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Vibro-Impact of aplateon rigid obstacles: existence theorem,
conver gence of a scheme and numerical smulations
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The purpose of this paper is to describe a fully discretizgpr@aximation and its convergence to
the continuum dynamical impact problem for the fourth ordéchhoff-Love plate model with non-
penetration Signorini’s condition. We extend to the casplafes the theoretical results of weak con-
vergence due to Y. Dumont and L. Paoli which was stated foelEBernouilli beams. In particular, this
provides an existence result for the solution of this probld-inally we discuss the numerical results
we obtain.

Keywords.Variational inequalities; Finite element method; Elagtiate; Dynamics with unilateral
constraints; Scheme convergence.

1. Introduction

The impact of linear elastic thin structures, such as bearagbranes or plates, is a domain where there
are still fondamental open questions despite a rather itapbliterature. This includes in particular
the existence and uniqueness of solutions, the convergamtetability of numerical schemes, the
modelization of a restitution coefficient and the consinrcof energy conserving schemes.

In the particular case of the vibro-impact problem betweerEaler-Bernouilli beam and a rigid
obstacle, an existence result was shown by Y. Dumont & L.iRad¢l). They established the conver-
gence of the solution of a fully discretized problem to thetocmuum model. But there were no result
whether energy is conserved in the limit or not. Indeed, it loa easily shown that uniqueness does not
hold for this system (see (2) for a counter-example). Moeeavis generally not possible to prove that
each solution to this problem is energy conserving. Thisuis b the weak regularity involved, since,
in particular, velocities may be discontinuous.

The dynamic contact problem for Von Karman plates is stuiti€®) and (4). In the first paper, the
authors show the existence of a solution, using penalizagohnics, while other existence results are
given in the second by the introduction of a viscosity terreréj our main goal is to extend Dumont and
Paoli results to the case of Kirchhoff-Love plates. We pnéseconvergence result of a fully discrete
scheme toward one solution of the continuous problem. Tétasbdishes both an existence result for
the solution of the continuous problem and ensures that wiogesjuence weakly converges toward this
solution. We do not establish any uniqueness result. Suhtneould certainly requires the ability to
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express an additional impact law (see (5), (6)). Althoughabnsideration of an impact law is something
very natural for modelization of rigid body impacts, thisncept seems to be rather difficult to extend
to the framework of thin deformable bodies, especially @ning the discretization.

The paper is organized as follows. In the next section, ast@dgnamical Kirchhoff-Love plate
model is described as well as the vibro-impact model. Inieed, the fully discretized approximation
of the problem (finite element model and time scheme) is thiced. Section 4 gives the mostimportant
result of this paper, namely a convergence result for fuibgibtized schemes. Finally, in section 5 we
present and discuss some numerical experiments.

2. Notationsand statement of the problem
2.1 Variational formulation of the plate model

Let us consider a thin elastic plate. a plane structure for which one dimension, called the theskn
is very small compared to the others. For this kind of strregustarting froma priori hypotheses on
the expression of the displacement fields, a two-dimenbjmoalem is usually derived from the three-
dimensional elasticity formulation by means of integratalong the thickness. Then, the unknown
variables are set down on the mid-plane of the plate.

Let Q be an open, bounded, connected subset of the [&nevith Lipschitz boundary. It will
define the middle plane of the plate. Then, the plate in iesstfree reference configuration coincides
with domain :

QF = Qx]—¢, +&[= { (X, %X,%3) ER3/ (x1,%) € Qandxz € |—¢; €[ }
where 2¢ > 0 is called the thickness.

In plate theory, it is usual to consider the following apgroation of the three-dimensional displace-
ments for(xy,xg,X3) € QF

Up(X1,%2,X3) = Ti(X1,%2) + X3 Y1(X1,X2)
Up(X1,X2,X3) = Tp(X1,X2) + X3 Po(X1,X2) (2.1)
Uz(X1,X2,X3) = U3(Xq1,X2).

In these expressiong; andt, are the membrane displacements of the mid-plane paigts, the de-
flection, whileyy andyr, are the section rotations. In the case of an homogeneouspsomaterial,
the variational plate model splits into two independentpems: the first, called the membrane prob-
lem, deals only with membrane displacements, while thersbamalled the bending problem, concerns
deflection and rotations. In this paper, we shall only adties$ending problem, and we shall consider
the Kirchhoff-Love model, which can be seen as a particidaef (2.1) obtained by introducing the
so-called Kirchhoff-Love assumptions :

Yy = —diug
= -Ouz &
v s { Y = —0duz
wheredy stands for the partial derivative with respectXg , for a = 1 or 2. Consequently, the
deflection is the only unknown for the bending Kirchhoff-legelate problem. For convenience, it will
be denoted by all along the following of this paper. As far as loading is cemed, the plate is subject
to a volume forceF and two surface forces, s@y™ andG~, applied on the top and bottom surfaces.
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Then, if we assume that the previous forces are purely peipelar to the mid-plane, the resulting
transverse loading reads

4
fR=G;+Gg+/ Fs dxs
-

whererj, G; andF; are respectively the third components®f, G- andF. So, the variational
formulation of the Kirchhoff-Love elastodynamical modet & thin elastic clamped/free plate reads as

Findu = u(xt) with (x,t) € Q x [0,T] such that forany e V

(2.2)
/dtfu(x,t) dx+/ 1 V) 955U + v AU Oy dﬁwdx—/fwdx
Q
. f
with f = 5’1 (p ande are assume to be constant all along the plate), and
U(X,O) = UO(X) ) dtu(X,O) = VO(X) , VX e Q (23)
2 2 3
whered?u = % , O5gu = o'?xii:;xﬁ and the bending modulus B = % , for a plate

made of a homogeneous and isotropic material, which mecabodnstants are its Young’s modulus

E, its Poisson’s ratioy and its mass density. As usual, we haveE > 0,0 < v < 0.5 and

p > 0. Moreoverg,g is the Kronecker's symbol and the summation convention oygeated indices

is adopted, Greek indices varying{t, 2}. The plate is assumed to be clamped on a non-zero Lebesgue
measure part of the boundady2 denoted¢ and free o , such a®9Q = I U I} . Then the space

of admissible displacements is

V = {weH*Q)/wX) = 0= dw(Xx),Vx € It} (2.4)
whered,w is the normal derivative alonf; .
In order to guarantee that (2.2) is well-posed, we use theviiahg result.

LEMMA 2.1 The bilinearforma : V x V — R defined by
D 2 2
a(u,v) = / 208 [(1 V) dggU + v Au 8ap| dgpv dx (2.5)

is a scalar product oW which is equivalent to the canonical scalar produdtéfQ) defined oriv.

