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Vibro-Impact of a plate on rigid obstacles: existence theorem,
convergence of a scheme and numerical simulations

C. POZZOLINI†, Y. RENARD‡, M. SALAUN§

[Received on 6 October 2011]

The purpose of this paper is to describe a fully discretized approximation and its convergence to
the continuum dynamical impact problem for the fourth orderKirchhoff-Love plate model with non-
penetration Signorini’s condition. We extend to the case ofplates the theoretical results of weak con-
vergence due to Y. Dumont and L. Paoli which was stated for Euler-Bernouilli beams. In particular, this
provides an existence result for the solution of this problem. Finally we discuss the numerical results
we obtain.

Keywords.Variational inequalities; Finite element method; Elasticplate; Dynamics with unilateral
constraints; Scheme convergence.

1. Introduction

The impact of linear elastic thin structures, such as beams,membranes or plates, is a domain where there
are still fondamental open questions despite a rather important literature. This includes in particular
the existence and uniqueness of solutions, the convergenceand stability of numerical schemes, the
modelization of a restitution coefficient and the construction of energy conserving schemes.

In the particular case of the vibro-impact problem between an Euler-Bernouilli beam and a rigid
obstacle, an existence result was shown by Y. Dumont & L. Paoli in (1). They established the conver-
gence of the solution of a fully discretized problem to the continuum model. But there were no result
whether energy is conserved in the limit or not. Indeed, it can be easily shown that uniqueness does not
hold for this system (see (2) for a counter-example). Moreover, it is generally not possible to prove that
each solution to this problem is energy conserving. This is due to the weak regularity involved, since,
in particular, velocities may be discontinuous.

The dynamic contact problem for Von Karman plates is studiedin (3) and (4). In the first paper, the
authors show the existence of a solution, using penalization technics, while other existence results are
given in the second by the introduction of a viscosity term. Here, our main goal is to extend Dumont and
Paoli results to the case of Kirchhoff-Love plates. We present a convergence result of a fully discrete
scheme toward one solution of the continuous problem. This establishes both an existence result for
the solution of the continuous problem and ensures that one subsequence weakly converges toward this
solution. We do not establish any uniqueness result. Such result would certainly requires the ability to
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express an additional impact law (see (5), (6)). Although the consideration of an impact law is something
very natural for modelization of rigid body impacts, this concept seems to be rather difficult to extend
to the framework of thin deformable bodies, especially concerning the discretization.

The paper is organized as follows. In the next section, an elastodynamical Kirchhoff-Love plate
model is described as well as the vibro-impact model. In section 3, the fully discretized approximation
of the problem (finite element model and time scheme) is introduced. Section 4 gives the most important
result of this paper, namely a convergence result for fully discretized schemes. Finally, in section 5 we
present and discuss some numerical experiments.

2. Notations and statement of the problem

2.1 Variational formulation of the plate model

Let us consider a thin elastic platei.e. a plane structure for which one dimension, called the thickness,
is very small compared to the others. For this kind of structures, starting froma priori hypotheses on
the expression of the displacement fields, a two-dimensional problem is usually derived from the three-
dimensional elasticity formulation by means of integration along the thickness. Then, the unknown
variables are set down on the mid-plane of the plate.

Let Ω be an open, bounded, connected subset of the planeR
2, with Lipschitz boundary. It will

define the middle plane of the plate. Then, the plate in its stress free reference configuration coincides
with domain :

Ω ε = Ω × ]− ε , +ε[ =
{

(x1,x2,x3) ∈ R
3 / (x1,x2) ∈ Ω andx3 ∈ ]−ε ; ε[

}

where 2ε > 0 is called the thickness.
In plate theory, it is usual to consider the following approximation of the three-dimensional displace-

ments for(x1,x2,x3) ∈ Ω ε







u1(x1,x2,x3) = u1(x1,x2) + x3 ψ1(x1,x2)
u2(x1,x2,x3) = u2(x1,x2) + x3 ψ2(x1,x2)
u3(x1,x2,x3) = u3(x1,x2).

