regular spatial semi-discrete problem which allows for stable schemes (see also (8, 5) for further
developments). The spatial semi-discretizations proposed in (15) and (29) allow the use of any
reasonable time integration scheme while almost all time integration schemes are unstable with the
standard discretization. However, these works are focused on contact conditions without friction.
One might think that the strategies developed there are directly applicable to friction condition.
We will see thereafter that this does not provide the well-posedness results and therefore a strategy
adapted to the friction condition is needed. This is also reflected in studies presented in (27) and
(25), where it was shown that adding a mass on the contact boundary regularizes the tangential
friction problem and prevents the occurrence of multiple solutions in elastodynamics. Note that
the semi-discrete problem obtained by finite elements naturally adds a mass on the nodes of the
contact boundary (but this is also the main difficulty for the unilateral contact condition!).
The method proposed in this paper is to apply the redistribution mass method introduced in

(15) only on the unilateral contact condition, not on the friction one. We show that in this
case, the semi-discrete problem in space reduces to a differential inclusion with a unique Lipschitz
continuous solution (not to a measure differential inclusion as in the standard semi-discretization).
For the sake of simplicity, we limit ourselves to the small deformations framework. However, the

same kind of difficulty exists for large deformation problems and similar strategies can be applied.
The outline of the paper is the following. In Section 2, we present a classical semi-discretization

of an elastodynamic contact problem with friction. In Section 3, we propose an adaptation of
the mass redistribution method, namely to apply it only on the normal component. Then, the
well-posedness of the obtained semi-discrete problem is proved in Section 4. The unique solution
of the semi-discrete problem is proved to be energy decreasing in Section 5. An elementary
example is described in Section 6. It shows that the well-posedness of the fully discrete problem
cannot be ensured when the mass redistribution method is applied both to contact and friction
conditions. Finally, Section 7 is devoted to a numerical test which confirms the advantage of the
mass redistribution method for the stability of the midpoint scheme.

2. A classical finite element approximation

In this section, we introduce a classical spatial semi-discretization based on the finite element
method. Since we are mainly interested in the semi-discrete problem, we do not describe the weak
formulation of the continuous problem. More details about such a discretization can be found for
instance in (14, 13, 16).

.
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Fig. 1 Elastic body in contact with a rigid foundation.

Let Ω ⊂ R
2 be a bounded Lipschitz domain representing the reference configuration of a linearly

elastic body. The Neumann condition is prescribed on Γ
N
, the Dirichlet one on Γ

D
and a unilateral

contact with the Coulomb friction law with respect to a rigid foundation on Γ
C
(see Fig. 1). We

suppose that Γ
N
, Γ

D
and Γ

C
form a partition of ∂Ω, the boundary of Ω. Let also ρ, σ(u),

ε(u) and A be the mass density, the stress tensor, the linearized strain tensor and the elasticity
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tensor, respectively. The elastodynamic problem consists in finding the displacement field u(t, x)
satisfying























ρü− div σ(u) = f in (0, T ]× Ω,
σ(u) = A ε(u) in (0, T ]× Ω,
u = 0 on (0, T ]× Γ

D
,

σ(u)ν = g on (0, T ]× Γ
N
,

u(0) = u0, u̇(0) = v0 in Ω,

(1)

where, additionally, T > 0 determines the time interval of interest, ν ∈ R
2 is the outward unit

normal vector to Ω on ∂Ω and f , g are some given external loads. Assuming the C 1 regularity for
Γ

C
, we decompose the displacement and the stress vector into normal and tangential components

on Γ
C
as follows:

u
N
= u.ν, u

T
= u.τ,

σ
N
(u) = (σ(u)ν).ν, σ

T
(u) = (σ(u)ν).τ,

where τ ∈ R
2 is a tangent unit vector orthogonal to ν. Without real loss of generality, we also

assume that there is no initial gap between the solid and the rigid foundation. Denoting by F the
friction coefficient, the unilateral contact condition with Coulomb friction is expressed as follows:

u
N
≤ 0, σ

N
(u) ≤ 0, u

N
σ

N
(u) = 0,

|σ
T
(u)| ≤ −Fσ

N
(u),

σ
T
(u) = Fσ

N
(u)

u̇
T

|u̇
T
| if u̇

T
6= 0















on (0, T ]× Γ
C
. (2)

Now, we consider a vector Lagrange finite element method defined on Ω. Let a1, · · · , an be the
finite element nodes and ϕ1, · · · , ϕnp

the (vector) shape functions of the finite element displacement
space. We denote by nc the number of nodes on Γ

C
and by np the number of degrees of freedom.

Let u(t) be the vector of degrees of freedom of the finite element displacement field uh(t, x) such
that

uh(t, x) =
∑

1≤i≤np

ui(t)ϕi(x) and u(t) = (ui(t)) ∈ R
np .

Let aαi
, i = 1, . . . , nc, be the i-th contact node and νi, τ i ∈ R

np , i = 1, . . . , nc, be the vectors
linking a displacement vector with its normal and tangential displacements at aαi

, i.e.:
{

uh
N
(t, aαi

) = νT
i u(t),

uh
T
(t, aαi

) = τT
i u(t),

i = 1, . . . , nc, (3)

and satisfying
{

‖νi‖ = 1, ‖τ i‖ = 1, νT
i τ j = 0 ∀ i, j = 1, . . . nc,

νT
i νj = 0, τT

i τ j = 0 ∀ i, j = 1, . . . nc, i 6= j.
(4)

We denote by ‖.‖ the Euclidean norm of vectors in R
n as well as the matrix norm in Mn,m(R)

generated by the Euclidean vector norm. Using a nodal approximation of the contact condition,
the spatial semi-discretization of Problem (1)&(2) can be written as follows:











































Find u : [0, T ] → R
np , λν ,λτ : [0, T ] → R

nc such that

λν(t) ∈ Λν , λτ (t) ∈ Λτ (Fλν(t)) a.e. in (0, T ),

Mü(t) +Au(t) = f +BT
ν λν(t) +BT

τ λτ (t) a.e. in (0, T ),

(µν − λν(t))
TBνu(t) ≥ 0 ∀µν ∈ Λν , a.e. in (0, T ),

(µτ − λτ (t))
TBτ u̇(t) ≥ 0 ∀µτ ∈ Λτ (Fλν(t)), a.e. in (0, T ),

u(0) = u0, u̇(0) = v0,

(5)

where

Aij =

∫

Ω

Aε(ϕi) : ε(ϕj) dx and Mij =

∫

Ω

ρ ϕi.ϕj dx (1 ≤ i, j ≤ np)
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are the components of the stiffness matrix A ∈ Mnp
(R) and of the mass matrix M ∈ Mnp

(R),
respectively. We assume that the tensor A of elasticity coefficients obey the usual symmetry and
uniform ellipticity conditions, the density ρ is bounded from below by a positive constant and Γ

D

is of nonzero measure on ∂Ω. As a consequence, A and M are both symmetric, positive definite
matrices. The components of the load vector f ∈ R

np are given by

fi =

∫

Ω

f.ϕi dx+

∫

ΓC

g.ϕi dΓ.