The bilinear maga is obviously continuous iV. Then there exists a strictly positive constant, Bgy
such that for anyi € V : a(u,u) < M | u |2 . The reciprocical inequality is due to the coercivity of
a(.,.), which can be established by using Petree-Tartar’s lemmeead| here.

LEMMA 2.2 (7) LetX,Y,Z be three Banach spaceés,c Z(X,Y) injective,T € £ (X,Z) compact. If
there existe > 0 suchthat ||x||x < |[[AX|ly + [|TX|z, foranyx € X, then there existe > 0 such
that

alxlx < ||AX|ly , VX € X.
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Proof. (Lemma 2.1) Let us remark that

a(uu) = / % [(1—v) 0Zgu + v Au 60,5} 0Zpu dx
Q

D 2 2 2
= /Qﬁ [(1—v) J5pUdgpu + v (Au) } dx
> % / 0Zgudzgudx asv > 0

Q

_ (-v)D 2
= 2pe | Hessu) ||y

Hesgu) being the Hessian matrix af and withy = (LZ(Q))4. Now, the Petree-Tartar’'s lemma is

applied withA defined fromX = V to Y by Au = Hesgu) which is injective because of the boundary
conditions/¢ having a non-zero measured®. SettingZz = H(Q) andT = idx, which is compact,
we obtain théV-coercivity of A, and consequently afasv < 1. a

2.2 \Vibro-impact formulation of the plate model

Let us now introduce the dynamic frictionless Kirchhoffueoequation with Signorini contact condi-
tions along the plate. We assume that the plate motion isddrby rigid obstacles, located above and
below the plate (see Figure 1). So, the displacement is @nstl to belong to the convex dét C V
given by

K={veV/gq(x < v(x) < g2x) , ¥xe Q} (2.6)

whereg; andg, are two mappings fron® to R := RU {—00, 4} such that there exists > 0 with

01(X) < —g<0<g< X , eQ. (2.7)

+

Figure 1. Example of bending clamped plate between rigidemiiess.

Since impact will occur in this system, classical reguldugons cannot be expected. In particular
the velocities may be discontinuous. To set the weak fortimrathe following functional spaces are
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introduced
H = L*Q)
V = {weH?(Q)/w(X) =0 = dw(Xx), ¥ e}
U = {wel?0T;K), wel?(0,T;L3(Q))}
U = {wel®(0,T;K), wel®(0,T;L3(Q))}
wherew = gw = 3—\;\/ ,andT > 0 is the length of the plate motion study. The nornHirwill be

denoted by. | .
The frictionless elastodynamic problem for a plate betwemrigid obstacles consists in finding
u € Uwithu(.,0) = upin Kandu(.,0) = vg such that

—/OT/thu G (W — u) dxdt + /OT a(u(.,t), (W—u)(.,t)) dt

> /Qvo(x) (W(x,0) — to(x)) dx + /OT/Qf (W—u) dxdt (2.8)

wWoe U, w(,T)=u(,T).

REMARK 2.1 The discretization of (2.8) does not describe compjdted motion (6). In addition, it
would require an impact law. For an impact(&,tp), this law is given by a relation between velocities
before and after impact, as

Miotg) = —e 2 00ty) 2.9)
wheree belongs td0, 1]. Since one can only guarantee that the velocity’ig2) in space, it is not easy
to express (2.9) rigorously. Moreover, in (5), the authdrsayve that the restitution coefficient for a bar
is a rather ill-defined concept. They observed the appaestitution coefficient depends very strongly
on the initial angle of the bar with horizontal. In the paunlar case of a slender bar dropped on a rigid
foundation, the chosen value of the restitution coefficards not seem to have great influence on the
limit displacement when the space step tends to zero, as ld@n shown in (5). The idea to explicitly
incorporate the restitution coefficient into (2.8) seemataer problematic task since it would need to
separate the post-impact normal velocity at a point duedartipact force from the post-impact normal
velocity due to elastic waves. Therefore, knowing whethersthemes will simulate the experimental
behavior is an interesting question.

3. Full discretization of the problem
3.1 Finite element model for the plate problem

Let us begin by the space discretization of the displacenTdrg Kirchhoff-Love model corresponds to
a fourth order partial differential equation. Consequgraticonformal finite element method needs the
use of¢* (continuously differentiable) finite elements. Here, wesider the classical Argyris triangle,
which useds polynomials, and Fraeijs de Veubeke-Sanders quadrilgreduced FVS), see (8). For
the FVS element, the quadrangle is divided into four sudmgles (see Figure 2). The basis functions
are P; polynomials on each sub-triangle and matck@&tacross each internal edge. In addition, to
decrease the number of degrees of freedom, the normal thegivgassumed to vary linearly along the
external edges of the elements (this assumption does ndoimathe internal edges). Finally, for FVS
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guadrangles, there are only three degrees of freedom onremitsh the value of the function and its
first derivatives. Let us assume from now on that 0 stands for the mesh parameter and tais
a finite dimensional subspace ¥fbuilt using the previous finite element methods. Then, foithg
(8) for Argyris triangle and (9) for FVS quadrangles, foralkc V, there exists a sequenta™)p-q of
elements of/" such that

W' —=w|ly — 0, whenh — 0.

Finally, let us remark that there also exists some non combapproximations (see (10)), but we do
not use them here because we develop our theory within theefad conformal methods.

external edges

| /

internal edges

Figure 2. FVS quadrangle. Location of degrees of freedomsaietriangles.

3.2 Time discretization

Now, we consider the time discretization of problem (2.8)r N € N*, the time step is denoted by
At = T/N. The time scheme is initialized by choosiajyanduf in K" = K n V" such that

h

h
uf —u
lim  |[u)—u +‘—1 O—V‘ = 0. 3.1
hdim ollto— tollv i 0|, 3.1)

As far as the loading is concerned, we assume tHzglongs td_?(0,T;L?(Q)). Then, forallx € Q
andn € {1,...,N—1}, we set
1 (n+1)At
f = —
n() At Jnat

For time discretization, we consider the correspondintyfdiscretized scheme which consists in
finding uﬂH, foralln € {2,...,N— 1} solution of the following inequality

f(x,s) ds (3.2)

Findu?,, € K"such that

h ho h
h (T g (Unse—2UntUn g
(w—uh, )T M (L) (3.3)

+ (w—uh )T K (Buh, 1+ (1—2B)up+Bub_y) > (w—uh, )" P

which is a classical Newmark scheme of paramefeasdy = 1/2. If (¢); stand for the finite element
basis functions, in the previous expression



e "B s the loading which generic term reads
1 = [ (Bfaiat (L=2B) T+ Blos) s O
e M is the mass matrix which generic term reads
Mij Z/Wi-lﬂjdX;
Q
¢ K is the rigidity matrix which generic term reads
Kij = a(@i, ).