(2.1)

In these expressions,u1 andu2 are the membrane displacements of the mid-plane points,u3 is the de-
flection, whileψ1 andψ2 are the section rotations. In the case of an homogeneous isotropic material,
the variational plate model splits into two independent problems: the first, called the membrane prob-
lem, deals only with membrane displacements, while the second, called the bending problem, concerns
deflection and rotations. In this paper, we shall only adressthe bending problem, and we shall consider
the Kirchhoff-Love model, which can be seen as a particular case of (2.1) obtained by introducing the
so-called Kirchhoff-Love assumptions :

ψ = −∇ u3 ⇔
{

ψ1 = −∂1 u3

ψ2 = −∂2 u3

where∂α stands for the partial derivative with respect toxα , for α = 1 or 2. Consequently, the
deflection is the only unknown for the bending Kirchhoff-Love plate problem. For convenience, it will
be denoted byu all along the following of this paper. As far as loading is concerned, the plate is subject
to a volume forceF and two surface forces, sayG+ andG−, applied on the top and bottom surfaces.
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Then, if we assume that the previous forces are purely perpendicular to the mid-plane, the resulting
transverse loading reads

fR = G+
3 + G−

3 +

∫ ε

−ε
F3 dx3

whereG+
3 , G−

3 andF3 are respectively the third components ofG+, G− and F. So, the variational
formulation of the Kirchhoff-Love elastodynamical model for a thin elastic clamped/free plate reads as

Findu = u(x,t) with (x,t) ∈ Ω × [0,T] such that for anyw∈ V

(2.2)
∫

Ω
∂ 2

tt u(x,t) w(x) dx +

∫

Ω

D
2ρε

[

(1−ν) ∂ 2
αβ u + ν ∆u δαβ

]

∂ 2
αβ w dx =

∫

Ω
f w dx

with f =
fR

2ρε
(ρ andε are assume to be constant all along the plate), and

u(x,0) = u0(x) , ∂tu(x,0) = v0(x) , ∀x ∈ Ω (2.3)

where∂ 2
tt u =

∂ 2u
∂ t2 , ∂ 2

αβ u =
∂ 2u

∂xα ∂xβ
and the bending modulus isD =

2 E ε3

3 (1−ν2)
, for a plate

made of a homogeneous and isotropic material, which mechanical constants are its Young’s modulus
E, its Poisson’s ratioν and its mass densityρ . As usual, we have:E > 0, 0 < ν < 0.5 and
ρ > 0. Moreover,δαβ is the Kronecker’s symbol and the summation convention overrepeated indices
is adopted, Greek indices varying in{1,2}. The plate is assumed to be clamped on a non-zero Lebesgue
measure part of the boundary∂Ω denotedΓc and free onΓf , such as∂Ω = Γc ∪ Γf . Then the space
of admissible displacements is

V = { w∈ H2(Ω) / w(x) = 0 = ∂nw(x) , ∀x ∈ Γc } (2.4)

where∂nw is the normal derivative alongΓc .
In order to guarantee that (2.2) is well-posed, we use the following result.

LEMMA 2.1 The bilinear forma : V × V → R defined by

a(u,v) =

∫

Ω

D
2ρε

[

(1−ν) ∂ 2
αβ u + ν ∆u δαβ

]

∂ 2
αβ v dx (2.5)

is a scalar product onV which is equivalent to the canonical scalar product ofH2(Ω) defined onV.

The bilinear mapa is obviously continuous inV. Then there exists a strictly positive constant, sayM,
such that for anyu∈ V : a(u,u) 6 M ‖ u ‖2

V
. The reciprocical inequality is due to the coercivity of

a(., .), which can be established by using Petree-Tartar’s lemma werecall here.