We assume for simplicity that the load vector is time independent. Finally, λν = (λν,1, . . . , λν,nc
)T

and λτ = (λτ,1, . . . , λτ,nc
)T are the normal and tangential Lagrange multipliers, respectively,

Bν = (ν1, . . . ,νnc
)T , Bτ = (τ 1, . . . , τnc

)T ∈ Mnc,np
(R) and

Λν = R
nc

− ,

Λτ (Fµν) = {µτ ∈ R
nc : |µτ,i| ≤ −Fµν,i ∀ i = 1, . . . , nc}, µν ∈ Λν ,

stand for the Lagrange multiplier sets, Rnc

− being the cone of all non-positive vectors in R
nc .

Problem (5) can be viewed as a measure differential inclusion (see (22, 23)). It is ill-posed
unless an impact law is added on each contact node. Even in this case, the solutions have a very
low regularity.

3. The mass redistribution method

The analysis presented in (15) highlights the fact that the main cause of ill-posedness is due to
the inertia of the nodes on the contact boundary. It is proposed a method which consists in
the redistribution of the mass near the contact boundary. This technique allows to recover the
well-posedness of the semi-discrete problem and ensures the solution to be energy conserving.
Moreover, it transforms the measure differential inclusion corresponding to (5) into a regular
Lipschitz continuous ordinary differential equation, which can be approximated by any reasonable
time integration scheme.
The singular dynamic method introduced in (29) for unilateral conditions is similar and more

general than the mass redistribution method since, for instance, it can be applied to thin structures.
However, we use here the mass redistribution method. The reason is that we need a differentiated
treatment of unilateral and friction conditions, which would be more difficult to obtain with
the singular dynamic method. In Section 6, an elementary example illustrates the fact that an
undifferentiated treatment leads to a potential multiplicity of solutions.
Let N := span{ν1, . . . ,νnc

} and N⊥ denote the space spanned by νi and its orthogonal
complement, respectively. We shall consider the redistributed mass matrix Mr ∈ Mnp

(R)
satisfying:











(i) Mr = MT
r ;

(ii) Ker(M r) = N ;

(iii) wTM rw > 0 ∀w ∈ N
⊥, w 6= 0;

(6)

i.e. being symmetric, positive semi-definite with the kernel equal to N . In (15) a simple
algorithm is proposed to build the redistributed mass matrix preserving the main characteristics
of the mass matrix (total mass, center of gravity and moments of inertia).

Using the decomposition u(t) = uN⊥(t) + uN (t), uN⊥(t) ∈ N⊥, uN (t) ∈ N , of the
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displacement vector for any time t and replacing M with Mr, Problem (5) becomes:























































Find uN⊥ : [0, T ] → N
⊥, uN : [0, T ] → N , λν ,λτ : [0, T ] → R

nc such that

λν(t) ∈ Λν , λτ (t) ∈ Λτ (Fλν(t)) a.e. in (0, T ),

M rüN⊥(t) +A(uN⊥(t) + uN (t)) = f +BT
ν λν(t) +BT

τ λτ (t)

a.e. in (0, T ),

(µν − λν(t))
TBνuN (t) ≥ 0 ∀µν ∈ Λν , a.e. in (0, T ),

(µτ − λτ (t))
TBτ u̇N⊥(t) ≥ 0 ∀µτ ∈ Λτ (Fλν(t)), a.e. in (0, T ),

uN⊥(0) = u0

N⊥ , u̇N⊥(0) = v0

N⊥ ,

(7)

where u0

N⊥ , v
0

N⊥ are the projections of the initial values of the displacement and velocity vectors

into N
⊥, respectively. Moreover, it is possible to express the unilateral contact and friction

conditions in an equivalent way (see (13), for instance) and rewrite the problem as follows:























































Find uN⊥ : [0, T ] → N
⊥, uN : [0, T ] → N , λν ,λτ : [0, T ] → R

nc such that

M rüN⊥(t) +A(uN⊥(t) + uN (t)) = f +

nc
∑

i=1

λν,i(t)νi +

nc
∑

i=1

λτ,i(t)τ i

a.e. in (0, T ),

−λν,i(t) ∈ NR−
(νT

i uN (t)) ∀ i = 1, . . . , nc, a.e. in (0, T ),

λτ,i(t) ∈ Fλν,i(t) Sgn(τ
T
i u̇N⊥(t)) ∀ i = 1, . . . , nc, a.e. in (0, T ),

uN⊥(0) = u0

N⊥ , u̇N⊥(0) = v0

N⊥ ,

(8)

whereNR−
denotes the normal cone of R− and the multifunction Sgn : R ⇉ R is the sub-differential

of the function a 7→ |a|, i.e.:

Sgn(a) =

{

a
|a| if a 6= 0,

[−1, 1] if a = 0,
a ∈ R.

Remark 3.1. From (4) it immediately follows that there exists β > 0 such that

sup
0 6=w∈R

np

wTBT
ν µν +wTBT

τ µτ

‖w‖ ≥ β(‖µν‖+ ‖µτ‖) ∀µν ,µτ ∈ R
nc . (9)

4. Well-posedness result

In this section we shall establish the well-posedness of Problem (7). First, owing to (4) and (6),
the first three variables of any (uN⊥ ,uN ,λν ,λτ ) solving (7) have to satisfy:











uN⊥(t) ∈ N
⊥, uN (t) ∈ N , λν(t) ∈ Λν ,

wTA(uN⊥(t) + uN (t)) = wTf +wTBT
ν λν(t) ∀w ∈ N ,

(µν − λν(t))
TBνuN (t) ≥ 0 ∀µν ∈ Λν ,

(10)

for almost all t ∈ (0, T ). From here, uN and λν are uniquely determined by uN⊥ as states the
following assertion.