Let us remark that the previous inequality is also equivigiethe inclusion
Findu?,, € K"such that

(M +B A K)up,y + At? dllgn(up.4) >

where
1= (2M—(1-28)42K ) U — (M+BACK) b, + AE 7P,

As KM is a non-empty closed convex subseb®t and thanks to lemma 2.1, we easily obtain by induc-

tion onn thatul, ; is uniquely defined for alh € {1,...,N—1}. This kind of variational in
has been intensively studied by Paoli and Schatzman (se&dgp)).

4. A convergenceresult for a Newmark-Dumont-Paoli kind scheme
The discrete problem associated to (3.3) reads
Findufl,, € K" such that for alw® € K"

h

h h
u), ;—2uq+u)_
/Q = Atg LW —uhyy) dx + a(Buf g+ (1-2B)un+Bun_y, WU y)

> /g)[ﬁfn+1+(1—2[3)fn+[3fn_1} (W) dx

In (1), Dumont and Paoli studied the same kind of problemrespronding to a fully discretized beam
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(3.4)

(3.5)

(3.6)

equality

problem. They established unconditional stability andegaeonvergence result fr = 1/2, whereas
a conditional stability result is obtained whgne [0,1/2]. In the following, we shall adapt their proof
to the case of a Kirchhoff-Love plate, restricting ourssltethe cas@ = 1/2. So the fully discretized

scheme we consider reads
Findu?,, € K"such that forallv" € K"

h h yh h h
Uni1— 2un+ Un-1 h Unya+Un g h
/Q e .(\A/‘—un+l)dx+a - 5 ,vvh—unH

frp1+ fa
Z /Q%%W‘“—Uh)dx

(4.1)
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The following result, which states that the discrete soluts uniformly bounded in time, is straigh-
forwardly obtained by adapting the proof of Proposition 8{{1).

LEMMA 4.1 Letf = 1/2, then there exists a positive const@qf, up, Vo) depending only on the data
such that foralh > OandforallN > 1

h h
u — U, |2 1 1
% + 35 a(uﬂaun) + E a(u2+l7u2+l) < C(faUOaVO) (42)

H 2

forn € {1,...,N—1}, where(u2+l)l < n < N—1 are solutions of problem (4.1).

Now, let us build the sequence of approximate soluti@mg)n-on>1 Of problem (4.1) by linear
interpolation

Ift € nAt,(n+1)At] , 0 < n < N—-1, we set
(n+1)At —t L) t — nAt (4.3)
At nl At

which is defined o2 x [0,T]. Let us observe that these functions are continuous in toheigus)
and space (for alh, ul belongs toH?(Q) which is included ing°(Q)). Moreover, because of (4.2),
for all h> 0 andN > 1, functionsun y belongs td_* (0, T; V) and are uniformly bounded in this space.

UEH(X) —uf(x)

Unn(Xt) = Uuf(x)

As Uhn(Xt) = fort € [nAt,(n+ 1)At], using again (4.2), functions, y belong

to L®(0,T;L?(Q)) and are also uniformly bounded in this space. So there eaistsbsequence still
denoted un n)n=oN>1 andu € U such that we have the following convergences

Uhn — uweakly*inL®(0,T;V),
Uyn — Uweakly*inL®(0,T;L?(Q)).

As the injectionH?(Q)) — H*¢(Q)) is compact (Rellich’s lemma, fof < 1), and with Simon’s
lemma ((11), Corollary 4, page 85), we deduce that € L*(0,T;V) , we L®(0,T;L%(Q)) }is

compactly embedded i#°(0, T;H¥*¢(Q)), and then ing°([0,T] x Q). Therefore, after another
subsequence extraction if necessary, we have

Unn — U strongly ing°(0, T;H**¢(Q)) and in¢°([0,T] x Q).
Consequently, we obtain the following results.

e As L®(0,T;L?(Q)) is included inL?(0,T;L?(Q)), u belongs to this space. Moreover, as all
functionsup, y belong toL2(0, T;K), u also belongs to it. Sa belongs tdU.

e For everyh and N, upn(X,0) = ug(x) which converges towardsy in V (see (3.1)). As
V ¢ HY(Q) with continuous injection, then(.,0) = up .

Then, we shall prove the following result.

THEOREM4.1 Letf = 1/2. Then, the sequence of approximate soluti(uisy)n-on>1 given by
(4.3) converges weakly* tain { we L®(0,T;V) / we L®(0,T;L?(Q)) }. Moreoveru belongs tdU,
is such thati(.,0) = up and is a solution of Problem (2.8).
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The corollary is that the frictionless elastodynamic pesblfor a Kirchhoff-Love bending plate be-
tween two rigid obstacles has at least one solution.

Proof of Theorem 4.1.

Construction of a discrete test-function.

To obtain (2.8) from (4.1), a first point is to associate to tasf-functionwa discrete one which is close
to it. A natural idea would be to defing} as the linear projection, defined by the bilinear foanon
spaceV" of an approximate value of &t timenAt. Unfortunately, this projection does not preserve

unilateral constraints. Then, this choice would not neaslysgive a test-function ifK".

So, letwbe a test-function such that & U andwi.,T) = u(.,T). Fore €]0,T/2[, we definep as a
¢*-function such that

0< ot) <1 , tel0T]
{ pt) =0 , te[T-3¢/2T| (4.4)
pt) =1 , t€[0T—2¢.

We setw = (1— @) u + @W. Then, by constructiom(.,t) = u(.,t)forallt € [T —3¢/2,T]. And,
sincekK is convex, we have immediately € U.

Now, letn <]0,e/2[andy € ]0,1][. Following (1), we definav, y by
1 tn
W x(68) = uxt) + o / ((A—x)W(xs) —u(xs))ds , t e [0,T—g/2.  (45)
t

Sinceu € U andw € U, we have clearly

Wy x € L*(0,T —€/2,V) N €°(0,T —g/2;H4(Q))

Wy x — U € €°(0,T —€/2;V)
Wy x € L2(0,T —g/2;L3(Q)).

Moreover, we can seleaj such thatwy , satisfies strictly the constraint. More precisely, for all
t € [0,T—¢/2]andforallx € Q

1 t+n 1 t+n
wnx(xt) = / (1 Xw(x,s) ds + uxt) — / u(xs) ds
t t
Let us recall that, in the definition of convé it is introduced a scalay such that
gi(x) < -9 <0<g<gx , xeQ.
First, asw € U, we havegy (x) < w(x,t) < go(x) for all x andt. So,
1 ft+n
000+ X0 < (1-X)0100 < 7 [ Q- X)wlx9)ds < (1- 080 < 69~ xg

Second, let us recall that belongs toz°([0,T] x Q). Thus, by uniform continuity on a compact
set, for alld € ]0, xg/2[ (constanyg > 0 is defined by (2.7)), there exists > 0 such that for alk,
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lu(x,t) — u(x,s)] < 6 whenevett — s| < n. Then

1 t+n 1 t+n 1 g
uix,t) — — ux,s)d g—/ ux,t) —ux,s)|lds< —nod =90 < x =.
uet) = [ ueesdg < o [ Jubet) — uGes)|ds < 2 x5

Finally, we have
QX + X_29 < Wiy (%t) < Go(X) — —ng L V¥XEQ ,Vte[0T—¢/2  (46)

and it ensures thaty, y (x,t) € [g1(X) + X9/2,92(x) — x9/2].

LEMMA 4.2 Construction of a discrete test-function
Forx € Q, letw] be

Wi(x) = ul, 1(X) + Th(Wy x (X, nAt) — u(x,nAt)) ifnAt < T — ¢
MET L w () ifnat > T — ¢

wherer, is linear projection, defined by the bilinear foanon spacé/". Then there exists, > 0 and
No > 1 suchthat, foralh €]0,ho[and forallN > No,w! belongs tak", foralln € {1,...,N—1}.

Proof of Lemma 4.2.
- It is obvious thai] belongs toV" andK" whennAt > T — «.

- Otherwise, whemAt < T — &, Wl is written as follows

T
wh(x) Unn (%, (N+1DAL) — u(x, (n+1)At)
u(x, (n+1)At) — u(x,nAt)

Wy, x (X, NAt)

(7 — 1) (wy  (X,NAL) — u(x,nAL)).

+ 4+

First, as(unn)n>on>1 CONverges strongly ta in ¢°(0,T;H¢(Q)), and using the continuity of the
canonical injection fronH1¢(Q) into ¥°(Q), for h small enough andl large enough, we obtain

sup|unn(X, (N+1)At) — u(x, (n+1)At)| < Clunn — Ullgoorniie(g) < X—69

xXeQ

Secondy is continuous on the compact §61T] x Q. So, by uniform continuity, there exisfsy or
No = T/Atg, such thatifAt < AtgorN > Ny, we have

suplu(x, (n+ 1)At) — u(x,nAt)| < )(_69

XeQ

Third, let us introduce the following constapt, which depends oh. Because of the canonical em-
bedding fromV to H1¢(Q) and the convergence of the finite element scheme, fdr all 0, it exists
Yh such that

WeV W = W) < wh[wllv and  limy, = 0. (4.7)
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Then, forh small enough

sup|(7h —1d) (Wy x (x,nAt) — u(x,nAt))| < C|[(7h—Id)(Wn x(-,nAt) — u(.,nAt))[lj1se(q)

XeQ X9
< Clwnx = Ule@r-grzw) < 5

Finally, using the previous results, forsmall enough andll large enough, we have

- 22 < Wi — wyy(xnat) < £
forallx € Q andn € {1,...,N— 1}, which leads to
0100 < wnx(6nat) — 2 < wh00 < wix(enat) + &3 < g
by using (4.6). And we can conclude thvé} belongs tdk". o

Transformation of inequality (4.1).

Now, our goal is to show that the limitis solution of the continuous impact problem (2.8). So, te us
the previous lemma, in all the following, we will assume that ]0,ho[ andN > Ny . Thus, we set
At = T/N. In (4.1), we taken" = wl, we multiply byAt and add om to obtain

N—-1 Uh _ 2Uh + uh
1 -1
2 ( /Q nt Atg L wh -, y) dx) At
+ N_l(}a(uh +ul Wl —u? ))At (4.8)
2 n+1 n—1> YWn n+1 .
n=1
N-1

WV

S (5 s o) at

From the definition of the discrete test-function (lemma)4v@e havewf} — uf,; = 0 as far as

nAt > T — &. So the above sums end to inteffmwhich is the integer part A_t
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Moreover, up to the coefficiertt, the first term of (4.8) can be rewritten

N —2uh+ul
1 h
/Q i Atg LR —uh, ) dx
n=1

h h
U —Un_ l) Whn un+1dx

_ z/ Un+1
At At
h h h
:/UN’+1_UN’ WR,,—uN,Hd z/un—unl (Wh—uft, ) — (W, —ul) dx
Q At ' At
h h
B ul—ug w—u dx
o At T At

LR = SO ST PO

o At ' At o At T At

n=1
h _ .
Uy, = 0. Finally, we have

h_
uf —u
; 1At 0. (wh—ul) dx

aSWRJ'H B

N/ 1
3 (5 [t o) (-t o)
(4.9)

NI

1 h h
> (5 a(“2+1+un—1a V\’E—Un+1) ) At

n=1

N

- N’z” (/ un— Uy Wh—uR ) — (wh g —uy) dx) At
o At ) At .

n=1
The goal of the remainder of this proof is to makandAt tend to zero. So each term of the previous

expression will be examined separately in the four follayviteps.
u(x,0)). Then

Step 1. By definition,w])(x) —uf{(x) = 7(Wp,x(x,0) —
h_

u —uf _h _ u—U
o At (wWg—up) dx = o At (Th

Id)(wp x(x,0) — u(x,0)) dx

ul! —ub
A W (x,0) = u(x,0)) dx

_|_

So, (4.7) leads to

(76 —1d) (W x (-,0) — u(.,0))[e [1(7h —1d) (W x(,0) — U(-,0))[ly1+¢(q)

<
< W ll(wnx(50) = u(, 0)llv
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h_ h
with lim y, = 0. Finally, from (3.1), it is known that _ lim ’u—vo‘ — 0, and we obtain
h—0 h—0, At—0! At H
ul? —uf h h,At -0
L0 ) dx A /vo(x) (W (%,0) — U(x,0)) dx (4.10)
Q Q

Step 2. The second term of (4.9) can be splitin two parts of the sart@dmg form
N/ N/
z / foo (Wl—ul ;) dxAt = z / frv (X) ThH(Wy,x (X, NAL) — u(x,nAt)) dx At
=1 /@ =1 /Q

N/
= nzl /Q fy (X) (Th — 1d) (Wp x (X,NAL) — u(x,nAt)) dx At

N (W4+1)At
+y / /Q £(x,9) [(Wyx (X NAL) — U(NAL) — (Wy (x5 — u(x,s))] dxds

n—1 n At
N (W4+1)At
+ f(X,8) (Wph x(X,S) — u(x,s)) dx ds
S fs Jo 109 (anxx9) — utc)
=S+ +3
from the definition off,y (see (3.2)), and those of the discrete test-funatidnHere, we have’ = n+1

orn’ = n—1. Let us examine successively each of these terms.