Lemma 4.1. Let (4) be satisfied and f ∈ R
np be arbitrary. Then there exist unique functions

g1 : N⊥ → N and g2 : N⊥ → Λν such that the triplet (uN⊥(t),uN (t),λν(t)) with uN (t) :=
g1(uN⊥(t)), λν := g2(uN⊥(t)), satisfies (10) for any uN⊥(t) ∈ N

⊥ and any t ∈ [0, T ]. Moreover,
the functions g1 and g2 are Lipschitz continuous:

∃L1, L2 > 0 : ‖gi(w
1)− gi(w

2)‖ ≤ Li‖w1 −w2‖ ∀w1,w2 ∈ N
⊥, i = 1, 2. (11)
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Proof. In fact, it suffices to analyze the static problem:















Find (ũN , λ̃ν) := (ũN (ũN⊥), λ̃ν(ũN⊥)) ∈ N ×Λν such that

wTAũN = wT (f −AũN⊥) +wTBT
ν λ̃ν ∀w ∈ N ,

(µν − λ̃ν)
TBνũN ≥ 0 ∀µν ∈ Λν ,

(12)

for ũN⊥ ∈ N⊥ given. It is readily seen that this problem is equivalent to finding a saddle-point
(ũN , λ̃ν) of the Lagrangian

L (w,µν) :=
1

2
wTAw −wT (f −AũN⊥)−wTBT

ν µν , (w,µν) ∈ R
np × R

nc ,

on N ×Λν . Since A is positive definite and

β‖µν‖ ≤ sup
0 6=w∈R

np

wTBT
ν µν

‖w‖ = sup
06=w∈N

wTBT
ν µν

‖w‖ ∀µν ∈ R
nc (13)

due to (4), where β is the constant from (9), Problem (12) possesses a unique solution for any
ũN⊥ ∈ N

⊥, which depends Lipschitz continuously on the data ũN⊥ (see (4) for instance). This
yields the existence, the uniqueness and the Lipschitz continuity of the functions g1 and g2.

From the other side, if (uN⊥ ,uN ,λν ,λτ ) solves (8) then



































wTMrüN⊥(t) +wTA(uN⊥(t) + uN (t)) = wTf +wT
(

nc
∑

i=1

λτ,i(t)τ i

)

∀w ∈ N
⊥, a.e. in (0, T ),

λτ,i(t) ∈ Fλν,i(t) Sgn(τ
T
i u̇N⊥(t)) ∀ i = 1, . . . , nc, a.e. in (0, T ),

uN⊥(0) = u0

N⊥ , u̇N⊥(0) = v0

N⊥ .

(14)

Substituting the inclusion for λτ,i(t) into the equality and taking uN (t) = g1(uN⊥(t)), λν,i(t) =
g2,i(uN⊥(t)) according to Lemma 4.1, this becomes:























wTM rüN⊥(t) ∈ wT (f −AuN⊥(t)−Ag1(uN⊥(t)))

+wT
(

nc
∑

i=1

Fg2,i(uN⊥(t)) Sgn(τT
i u̇N⊥(t))τ i

)

∀w ∈ N⊥, a.e. in (0, T ),

uN⊥(0) = u0

N⊥ , u̇N⊥(0) = v0

N⊥ .

(15)

Lemma 4.2. Let (4) and (6) be fulfilled and f ∈ R
np , u0

N⊥ ,v
0

N⊥ ∈ N⊥ be arbitrary. Then there

exists a unique Lipschitz continuous function uN⊥ : [0, T ] → N⊥ with üN⊥ ∈ L1(0, T ;Rnp)
solving (15).

Proof. Introducing the matrix P ∈ Mnp,n̄(R), n̄ := dimN⊥, columns of which form an

orthonormal basis of N⊥, any vector w ∈ N⊥ can be represented by w̄ ∈ R
n̄ with

w̄ = P Tw, w = PP Tw = Pw̄

and (15) is equivalent to























w̄TM̄r ¨̄u(t) ∈ w̄T (f̄ − Āū(t)− ḡ1(ū(t))) + w̄T
(

nc
∑

i=1

F ḡ2,i(ū(t)) Sgn(τ̄
T
i
˙̄u(t))τ̄ i

)

∀ w̄ ∈ R
n̄, a.e. in (0, T ),

ū(0) = ū0, ˙̄u(0) = P Tv0

N⊥ ,
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where

M̄r = P TM rP , Ā = P TAP , ḡ1(ū(t)) = P TAg1(Pū(t)),

ḡ2(ū(t)) = g2(Pū(t)), ḡ2(ū(t)) = (ḡ2,1(ū(t)), . . . , ḡ2,nc
(ū(t)))T ,

ū = P TuN⊥ , ū0 = P Tu0

N⊥ , f̄ = P Tf , τ̄ i = P Tτ i, i = 1, . . . , nc.

Having in mind (6), this can be written as























¨̄u(t) ∈ M̄
−1

r

[

f̄ − Āū(t)− ḡ1(ū(t)) +

nc
∑

i=1

F ḡ2,i(ū(t)) Sgn(τ̄
T
i
˙̄u(t))τ̄ i

]

a.e. in (0, T ),

ū(0) = ū0, ˙̄u(0) = P Tv0

N⊥ ,

and denoting v̄ = M̄
1/2
r

˙̄u, v̄0 = M̄
1/2
r P Tv0

N⊥ , this leads to the following differential inclusion of
the first order:































(

˙̄u(t)
˙̄v(t)

)

∈
(

M̄
−1/2
r v̄(t)

M̄
−1/2
r

[

f̄ − Āū(t)− ḡ1(ū(t)) +
∑nc

i=1
F ḡ2,i(ū(t)) Sgn(τ̄

T
i M̄

−1/2
r v̄(t))τ̄ i

]

)

a.e. in (0, T ),
(

ū(0)
v̄(0)

)

=

(

ū0

v̄0

)

.

Thus we have to solve:
{

ẋ(t) ∈ h(x(t)) a.e. in (0, T ),

x(0) = x0
(16)

with the multifunction h : R2n̄
⇉ R

2n̄ defined by

h(y) =

(

M̄
−1/2
r y2

M̄
−1/2
r

[

f̄ − Āy1 − ḡ1(y1) +
∑nc

i=1
F ḡ2,i(y1) Sgn(τ̄

T
i M̄

−1/2
r y2)τ̄ i

]

)

,

y =

(

y1

y2

)

∈ R2n̄,

and x0 = ((ū0)T , (v̄0)T )T .
Obviously, h is upper semicontinuous, i.e. h−1(C) is closed whenever C ⊂ R

2n̄ is closed, and
has closed convex values. Furthermore, there exists c > 0 such that

‖h(y)‖ ≡ sup{‖z‖ | z ∈ h(y)} ≤ c(1 + ‖y‖) ∀y ∈ R
2n̄. (17)

Indeed,

‖h(y)‖

≤ ‖M̄−1/2
r ‖

[

‖y2‖2 +
∥

∥f̄ − Āy1 − ḡ1(y1) +

nc
∑

i=1

F ḡ2,i(y1) Sgn(τ̄
T
i M̄

−1/2
r y2)τ̄ i

∥

∥

2
]1/2

≤ ‖M̄−1/2
r ‖

×
[

‖y2‖2 +
(

‖f̄‖+ ‖Ā‖‖y1‖+ ‖ḡ1(y1)‖+
∥

∥

nc
∑

i=1

F ḡ2,i(y1) Sgn(τ̄
T
i M̄

−1/2
r y2)τ̄ i

∥

∥

)2
]1/2

.



8 T. Ligurský and Y. Renard

Firstly,

∥

∥

nc
∑

i=1

F ḡ2,i(y1) Sgn(τ̄
T
i M̄

−1/2
r y2)τ̄ i

∥

∥ ≤
(

nc
∑

i=1

(F ḡ2,i(y1))
2
)1/2

= F‖ḡ2(y1)‖

in virtue of the orthonormality of τ̄ i and the definition of the mapping Sgn. Secondly, making use
of (11) and of the form of P , we have:

‖ḡ1(y1)‖ = ‖P TAg1(Py1)‖ ≤ ‖A‖‖g1(Py1)‖,
‖g1(Py1)‖ − ‖g1(P0)‖ ≤ L1‖P (y1 − 0)‖ = L1‖y1‖,

consequently

‖ḡ1(y1)‖ ≤ ‖A‖(‖g1(0)‖+ L1‖y1‖)

and in a similar way one can show that

‖ḡ2(y1)‖ ≤ ‖g2(0)‖ + L2‖y1‖.

Hence,

‖h(y)‖ ≤ ‖M̄−1/2
r ‖

×
[

‖y2‖2 +
(

‖f̄‖+ ‖Ā‖‖y1‖+ ‖A‖(‖g1(0)‖+ L1‖y1‖) + F (‖g2(0)‖+ L2‖y1‖)
)2]1/2

,

from which the expression for the constant c in (17) follows. Therefore, Theorem 5.1 in (3)
guarantees that (16) has an absolutely continuous solution x in [0, T ] for any x0 ∈ R

2n̄, i.e. a
function x : [0, T ] → R

2n̄ with ẋ ∈ L1(0, T ;R2n̄) satisfying

x(t) = x0 +

∫ t

0

ẋ(s) ds for all t ∈ [0, T ] and ẋ(t) ∈ h(x(t)) a.e. in (0, T ).

This gives the existence part of the assertion. To prove the uniqueness, it suffices to show that h
is one-sided Lipschitz (see for instance Theorem 10.4 in (3)), i.e.:

∃ k > 0 : (y1 − y2)T (h(y1)− h(y2)) ≤ k‖y1 − y2‖2 ∀y1,y2 ∈ R
2n̄.

From the definition of h

(y1 − y2)T (h(y1)− h(y2))

= (y1
1 − y2

1)
TM̄

−1/2
r (y1

2 − y2
2) + (y1

2 − y2
2)

TM̄
−1/2
r Ā(y2

1 − y1
1)

+ (y1
2 − y2

2)
TM̄

−1/2
r (ḡ1(y

2
1)− ḡ1(y

1
1))

+ (y1
2 − y2

2)
TM̄

−1/2
r

(

nc
∑

i=1

F
(

ḡ2,i(y
1
1) Sgn(τ̄

T
i M̄

−1/2
r y1

2)− ḡ2,i(y
2
1) Sgn(τ̄

T
i M̄

−1/2
r y2

2)
)

τ̄ i

)

=: S1 + S2 + S3 + S4.

Clearly,

S1 ≤ ‖M̄−1/2
r ‖‖y1 − y2‖2, S2 ≤ ‖M̄−1/2

r Ā‖‖y1 − y2‖2

and

S3 ≤ ‖M̄−1/2
r ‖‖y1 − y2‖‖ḡ1(y

2
1)− ḡ1(y

1
1)‖

≤ ‖A‖‖M̄−1/2
r ‖‖y1 − y2‖‖g1(Py2

1)− g1(Py1
1)‖ ≤ L1‖A‖‖M̄−1/2

r ‖‖y1 − y2‖2
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by (11). Furthermore,

S4 =

nc
∑

i=1

F
(

ḡ2,i(y
1
1) Sgn(τ̄

T
i M̄

−1/2
r y1

2)− ḡ2,i(y
2
1) Sgn(τ̄

T
i M̄

−1/2
r y2

2)
)

×
(

y1
2

T
M̄

−1/2
r τ̄ i − y2

2

T
M̄

−1/2
r τ̄ i

)

.

Hence, fixing i and setting

a1 = ḡ2,i(y
1
1), a2 = ḡ2,i(y

2
1), b1 = τ̄ T

i M̄
−1/2
r y1

2, b2 = τ̄ T
i M̄

−1/2
r y2

2,

the i-th summand of S4 takes the form:

F (a1 Sgn(b1)− a2 Sgn(b2))(b1 − b2).

Note that a1, a2 ≤ 0. We claim that in this case

(a1 Sgn(b1)− a2 Sgn(b2))(b1 − b2) ≤ |a1 − a2||b1 − b2|. (18)

Indeed, for ζ ∈ Sgn(b1) and ξ ∈ Sgn(b2) we get

(a1ζ − a2ξ)(b1 − b2) = (a1ζ − a1ξ + a1ξ − a2ξ)(b1 − b2) ≤ (a1 − a2)ξ(b1 − b2)

due to the monotonicity of the multifunction Sgn. And of course (18) can be deduced from

(a1 − a2)ξ(b1 − b2) ≤ |a1 − a2||b1 − b2|.

Applying this together with the Cauchy-Schwarz inequality and (11) we get:

S4 ≤ F

nc
∑

i=1

∣

∣ḡ2,i(y
1
1)− ḡ2,i(y

2
1)
∣

∣

∣

∣τ̄T
i M̄

−1/2
r y1

2 − τ̄T
i M̄

−1/2
r y2

2

∣

∣

≤ F‖ḡ2(y
1
1)− ḡ2(y

2
1)‖‖BτM̄

−1/2
r (y1

2 − y2
2)‖ ≤ FL2‖M̄−1/2

r ‖‖y1 − y2‖2.

All in all, the one-sided Lipschitz property of h is verified.

On the basis of the previous two lemmas we arrive at the announced well-posedness result.

Theorem 4.3. Let f ∈ R
np , u0

N⊥ ,v
0

N⊥ ∈ N
⊥ be arbitrary. If (4) and (6) are satisfied then

there exist a unique Lipschitz continuous function uN⊥ : [0, T ] → N⊥ with üN⊥ ∈ L1(0, T ;Rnp)
and unique functions uN : [0, T ] → N and λν ,λτ : [0, T ] → R

nc such that the quadruplet
(uN⊥ ,uN ,λν ,λτ ) solves (7). In addition, uN , λν are Lipschitz continuous in [0, T ] and λτ ∈
L∞(0, T ;Rnc).