(1) Asinstep 1, (4.7) leads to

[(Th = 1d) Wy x (- NAY) — U(NAY)|s < ¥ | (W (-NAL) — U(,nAt) |y

<
< W lWpx — Ulleo1-e/2v)

foralln € {1,...,N}. Then we deduce :

N/
S = nZl/an,(x) (7 — 1d) (W (X, NAL) — u(x,nAt)) dx At

N/
< D flm At) W [[Wnx — UllLe01-e/2iv)
n=1
h—0
< (VT Ifllzoren) whIMnx — Ulisior—e/zm = 0.
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(2) The definition ofw,, y (4.5) leads to

(Wi, x (X, nAt) — u(x,nAt)) — (W x(X,S) — u(x,s))

B % n:ftm((l—X)W(X’t) — u(xt) ) dt - % /ss+n((1—x)w(x,t) ~u(xt) ) dt

% nZt (1= x)w(xt) — u(xt)) dt — % /nj:n ((1-x)w(x,t) — u(xt)) dt.

Moreover, if¢ belongs td_?(0,T;H), aandb being such that0< a < b < T, one has

/abqs(.,t) dt’; - /Q (/abqb(x,t) olt)2 dx < (b—a) /Q /ab¢2(x,t) dtdx < (b—a) [19]2 07

or else

b
/a o(.1) dt}H < vb—al[¢ll zorm)-

This result implies that

|(Wn,x(-;nAt) — u(.,nAt)) — (Wnx(,8) — u(.,9))|

. 2 /|s—nAt| I

h n

2 \/|s—nAt| I

n 1-x)W—Ull201.v)

1-X)W—Ullz0rm) <

As sbelongs tg(n— 1)At,nAt] or [(n+ 1)At, (n+ 2)At], in all cases, we obtain

S| N / o / f(x,8) [(Wnx (X NAL) —U(X,NAL)) — (Wyx(x,5) —u(x.s))] dxds
n=1 /Nt Q ’ e ’ e |

N (' +1)At 2.2 At
(Z / (- 9)|m dS) (L= X)wW—ull 201w
n—=1 n’ At n

N

2V2At At — 0
VT Iflors = I@=X0w=ulzory *=° 0

N

(3) Finally, asw, x — u belongs to¢°(0,T — €/2;V) which is contained irL?(0,T;H), as f is in
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. . - & :
L?(0,T;H) andN' is the integer part OFT, then we can makat go to zero and obtain

N (N'+1)At
> n;/m / F6s) (Wyx(xs) — u(x,s)) dx ds

(N'+2)At
/zm / f(x,8) (Wnx(x,8) — u(x,s)) dxds if =n+1

N'At L
/0 /Q f(X,8) (Wh.x(x,5) — u(x,s)) dx ds if f=n-1

T—¢
A0 / /fxs (Wp x(X,9) — u(x,s)) dx ds

So that we can conclude this step and have

N’ T-¢

1 h, —

5 (5 / (freat froa) - (Wl — U, g) dx ) At "2 / / f(wpy — U)dxds (4.11)

n=1 2 Jo
Step 3. We carry on the convergence of the third term of (4.9). Heeshall use some results we recall
hereafter.
- The bilinear forma defines a scalar product dawhich is equivalent to the canonical scalar product
(see lemma 2.1). So there exi€ts> 0 such thata(w,w)| < C ||w|jy, forallw € V.
- 1 is the linear projection on spad& defined by the bilinear forra. In particular, for alw” € V"
andv € V,aw", mv) = a(w,v).

Now, let us observe that

1 N L
E nZl a(UE+1+U2_l,V\/hn— UE_H_) At = E a(ug,V\lg—u?_) At
1 N+1 )
T3 nZl a(un_b(wh Uni1) — (Whoy— un)) At
1N . A
+ 3y a(un+1+un,vvh n+1) At
i n=1
= 2 S+ 5 SZ + S

aswh

N1 — uR,+2 = 0. Now, each of these terms will be studied.

(1) By definition,wf(x) — ufl(x) = TH(Wy.x(X,0) — u(x,0)). So
S|

la(uf,wh —ul)| At = |a(uf,wy.x (-, 0) — u(.,0)| At

AI—>O
< C2||uBl W x(-.0) — u(.,0)lly At" 0

(ub)n being bounded as the time scheme is initialized by choagjsgch thaaliry\ug —Uplly = O (see

(3.1)).
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(2) Here again, from the definitions of the test functiw&and the projections,, we have

N/+1
S = 3 a(lnmh—uy) - (whi-u)at

n=1
N/ +1

- Zla(uﬂ,l,(wm — U)(.,nAt) — Wy — u)(.,(n—l)At)) At.

Following Step 2-(2), witts = (n— 1)At, we obtain

|[(Wnx —=W)(-,nAt) — (Wyx —U)(, (N=D)At)|m < 1L = X)W = Ull 20,7 ;59)-

2 VAt
S

This property can be extended to the space derivativesgiditiribution sense) dfL. — x)w— u exactly
in the same way and leads to

(W — U)(,PAE) — Wy —U)(.. (=D)AL [y < 2

A-=xw=ulzory). (412

Then, using this inequality and (4.2), we have

N/ +1

S| < Z yau

N/ +1
2C \/_
< z V2 C(f,uo, Vo) (1= X)W—ull 201;v) At

=1

— X)W—Ul| 20 1) At

< T /2C(f,up,v0)

[(1=Xx)W—ull2q7;v) — O

2C VAt At —0
n

(3) As functionuy, y is linear in time on each interv@ihAt, (n+ 1)At] (see (4.3)), we have

(n+1)A 1 h h
/nAt UnN(.,S) dS = 5 (Un;q +Up) At
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which allows to rewrite the third term as

1 N N (n+1)At
S = 5y a(ard i) at= 3 [ 7 a(u(es), wh-uy) ds
n=1 =1 J/nat

NI

(n+1)At
/ a(unn(-,9) , (Wyy —u)(.,nAt)) ds

n—=1 nAt

N/

(n+1)At
2 /Mt a(unn(.,9) , (Wpx —Uu)(.,nAt) — (wWyy—u)(.,s)) ds

T—¢
+ /O a(unn(-,S) s (Wyx—U)(.,s)) ds

At T—¢
— a(unn(.,s), (Why —u(.,s ds—/ a(unn(.,8), (Why —Uu)(.,8)) ds
) a9 g —w9) ds— [ a(un(9), (- u)(-9)
With (4.12) in which(n— 1)At is replaced by, that belongs ténAt, (n+ 1)At], we obtain