Proof. The existence and uniqueness as well as the Lipschitz continuity of uN⊥ and uN , λν are
ensured by Lemmas 4.2 and 4.1, respectively. Consequently, the existence of λτ is readily seen
from the relation between (14) and (15). If (uN⊥ ,uN ,λν ,λ

1
τ ) and (uN⊥ ,uN ,λν ,λ

2
τ ) were two

solutions to (7) then

wTBT
τ (λ

1
τ (t)− λ2

τ (t)) = 0 ∀w ∈ R
np , a.e. in (0, T )

by the first equation in (7) and

β‖λ1
τ (t)− λ2

τ (t)‖ ≤ sup
0 6=w∈R

np

wTBT
τ (λ

1
τ (t)− λ2

τ (t))

‖w‖ = 0 a.e. in (0, T )

due to (9). In a similar way one also obtains that λτ ∈ L∞(0, T ;Rnc) from the Lipschitz continuity
of λν and the second inclusion of (8).
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Remark 4.4. The well-posedness result can easily be extended to three-dimensional problems,
since the key point of the proof is the monotonicity of the multifunction Sgn. For the three-
dimensional problems, the friction condition can be expressed by means of the sub-differential of
the function a 7→ ‖a‖, which is also monotonic. This allows to obtain an equivalent relation to
(18). An extension of the well-posedness result can also be obtained for a load vector which is a
Lipschitz continuous function of time.

Remark 4.5. The spatial semi-discrete problem (7) being equivalent to the one-sided Lipschitz
regular differential inclusion (16), most of the classical time integration schemes will be convergent
(for a fixed mesh) due to, for instance, the result obtained in (19). Moreover, the fully
discrete problem is also ensured to be well-posed for a sufficiently small time step (because of
its monotonicity).

5. Energy decreasing result

First, note that the result of Proposition 1 in (15) is still valid, which means that the so-called
persistency condition holds:

λν,i(t)(ν
T
i u̇(t)) = 0 a.e. in (0, T ), i = 1, · · · , nc.

This allows to prove the following result:

Proposition 5.1. Still assuming the load vector f to be constant in time and denoting u =
uN + uN⊥ the solution to (7), the energy

E(t) =
1

2
u̇T (t)Mru̇(t) +

1

2
uT (t)Au(t)− uT (t)f (19)

is decreasing in time.

Proof. The first equation in (8) implies

u̇T (t)M rü(t) + u̇T (t)Au(t) = u̇T (t)f +

nc
∑

i=1

λν,i(t)u̇
T (t)ν i +

nc
∑

i=1

λτ,i(t)u̇
T (t)τ i.

Integrating from t0 to t1, it follows:

E(t1) = E(t0) +

nc
∑

i=1

∫ t1

t0

λν,i(t)u̇
T (t)νi dt+

nc
∑

i=1

∫ t1

t0

λτ,i(t)u̇
T (t)τ i dt.

Due to the fact that λτ,i(t) ∈ Fλν,i(t)Sgn(u̇
T (t)τ i) a.e. in (0, T ), one has

∫ t1

t0

λτ,i(t)u̇
T (t)τ i dt ≤ 0, i = 1, · · · , nc.

Together with the persistency condition, this gives the result.

6. An elementary example

This section presents the mass redistribution method for an elementary contact problem involving a
single linear triangular finite element depicted in Fig. 2. The aim is to show that an undifferentiated
treatment of the contact and friction condition may lead to an ill-posedness of the fully discrete
problem whatever is the lenght of the time step. Using the time discretization by the midpoint
scheme we shall compare different possibilities of the redistribution of the mass. The studied
contact problem is in fact a dynamic case of the elementary example studied e.g. in (10) and
(20).
Denoting the lengths of the sides of the triangle by ℓ, ℓ,

√
2ℓ and employing Hooke’s constitutive
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f

rigid foundation

Dirichlet
condition

linear
finite
element

Fig. 2 Geometry of the elementary example.

law for homogeneous, isotropic material, the formulation of the problem in inclusions reads as
follows:































Find u : [0, T ] → R
2, λν , λτ : [0, T ] → R such that

Mü(t) +Au(t) = f(t) + λν(t)ν + λτ (t)τ a.e. in (0, T ),

−λν(t) ∈ NR−
(νTu(t)) a.e. in (0, T ),

λτ (t) ∈ Fλν (t) Sgn(τ
T u̇(t)) a.e. in (0, T ),

u(0) = u0, u̇(0) = v0,

where

M =

(

ρℓ2

12
0

0 ρℓ2

12

)

, A =

( λ+3µ
2

−λ+µ
2

−λ+µ
2

λ+3µ
2

)

, ν =

(

1
0

)

, τ =

(

0
1

)

.

Here ρ > 0 is constant, λ ≥ 0, µ > 0 are the Lamé coefficients and f is assumed to be dependent
on t.
Obviously, the mass redistribution method consists in replacing the matrix M by M r =

(

m1 0
0 m2

)

with m1,m2 ≥ 0. Further, to do the time discretization by the midpoint method,
we divide the interval [0, T ] uniformly into nt subintervals and set ∆t = T/nt and tk = k∆t for
k = 0, . . . , nt. We seek the approximations uk+1 and vk+1 of u(tk+1) and u̇(tk+1), respectively,
for k = 0, . . . , nt − 1 so that







uk+1 = uk +∆tvk+1/2, vk+1 = vk +∆tak+1/2,

uk+1/2 =
uk+1 + uk

2
, vk+1/2 =

vk+1 + vk

2

(20)

and


















Mra
k+1/2 +Auk+1/2 = f

( tk + tk+1

2

)

+ λk+1/2
ν ν + λk+1/2

τ τ ,

−λk+1/2
ν ∈ NR−

(νTuk+1/2),

λk+1/2
τ ∈ Fλk+1/2

ν Sgn(τ Tvk+1/2).

(21)

From (20) one can express vk+1/2 and ak+1/2 as

vk+1/2 =
2

∆t
uk+1/2 − 2

∆t
uk, ak+1/2 =

4

∆t2
uk+1/2 − 4

∆t2
uk − 2

∆t
vk, (22)
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which inserted into (21) leads to























( 4

∆t2
Mr +A

)

uk+1/2 = f̂
k+1/2

+ λk+1/2
ν ν + λk+1/2

τ τ ,

−λk+1/2
ν ∈ NR−

(νTuk+1/2),

λk+1/2
τ ∈ Fλk+1/2

ν Sgn
( 2

∆t
τ T (uk+1/2 − uk)

)

with

f̂
k+1/2

= f
( tk + tk+1

2

)

+
4

∆t2
Mru

k +
2

∆t
Mrv

k.

Finally, we consider the decomposition

ui = (ui
ν , u

i
τ ), vi = (viν , v

i
τ ), ai = (aiν , a

i
τ ), f̂

i
= (f̂ i

ν , f̂
i
τ )

and denote

a :=
( 4

∆t2
m1 +

λ+ 3µ

2

)

, b :=
λ+ µ

2
, c :=

( 4

∆t2
m2 +

λ+ 3µ

2

)

.

In each time step we then obtain the following problem:



































Find (uk+1/2
ν , uk+1/2

τ , λk+1/2
ν , λk+1/2

τ ) ∈ R
4 such that

auk+1/2
ν − buk+1/2

τ = f̂k+1/2
ν + λk+1/2

ν ,

−buk+1/2
ν + cuk+1/2

τ = f̂k+1/2
τ + λk+1/2

τ ,

−λk+1/2
ν ∈ NR−

(uk+1/2
ν ),

λk+1/2
τ ∈ Fλk+1/2

ν Sgn(uk+1/2
τ − uk

τ ),

(23)

after resolution of which the values of (uk+1
ν , uk+1

τ ) and (vk+1
ν , vk+1

τ ) are determined by (20) and
(22).
We shall derive exact solutions of problem (23) for an arbitrary k ∈ {0, . . . , nt−1} by considering

all possible situations occurring in the inclusions (23)
4
and (23)

5
.

(i) Let λ
k+1/2
ν = 0. From (23)

5
it follows that λ

k+1/2
τ = 0 and solving the equations (23)

2
and

(23)
3
we get:

uk+1/2
ν =

cf̂
k+1/2
ν + bf̂

k+1/2
τ

ac− b2
, uk+1/2

τ =
af̂

k+1/2
τ + bf̂

k+1/2
ν

ac− b2
.

Since u
k+1/2
ν ≤ 0 by (23)

4
, this solution is valid under the following constraint:

cf̂k+1/2
ν + bf̂k+1/2

τ ≤ 0.

(ii) If λ
k+1/2
ν < 0 and u

k+1/2
τ = uk

τ then u
k+1/2
ν = 0 according to (23)

4
and (23)

2,3 yield:

λk+1/2
ν = −buk

τ − f̂k+1/2
ν , λk+1/2

τ = cuk
τ − f̂k+1/2

τ .

Our assumption λ
k+1/2
ν < 0 and the condition Fλ

k+1/2
ν ≤ λ

k+1/2
τ ≤ −Fλ

k+1/2
ν implied by

(23)
5
give the restrictions:

f̂k+1/2
ν > −buk

τ , (c− bF )uk
τ − F f̂k+1/2

ν ≤ f̂k+1/2
τ ≤ (c+ bF )uk

τ + F f̂k+1/2
ν .
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(iii) Let us pose λ
k+1/2
ν < 0, u

k+1/2
τ > uk

τ . Making use of (23)
4,5 we have u

k+1/2
ν = 0, λ

k+1/2
τ =

Fλ
k+1/2
ν and (23)

2,3 lead to

uk+1/2
τ =

f̂
k+1/2
τ − F f̂

k+1/2
ν

c+ bF
, λk+1/2

ν = −cf̂
k+1/2
ν + bf̂

k+1/2
τ

c+ bF
.

From λ
k+1/2
ν < 0 and u

k+1/2
τ > uk

τ one can see that

cf̂k+1/2
ν + bf̂k+1/2

τ > 0, f̂k+1/2
τ > (c+ bF )uk

τ + F f̂k+1/2
ν .

(iv) Suppose that λ
k+1/2
ν < 0 and u

k+1/2
τ < uk

τ . Consequently, u
k+1/2
ν = 0 and λ

k+1/2
τ =

−Fλ
k+1/2
ν . If F 6= c/b then we obtain

uk+1/2
τ =

f̂
k+1/2
τ + F f̂

k+1/2
ν

c− bF
, λk+1/2

ν = −cf̂
k+1/2
ν + bf̂

k+1/2
τ

c− bF

under the condition

F <
c

b
, cf̂k+1/2

ν + bf̂k+1/2
τ > 0, f̂k+1/2

τ < (c− bF )uk
τ − F f̂k+1/2

ν

or

F >
c

b
, cf̂k+1/2

ν + bf̂k+1/2
τ < 0, f̂k+1/2

τ > (c− bF )uk
τ − F f̂k+1/2

ν .

In the case of F = c/b there exists the whole solution set

{(uk+1/2
τ , λk+1/2

ν ) ∈ R
2 |λk+1/2

ν = −buk+1/2
τ − f̂k+1/2

ν }

with the following restrictions:

f̂k+1/2
τ + F f̂k+1/2

ν = 0, − f̂
k+1/2
ν

b
< uk+1/2

τ < uk
τ , −buk

τ < f̂k+1/2
ν .

To summarize the results, introduce the linear functions S
k+1/2
i : R2×(0,+∞) → R

4, 1 ≤ i ≤ 4,

and the multi-valued function S
k+1/2
5 : R2 × (0,+∞) ⇉ R

4 by

S
k+1/2
1 (f̂ ,F ) =

(cf̂ν + bf̂τ
ac− b2

,
af̂τ + bf̂ν
ac− b2

, 0, 0
)T

, f̂ ∈ R
2, F > 0,

S
k+1/2
2 (f̂ ,F ) = (0, uk

τ ,−(f̂ν + buk
τ), cu

k
τ − f̂τ )

T , f̂ ∈ R
2, F > 0,

S
k+1/2
3 (f̂ ,F ) =

(

0,
f̂τ − F f̂ν
c+ bF

,−cf̂ν + bf̂τ
c+ bF

,−F
cf̂ν + bf̂τ
c+ bF

)T

, f̂ ∈ R
2, F > 0,

S
k+1/2
4 (f̂ ,F ) =

(

0,
f̂τ + F f̂ν
c− bF

,−cf̂ν + bf̂τ
c− bF

,F
cf̂ν + bf̂τ
c− bF

)T

, f̂ ∈ R
2, F ∈ (0,+∞) \

{c

b

}

,

S
k+1/2
5 (f̂ ,F ) =

{

(uν , uτ , λν , λτ )
T ∈ R

4 |uν = 0, − f̂ν
b

≤ uτ ≤ uk
τ ,

λν = −(f̂ν + buτ ), λτ = F (f̂ν + buτ )
}

, f̂ ∈ R
2, F =

c

b
,
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and for F > 0 define the sets:

σ
k+1/2
1 (F ) = {f̂ ∈ R

2 | cf̂ν + bf̂τ ≤ 0},
σ

k+1/2
2 (F ) = {f̂ ∈ R

2 | f̂ν ≥ −buk
τ , (c− bF )uk

τ − F f̂ν ≤ f̂τ ≤ (c+ bF )uk
τ + F f̂ν},

σ
k+1/2
3 (F ) = {f̂ ∈ R

2 | cf̂ν + bf̂τ ≥ 0, f̂τ ≥ (c+ bF )uk
τ + F f̂ν},

σ
k+1/2
4 (F ) =



























{f̂ ∈ R
2 | f̂ν ≥ −buk

τ , cf̂ν + bf̂τ ≥ 0, f̂τ ≤ (c− bF )uk
τ − F f̂ν}
if F ∈

(

0,
c

b

)

,

{f̂ ∈ R
2 | f̂ν ≥ −buk

τ , cf̂ν + bf̂τ ≤ 0, f̂τ ≥ (c− bF )uk
τ − F f̂ν}
if F ∈

(c

b
,+∞

)

,

σ
k+1/2
5 (F ) = {f̂ ∈ R

2 | f̂ν ≥ −buk
τ , cf̂ν + bf̂τ = 0}, F =

c

b
.