N (n+1)At
/ a(Unn(-,9) , Wy —U)(,NAL) — (Wyy —W)(.,9)) ds

n=1 vnAt

t At — 0
T”(]-_X)W_UHLZ(O.T;\\/) — 0

as functiongun n)n=o,N>1 are uniformly bounded because of (4.2). The same reasos tead

2
< C°T [[unnllL=(07:v)

’/OAta(Uh,N(.,S), (Wi x —W)(,S)) d#

At
< [ U9l ll(wax — (.9l ds

At — 0
< At C? ||unnllLeo1) | (Wy x — U)o T—e/2v) — O

and, in a similar way

/T—s a(unn(.,s), (Wyx—u)(.,9) ds at—o o
(N'+1)At ’ ’

Finally, as the inclusion oE®(0, T;V) into L?(0,T;V) is continuous, functionsun N )h>on>1, being
uniformly bounded inL®(0,T;V), are also uniformly bounded ib?(0,T;V). So, up to a possible
subsequence extractiofunn)n-on>1 converges weakly in this space towandguniqueness of the
limit). So that we obtain

T—¢ T—¢
/o a(unn(-,s) , (Wyx—Uu)(.,s)) ds h,at >0 /o a(u(.,s), Wy x—u)(.,s)) ds
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and then

/

zZ

h,At —0
—

NI =

a(uﬂ+1+uﬂ71,whn—uﬂ+l) At /OT ga(u(.,s), (Wpx —U)(.,5)) ds  (4.13)

n=1

Step 4. At last, let us study the convergence of the fourth term @) 4To simplify the presentation, we
introduce the notation

(W x —U)(Xt+At) — (Wy x —U)(X,t)

LpAt (X7 t) = At

, te[0,T—¢€/2] , ¥xeQ

and we recall that, by definition df’, vv',jl,+1 — uN,Jr2 = 0 and that, by definition of the discrete

test-functions (see lemma 4. 29‘; gH(X) = Th(Wp,x (X, pAt) — u(x, pAt)). Then, we deduce
the following decomposition

N/”( / U1 Wa—tng) = (Wh, — )
& 0 At At

U1 — U h
= _/(‘)T . (\NRI’_UN’+1) dX

S ui— Ui,
* nzl ( /Q T ’ (nh_ld)q"m("(n_l)ﬂt) dX) At
nAt Uh—uﬂ L
+ / 1)4t / - (Yat (-, (n—1)At) — ae(.,t)) dxdt
N rnAt Uﬂ— Uﬂ_l
* nZl /<n—1>m /Q AL Wat (1) dxdt

S+S+S+ S
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(1) First, using (4.2) and the definition mﬂ,, we have

URy 1 — U h
st | S o
ur o —uf,
- / AN (i (6 N'AE) — U(x,N'AD) dx
Q
uRlJrl_uRI
< ’ / . ’ _ . , ’
<[P w1 (AN — u(,N'AY) dX|

< VC(T,Uo Vo) | (Wi x (. N'At) — u(_,N'At)) dx‘H

N

C(T, o, Vo) | (6 — 1d) (Wi (.,N'AL) — u(., ’At))dx‘

+ /C(T, Uo.vo) | Wy (,N'AL) — u(.,N'At) dx‘H.

Let us recall that, by constructiomy.,t) = u(.,t) forallt € [T —3¢/2,T] and thatN’ is the integer
part of %. So, forAt small enough, it is possible to haléAt > T —3¢g/2. Consequently, the
definition ofwy y (4.5) leads to

1 N'At+n X N'At+n

Wy x (., N'At) —u(.,N'At) = = ((A=x)w(,t) —u(,t))dt =

u(.,t) dt
n Jnat n Jnat

Moreover, following Step 2-(2), i belongstd_*(0,T;H), aandbbeing suchthatd a < b < T
one has

Codf < o-a [ / $206t) dd < (b—a)? supld (D% = (b2 9 fu(qrasy

or else
(O df < (b-a) [¢l=orm)-

As u belongs td_*(0,T;V), this result implies that

, , N’ At+r)
o N80 — u( N a0) ‘/fm o S X Uleorm < X Ull=orv):
Finally, using (4.7), ast goes to zero wheh goes to zero, we have

(1) (Wi (. N'At) = uCNB) dX <[ (7= 10) (W (- N'AE) = U(,N'A) | e g

<
< [l(mh = 1d)(Wp x (-, N'At) — u(.,N'At))]ly
< WWnx — Ullieor—¢/2:v) < X [[UllL20.13v)

if his chosen small enough. Hence, it leads to

1S < 2 x VC(f,Uo,v0) [[Ull201:v) = X C |Ullie(o,m;w)- (4.14)
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(2) Let us now derive an estimate 65 .

h

S| = NZ (/ M.(m—ld)%t(.,(n—lmt) dx) At’

n=1 Q At

S 1Bt g (- D4 s 2t
& At H ’

N

< VC(f,uo,v0) z —1d)@at(., (n—1)At)[ At
< Wh VC(F,Uo, Vo) z [Wat (., (n—1)At)[|v At ,

1/2
< W VC(f,uo,vo) VN ( z | At Wa (. (”—1)At)||%/>

thanks to (4.2) and (4.7). Moreover, the definitiong/af andwj, y (4.5) lead to

18t e (= DADIE = (W —U)(X.NAL) — (W —U)(x, (n—1)At)|

H /mw (L wixt) —uxt) /<n—1>m+n (Lo xWxt) — U g
’7 ( v

n—1)At n
B nAt+n W(x,t) — u(x,t) dt nat - (1— x)w(x,t) — u(xt) at 2
N H/ —1)At+n n - /(n—l)At n HV
<y nAt+n w(x,t) — u(xt) d 2
h H/n 1)At+n n tHV
) H/ Xnt) u(x,t) dtH; (4.15)

Now, if ¢ belongs td_2(0, T;H), one has

z | /“A‘ (o

z/ (/nm )dt)zdx
z At/ /n o ) dtdx

i
At/Q/O 92(x) dtdx = At [19]2 0.z

N

N
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In a similar way, ag) < €/2 andN’At < T — ¢ (definition ofN’), we haveN’At +n < T and then

nAt+n
< At
\/n soern? 161122030

If ¢ belongs toL?(0,T;V), the previous properties can be extended to its space teesgin the
distribution sense) exactly in the same way and lead to

nAt nAt+n 2 12
. < Y.
H Lo (oo + z 1] e b0, V28t 9207,
Settingg = n ((1— x)w — u) in the above inequality, this result and (4.15) implie that

1/2
< W V/ET ovo) VR (z 4t g <n—1>At>|%y>

2\/_
< W VC(F o, vo) VN —— [[(1— X)W — Ul 20 7%

h—0
< W\/To,vo Hl XW = Ul 201y — O

(3) To treat the third term, we begin by the following transfotion. First, let us recall that the defini-
tions of Yar andwy, y lead, for allt € [0,T — £/2], to