σ
k+1/2

1 (F)

σ
k+1/2

2 (F)

σ
k+1/2

3 (F)

σ
k+1/2

4 (F)

f̂
k+1/2
ν

f̂
k+1/2
τ

−buk
τ

cuk
τ

Fig. 3 Structure of the solution for F ∈ (0, c/b).
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f̂
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τ

−buk
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τ

Fig. 4 Structure of the solution for F ∈ (c/b,+∞).

One can easily verify that S
k+1/2
i (f̂

k+1/2
,F ) solves (23) for f̂

k+1/2 ∈ σ
k+1/2
i (F ), F > 0,

1 ≤ i ≤ 4, and S
k+1/2
5 (f̂

k+1/2
,F ) is the set of solutions to (23) for f̂

k+1/2 ∈ σ
k+1/2
5 (F ),
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cuk
τ

Fig. 5 Structure of the solution for F = c/b.

F = c/b. Hence, the structure of the solution set to (23) depends on the mutual position of

σ
k+1/2
i (F ), which depends on the magnitude of F .

If F ∈ (0, c/b) then the interiors of σ
k+1/2
i (F ) are mutually disjoint for 1 ≤ i ≤ 4 and

S
k+1/2
i (f̂ ,F ) = S

k+1/2
j (f̂ ,F ) ∀ f̂ ∈ ∂σ

k+1/2
i (F ) ∩ ∂σ

k+1/2
j (F ) ∀ i, j ∈ {1, . . . , 4}.

Consequently, (23) has a unique solution for any f̂
k+1/2 ∈ R

2 (see Fig. 3; note that u
k+1/2
ν , u

k+1/2
τ

and λ
k+1/2
τ are uniquely determined by the values of λ

k+1/2
ν ). If F > c/b then σ

k+1/2
4 (F ) =

σ
k+1/2
1 (F ) ∩ σ

k+1/2
2 (F ) and its interior is non-empty. In this case there exists a unique solution

to (23) if f̂
k+1/2 ∈ (R2 \ σk+1/2

4 (F )) ∪ {(−buk
τ , cu

k
τ )}, there are two solutions on ∂σ

k+1/2
4 (F ) \

{(−buk
τ , cu

k
τ )} and three solutions in Intσ

k+1/2
4 (F ) (see Fig. 4). Finally, if F = c/b, σ

k+1/2
1 (F )∩

σ
k+1/2
2 (F ) = σ

k+1/2
5 (F ) is a half-line and there exists a unique solution to (23) for f̂

k+1/2 ∈
(R2 \σk+1/2

5 (F )) ∪ {(−buk
τ , cu

k
τ )} whereas the continuous branch S

k+1/2
5 (f̂

k+1/2
,F ) of solutions

connects S
k+1/2
1 (f̂

k+1/2
,F ) and S

k+1/2
2 (f̂

k+1/2
,F ) for f̂

k+1/2 ∈ σ
k+1/2
5 (F ) \ {(−buk

τ , cu
k
τ )} (as

depicted in Fig. 5).
Now take the redistributed mass matrix M r such that m1 = 0 and m2 > 0, i.e. (6) is fulfilled.

Then, for any F > 0 given, one can find ∆t0 > 0 satisfying

c

b
=

4

∆t2
m2 +

λ+3µ
2

λ+µ
2

> F ∀∆t ∈ (0,∆t0)

and the analysis above ensures the unique solvability of (23) for any f̂
k+1/2 ∈ R

2 and any ∆t ∈
(0,∆t0). Observe that this is in good accordance with the well-posedness result established in
Section 4.
On the contrary, consider Mr with m1 > 0, m2 = 0 or m1 = m2 = 0, which corresponds to

the elimination of the mass in the tangential direction and the total elimination of the mass on
the contact zone, respectively. If the coefficient F is larger than (λ+ 3µ)/(λ+ µ) = c/b, one can

always find f̂
k+1/2

such that (23) possesses multiple solutions whatever small ∆t is. This suggests
that the well-posedness is not reached in such cases.

7. Numerical tests

The numerical simulations presented in (15) show the effectiveness of the mass redistribution
method to remove the spurious oscillations caused by the contact condition in discretized
dynamical problems. Here we chose a test case where the sliding is much more present with



16 T. Ligurský and Y. Renard

Fig. 6 Structured mesh of the square {(x1, x2) ∈ ]0, 10 cm[ × ]0, 10 cm[} and an example of deformation
(at t = 0.01 s). The rigid foundation lies at x2 = 0 and has a constant horizontal velocity of 20m/s. The
structure is clambed on its top (x2 = 10 cm).

Density ρ 103 kg/m3

Domain ]0, 10 cm[×]0, 10 cm[
Lamé coefficients λ = 300MPa, µ = 150MPa
Simulation time 0.02 s

Friction coefficient F 1.2
Horizontal velocity of the rigid foundation 20m/s

Table 1 Main characteristics of the simulation.