(Wi x —U) (X, T+At) — (Wy x —U)(X,T)

At
T+At+n 1 T+n

- nAt /Mt (1=X)w— u)(xs)ds—m . (L—x)w—u)(x,s) ds

L»UAI (Xv T) =

T+n
= m / (L= x)w—u)(x,s+At) — ((1— x)w—u)(x,s)) ds

- /”” (/Ht 1- X)W—U)(x,r)dr) ds (4.16)

Hence, we obtain

Wat(X, (N=1)At) — Par(X,t)

— ﬁ(/(::Mtw/SMt((l—x)v'v—U)(x,r)drds—/ttw /:Mt((l—x)v'v— U)(x,r)drds)

1 t 1 stat o tn rAt .
- (/ [ @ xp-wxr) drds— [ [ @ xw-uxn drds)
n (n-1)At Js (n—-1)at+n Js

Now, a andb being such that 0< a < b < T, and settingp = (1— x)W— u which belongs to
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L?(0,T;H), one has

i :erd’(.,r)drd%zﬂ /Q (/ab/:de(x,r)drdsydx
A (/ab\/d_t [/:Mtfﬁz(x,r) dr] " ds)zdx

Lo-aa [ [ 9200 or as ax
(b—a) At /ab (/Q/:Mtqbz(x,r)drdx) ds

(b—2)? At 181720 7., (4.17)

N

N

N

and then

t—(n—1)At] |
n VAt

N

[Wai (-, (N—1)At) — Yai (-, ) | (L= X)W—0)l| 20.7:50)-

Finally, using again (4.2), we obtain from these results

N nAt
a nzl /(nfl)At

h h
Un — Un_ 1‘

At

N

|Wat (., (N—1)At) — Yae(., )| dt

nat t—(n—1)At .
< VeTww y [ 2O g o
n VAt
N’ At2
< /C(T,up,v A= x)W—u .
(f,uo, Vo) n;n\/EH( X) HLZ(O,T,H)

< C(f,Uo,Vo)

l@—xW— Ul o7 0 o.

T\/E . . At — 0
n

W) — U, (%

(4) Finally, from the definition ofun y (4.3), we haveu, n(X,t) = A

[(n—1)At,nAt]. Hence S can be rewritten

5 o

T—¢ uN/ UN’
/ /UhN Yar dxdt — /,At/ - Wae (1) dxdt

whent belongs to

S
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Exactly as in the previous point, using (4.2) and (4.16)-{3,.we obtain

u, u, T—¢

/ TN k] < [
/At N,At
/ VC(FUov0) —= [|(1— X)W~ U]l 20 7 i

/At VAt T

< V/C(f, o, Vo) VAL || (1= X)W— | 20 71 A0 o

Moreover, following (4.16) witht = t belonging to[0, T — €], we have

h
Un — Ung

At

[, 1w (1)

1 traten 1 n
nat Jiiat (L=X)w-u)(x,s)ds nat ((1— x)w—u)(x,s) ds
1 ptentat o
T NAt S (1= Xx)w—u)(x,s)ds — nat (21— x)w—u)(x,s) ds

220 (A= w- 0kt ) — (=W u(x)

LIJAI (Xv t) =

and this convergence is strong i%(0,T —¢;V) as(1— x)w—u € L?(0,T;V). Furthermore, as
the inclusion ofL®(0, T;H) into L2(0, T;H) is continuous, function$ln n)h>oN=1, being uniformly
bounded inL®(0, T;H), are also uniformly bounded i’(0, T;H). So, up to a possible subsequence
extraction,(Un N )n>0,n>1 converges weakly in this space towatd@niqueness of the limit). So that we
obtain

/T 8/ G Gy dxdt h.at—0 OT_E/QU(x,t) ((1—x)w—u)(x,t+r]r;—((1—x)w—u)(x,t) dxdt

and then

S+S3+S

hat -0 T_£/ a(x,t) ((1—X)W—U)(th+’7r;—((1_X)W_u)(x’t) dxdt  (4.18)
0

Conclusion. Thanks to the previous convergence results (4.10)-(44.1)3)-(4.14) and (4.18), when
andAt tend to zero in inequality (4.9), we obtain for alk]0,T /2[ andn €]0,&/2]

T—¢
/Qvo(x) (W (%,0) — U(x,0)) dx + /0 /Qf (Wny — U) dxdt

T—¢
< [ a(un) . Wax—w() dt+ X Clulsory) (4.19)

[ [ oty X0 (0w 000 g

First, we shall make going to zero. A{1— x)w—u € L2(0,T;H), then

(A—w-uwxt+n) - (L-xw-uxt) _ /‘*’7 (1 —X)W(xs) —U(xs) |
n t n

20 (1 xW(xt)—u(xt) stronglyinL2(0,T — &;H).
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With the same arguments, g6— x)w—u € L2(0,T;V) N €°(0,T;H), we have first
1 t+n
W x06t) —uct) = = [ ((L- Xw(cs) - uxs) ds
20 (1 x)w(x,t)—u(xt) stronglyinL2(0,T — V)

and second, far = O,
Wy x (X,0) — u(x,0) =0 (1- x)w(x,0) —u(x,0) strongly inHL.

So, whem goes to zero, inequality (4.19) becomes

T—¢
/ Vo(X) . ((1— x)w(x,0) —u(x,0)) dx + / / f ((1—x)w—u) dxdt
Q 0 Q

T—¢
< [ atn (= xw=u(.0) dt+ xC luleory

- Apﬁéu«1—MW—Mth

The proof is achieved by making and ¢ tend to zero, observing that— u = @(W — u), whereg is
defined by (4.4). a

REMARK 4.1 Let us recall that, in their paper (1), Dumont and Paolegamore general result, includ-
ing in particular a conditional convergence when param@tbelongs tg0,1/2[ . Actually, we could
have follow the same way. As a matter of fact, the coefficient

h h
a(u’, u
Knh = sup 7( ’ )

2
uh € vh\{0} |uh|H

)

they introduced in (1) to lead to a conditional stabilityndze used in a same way for plates. It means
that the above Lemma 4.1, which states that the discret¢i@olis uniformly bounded in time, can
also be straighforwardly obtained from Proposition 3.10fnder the same hypotheses. Then, up to
some technical details, if we follow more closely Dumont &aabli's proof, Theorem 4.1 rené?inslvalid.
pS Ax#’
for a homogeneous and isotropic beaftx being the mesh size, which is uniform here. In the case
of a Kirchhoff-Love plate, if we assume it is made of a homagmrs and isotropic material too, then,
definition of bilinear forma(-,-) shows thak, is the highest eigenvalue of the bilaplacian operator on
2
the plate mesh. So, first, it proportional EOD = E e . Second, if the mesh is uniform of
pe 3(1-v?)p
sizeh, following for example (12), it is easy to see that the bigagghn highest eigenvalue is of order
plate E &2 L
h 3(1-v3)p ¥
is quite close to the case of beams. Finally, from a pracfioait of view, for a similar computational
cost, it is better to use an inconditionaly stable schemes€quently, we only tested the scheme with

B = 1/2.

The only point to discuss is the evaluationigf. In (1), the authors show tha?a™ ~

1/h* Consequently, in our case, and under the previous assomsyx| which
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5. Numerical results and conclusions

We will consider a steel rectangular panel of length 2@ width 40 cm and thickness equal to
g€ = 0.5cm The flexural rigidity isD = 1.923 1¢, corresponding t& = 210GPa v = 0.3
andp = 7.77 1Gkg/m. This plate is clamped along one edge and free along the tthees. The
numerical tests are performed with GETFEM++ (13) and Matleding structured meshes (see Figures
3 and4).

Let us recall the problem to be solved at each iteration

Findu?,, € K" such that
(M +B A K)uf,; + At Olyn(uf ) > 7

whereff = (2M — (1-28)At%K ) uf — (M +BAEK ) uf ; + A2 6.

In practice, we have chosgnh= 1/2 in all the following computations. Since matix= M + B At?K
is symmetric and positive definite likd andK, this problem is equivalent to the following minimization
problem
(1
u, = Argmm( “wAw —w' f,ﬂ‘) :

weKh 2
As the convex constrainig € K" correspond to linear inequality constraints, such a probten be
solved by using the Lagrange multipliers method, or intepioint methods, for instance. Here, as in
(14), we use the Matlab function "quadprog”, which lies oa ltagrange multipliers method.

Figure 3. Bending clamped plate under a rigid obstacle: Fv&icangular mesh.

5.1 Forced oscillations
In this section, we consider two flat symmetric obstacleaghtbe plate length
01(x) = —01= —gp(x) , VxeQ
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Figure 4. Bending clamped plate under a rigid obstacle: Asgyiangular mesh.

and we prescribe a sine-sweep base forced vibration, by wighe following boundary conditions on
I

u(x,t) = csin(wt) %(x,t) =0, Werl;

withc = 0.09mandw = 10Hz The displacements of the two free corners, for differanttisteps,
and for quadrangular and triangular meshes, are plottedigurés 5, 6 and 7. Not surprisingly, due
to symmetry of the problem, the curves, corresponding todisplacements of the two corners, are
overlaid. Moreover, there is no significative qualitatiifetence between the FVS and the Argyris
approaches. As far as CPU times are concerned, they areigifable 1 for the numerical simulations
related to the previous test case. They are of same magsitodigiangles and quadrangles, considering
the fact the degrees of freedom and the matrices sizes &eeathif. Finally, analogous results as in (15),
for a beam impacting obstacles, are observed.

| Time step | 10°% | 10% | 10° |
140 Argyris triangles 80 870 8880
140 FVS quadrilaterals 120 1220 12220

Table 1. CPU times in seconds (MacBook Pro computer with &M2 processor)

To complete this numerical study, some other results arengikirst, the case of two flat symmetric
obstacles along the plate whegg(x) = —0.01 = —g(x), for all x € Q, is considered on Figure
8. Second, the case of various frequencies is investigatsdKigures 9, 10 and 11). All these results
confirm the previous conclusions.
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Figure 6. Displacement of a plate impacting flat obstacle$0-FAVS quadrilaterals and 140 Argyris triangledt = 1074
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Figure 11. Displacement of a plate impacting flat obstaclet0-FVS quadrilateralsAt = 1073 - w = 30Hzandw = 35Hz

5.2 Energy evolution

This section is devoted to the study of energy variationgnduthe motion. So, here, a forced vibration
is not prescribed. The motion is due to an initial displacetmg, obtained as the static equilibrium
of the plate under a constant lodgl = 8600N and an initial velocityyg = 0. Moreover, the upper
obstacle is removed, which corresponds toget= +o. The lower obstacle is flat and remains to
g1 = —01m

First, as in the previous section, the displacements ofwlueftee corners, and also the midpoint
between them, are given for rectangular (Figure 12) andguar (Figure 13) meshes. The results are
very close. Here again, the three curves are overlaid. fedwmth corners, it was expected, but not for the
midpoint. To investigate this, a zoom was made on this cufivigsires 14, 15 and 16). They show a so
small difference in the motion of this three points that exps that this is not visible on the first figures.
Moreover, Figures 15 and 16 illustrate again there is no nngé@nl difference between triangular and
rectangular meshes. Finally, Figures 12 and 13 show thermani displacements decrease as time
passes, which means that impacts create damping duringdtierm
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Figure 12. Displacements in free vibrations - 140 FVS quatgnials -At = 107°.

0.15

0.1

0.05

disp.

-0.05-

|
0.5 1 1.5 2 2.5
time dt=10"5 sec.

Figure 13. Displacements in free vibrations - 160 Argyriarigles -At = 1075,




32 0of 35

-0.0985

-0.099

disp.

disp.

-0.0995

---- disp right corner

----- disp left corner

—disp center point

A

K]

i
PPN R AVE A b ’f‘“ /\ L

L 1 | | | |
0.068 0.069 0.07 0.071 0.072 0.073 0.074 0.075 0.076 0.077

time dt=10"5 sec.
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Finally, we compare the variations of total energy obtaifoedlifferent time steps and meshes. This
total energy is defined by

1
2/ xtdx+§a(( /fxt x,t) dx
In the case of free vibrations, the loadihgs zero. The associated discrete energy reads

h h

1
”” Cax + 5 &(Un, Un)-

E(un+17un = 2/

Figures 17 and 18 show the discrete energy decreases. Faktlet us remark these curves exhibit a
small difference in the initial energy, which is due to diface of discretizations on the two meshes.
But it is a detail. The main point is that, in the two casesrgynés dissipated when the plate reaches
the obstacles. The same qualitative results were obtamé®)iand (1). By the way, our numerical
model is a fully implicit scheme. It seems that it correspotalchoose a restitution coefficient, defined
by (2.9), close to zero. The continuous problem energy wifiserve if and only ie = 1, which is

a totally elastic shock. The results we obtain are then m@chHy consistent. To conclude, when the
time step decreases, the loss of energy decreases too, iwhithto show the scheme creates a too big
numerical damping. Looking for energy conserving schenoeplates, as we did for beams in (15),
and also studying their convergence properties, is theradifqular importance and will be the subject
of forthcoming papers.
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