still a partial loss of contact (see Fig. 6). An elastic body whose reference configuration is the
square {(x1, x2) ∈ ]0, 10 cm[ × ]0, 10 cm[} is in contact with a rigid foundation at x2 = 0. This
rigid foundation is moving horizontally at a constant speed of 20m/s. At the top of the structure
(x2 = 10 cm) the Dirichlet condition u1 = 0, u2 = −2.5× 10−3 cm ensures an initial compression
of the body. The friction coefficient is larger than one (F = 1.2). The other characteristics of the
simulation are summarized in Table 1. Additionally, Problem (7) is approximated in time with
the midpoint scheme (see Section 6 or (15) for more details). The C++ program that performs
the tests is available along with Getfem++ (26).
Due to friction and the fact that the rigid foundation has a constant horizontal velocity, there is

a source of energy in the system. The evolution of the total energy (given by (19)) for an element
size h = 0.5 cm and various time steps is shown in Fig. 7 for four situations.
The first graph of Fig. 7 corresponds to the standard semi-discretization. It clearly shows the

instability of the midpoint scheme applied to the standard semi-discretization. A rather unique
feature, reserved to the discretization of dynamic contact problems, is that the smaller the time
step is, the most the scheme is unstable. One can also remark that the scheme is reasonably stable
in the first half of the simulation period. It is probably due to the fact that, at the beginning of the
simulation, the body is pressed down to the foundation and is submitted to a relatively monotone
loading due to the friction force. Consequently, the number of transitions between contact and
noncontact is low.
The second and third graphs correspond to the mass redistribution applied only on the normal

component of the displacement and on both components, respectively. The stability of the
midpoint scheme is recovered.
An interesting situation is described on the fourth graph of this figure, which corresponds to

the standard semi-discretization with an adaptation of the midpoint scheme where the contact
forces have been implicited (see (6, 2)). Even though this scheme is proven to be stable (energy
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Fig. 7 Evolution of the energy for the following four situations: standard discretization, partial mass
redistribution, whole mass redistribution and standard discretization with implicited contact forces.

dissipative in fact) and this is also the case here, one can see that the result is rather different
than the two previous graphs.
This is more clear in Fig. 8, where the graphs correspond to the difference between the total

energy and the energy transferred (provided and dissipated) by friction. The latter is given at the
time step l∆t by

ξl =

l
∑

k=1

nc
∑

i=1

λk
τ,i(u̇

k)T τ i∆t,

where λk
τ,i and u̇k are the corresponding quantities to λτ,i(k∆t) and u̇(k∆t) at the k-th time

step of the midpoint scheme. These graphs reflect better the stability of each scheme. Of
course, this does not change the conclusion for the midpoint scheme with the standard semi-
discretization, which still appears to be unstable. However, from the two graphs corresponding
to the mass-redistribution method we can see that for both cases the energy conservation is
obtained asymptotically for a time step going to zero. This is not the case for the fourth graph,
corresponding to the standard semi-discretization with implicited contact forces. The scheme is
stable, but it does not converge toward an energy conserving solution. This is due to the fact that
a certain amount of energy is lost at each impact of each node, independently of the length of the
time step. Since the number of impacts grows in this simulation for decreasing time steps, the
smallest the time step is, the most dissipative the scheme is. In conclusion, we can say that this
leads to a non-physical solution.
A convergence test on the time interval [0, 0.005 s] has been performed. The results are shown
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Fig. 8 Evolution of the difference between the total energy and the energy transferred by friction.

experiment 1 experiment 2 experiment 3 experiment 4 reference solution
Element size h 2 cm 1 cm 0.5 cm 0.25 cm 0.0625 cm
Time step ∆t 1.6× 10−5 s 8× 10−6 s 4× 10−6 s 2× 10−6 s 5× 10−7 s

Table 2 Element sizes and time steps for the convergence test.

in Fig. 9 and Fig. 10. A reference solution has been computed on a refined mesh (h = 0.0625 cm)
for a small time step (∆t = 5× 10−7 s) using the partial mass redistribution. Then the differences
between this reference solution and four experiments whose characteristics are presented in Table 2
are computed. The curves in Fig. 9 present the maxima of the L2(Ω)-norm and H1(Ω)-semi-norm
in [0, 0.005 s] for the four experiments. Numerical convergence with an order less than one is
found. Due to the weak regularity of the solution, a faster rate of convergence cannot reasonably be
expected. Note that a mathematical result of convergence of numerical solutions toward a solution
of the continuous problem is an open problem. Untill now, neither existence nor uniqueness results
have been established on this model (unless a certain number of regularizations).
The convergence is also illustrated in Fig. 10, where the evolution of the density of friction

force for different experiments is shown. Both the cases with a redistribution of mass only on the
vertical component and on both components of the displacement are shown. In the two cases the
numerical solution seems to converge toward the same solution. This means that at least for the
presented test case, the differentiated treatment of the two conditions is not strictly mandatory to
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Fig. 9 Convergence test for the partial mass redistribution. Maxima of the L2(Ω)-norm and H1(Ω)-
semi-norm in [0, 0.005 s].
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Fig. 10 Comparison of the density of friction force at the point (0, 0) for the convergence test.

obtain reliable numerical results. Of course, with the redistribution of mass on both components,
the well-posedness of the semi-discretization is not guaranteed (see the discussion in Section 6).
A real difference may occur if there is a dynamical bifurcation. But the exhibition of such a
dynamical bifurcation is also still an open problem.

Concluding remarks

We adapted the mass redistribution method for the elastodynamic contact problem with friction.
The proposed strategy, which is to apply the mass redistribution only on the normal component
corresponding to the contact condition, allows to transform the semi-discrete problem into a regular
one-sided Lipschitz differential inclusion. The advantage is that any reasonable time integration
scheme is then convergent (see (19)) at least for a fixed mesh. Moreover, the fully discrete problem
is also well-posed for a sufficiently small time step. The simple example described in Section 6
shows that this is not the case when the mass redistribution is applied on both the contact and
friction conditions.
The test case presented in Section 7 confirms that the stability is gained by the mass

redistribution method. However, for this simple test case, there is no significant difference between
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the two strategies how to apply the mass redistribution. One may think that it makes no difference
numerically.
For the moment, we do not have any dynamical bifurcation example for the Coulomb friction

law with a constant friction coefficient that would test the difference. A perspective of this work
would be to consider a coefficient of friction depending on the sliding velocity. In (27, 28) such
a friction coefficient has been considered and multi-solutions are given in a one-dimensional case.
It is proven that an additional mass on the contact boundary allows to recover the uniqueness
of the solution. Moreover, it selects a particular solution which is related to the perfect delay
criterion introduced in (12) for contact problems with friction. In this context, obtaining a well-
posed semi-discrete problem would be more crucial and it would be interesting to see if the same
solution is selected.
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also the support of the Nečas Center for Mathematical Modeling.

References

1. F. Armero, E. Petocz, Formulation and Analysis of Conserving Algorithms for Frictionless
Dynamic Contact/Impact Problems. Computer Methods in Applied Mechanics and
Engineering, 158 (1998), pp. 269–300.

2. N. J. Carpenter, Lagrange constraints for transient finite element surface contact. Int. J.
Num. Meth. Eng, 32 (1991), pp. 103–128.

3. K. Deimling, Multivalued differential equations. De Gruyter Studies in Nonlinear Analysis
and Applications 1. Walter de Gruyter, Berlin, 1992.

4. I. Ekeland, R. Temam, Analyse convexe et problèmes variationnels. Études mathématiques.
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