LEMMA 2.2 (7) LetX,Y,Z be three Banach spaces,A ∈ L (X,Y) injective,T ∈ L (X,Z) compact. If
there existsc > 0 such thatc ‖x‖X 6 ‖Ax‖Y + ‖Tx‖Z , for anyx ∈ X, then there existsα > 0 such
that

α ‖x‖X 6 ‖Ax‖Y , ∀ x ∈ X.
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Proof. (Lemma 2.1) Let us remark that

a(u,u) =

∫

Ω

D
2ρε

[

(1−ν) ∂ 2
αβ u + ν ∆u δαβ

]

∂ 2
αβ u dx

=

∫

Ω

D
2ρε

[

(1−ν) ∂ 2
αβ u ∂ 2

αβ u + ν (∆u)2
]

dx

>
(1−ν)D

2ρε

∫

Ω
∂ 2

αβ u ∂ 2
αβ u dx asν > 0

=
(1−ν)D

2ρε
‖ Hess(u) ‖2

Y

Hess(u) being the Hessian matrix ofu and withY =
(

L2(Ω)
)4

. Now, the Petree-Tartar’s lemma is
applied withA defined fromX = V to Y by Au = Hess(u) which is injective because of the boundary
conditions,Γc having a non-zero measure in∂Ω . SettingZ = H1(Ω) andT = idX,Z , which is compact,
we obtain theV-coercivity ofA, and consequently ofa asν < 1. 2

2.2 Vibro-impact formulation of the plate model

Let us now introduce the dynamic frictionless Kirchhoff-Love equation with Signorini contact condi-
tions along the plate. We assume that the plate motion is limited by rigid obstacles, located above and
below the plate (see Figure 1). So, the displacement is constrained to belong to the convex setK ⊂ V

given by
K = {v∈ V / g1(x) 6 v(x) 6 g2(x) , ∀x∈ Ω} (2.6)

whereg1 andg2 are two mappings fromΩ to R̄ := R∪{−∞,+∞} such that there existsg > 0 with

g1(x) 6 −g < 0 < g 6 g2(x) , ∀x∈ Ω . (2.7)
.
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Figure 1. Example of bending clamped plate between rigid obstacles.

Since impact will occur in this system, classical regular solutions cannot be expected. In particular
the velocities may be discontinuous. To set the weak formulation, the following functional spaces are
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introduced
H = L2(Ω)
V = { w∈ H2(Ω) / w(x) = 0 = ∂nw(x) , ∀x ∈ Γc }
Ũ = { w∈ L2(0,T;K) , ẇ∈ L2(0,T;L2(Ω)) }
U = { w∈ L∞(0,T;K) , ẇ∈ L∞(0,T;L2(Ω)) }

whereẇ = ∂tw =
∂w
∂ t

, andT > 0 is the length of the plate motion study. The norm inH will be

denoted by|.|H .
The frictionless elastodynamic problem for a plate betweentwo rigid obstacles consists in finding

u ∈ Ũ with u(.,0) = u0 in K andu̇(.,0) = v0 such that



































−
∫ T

0

∫

Ω
∂tu ∂t(w̃ − u) dxdt +

∫ T

0
a(u(.,t),(w̃−u)(.,t)) dt

>

∫

Ω
v0(x) (w̃(x,0) − u0(x)) dx +

∫ T

0

∫

Ω
f (w̃−u) dxdt

∀w̃ ∈ Ũ , w̃(.,T) = u(.,T).

(2.8)

REMARK 2.1 The discretization of (2.8) does not describe completely the motion (6). In addition, it
would require an impact law. For an impact at(x0,t0), this law is given by a relation between velocities
before and after impact, as

∂u
∂ t

(x0,t
+
0 ) = −e

∂u
∂ t

(x0,t
−
0 ) (2.9)

whereebelongs to[0,1]. Since one can only guarantee that the velocity isL2(Ω) in space, it is not easy
to express (2.9) rigorously. Moreover, in (5), the authors observe that the restitution coefficient for a bar
is a rather ill-defined concept. They observed the apparent restitution coefficient depends very strongly
on the initial angle of the bar with horizontal. In the particular case of a slender bar dropped on a rigid
foundation, the chosen value of the restitution coefficientdoes not seem to have great influence on the
limit displacement when the space step tends to zero, as it has been shown in (5). The idea to explicitly
incorporate the restitution coefficient into (2.8) seems a rather problematic task since it would need to
separate the post-impact normal velocity at a point due to the impact force from the post-impact normal
velocity due to elastic waves. Therefore, knowing whether our schemes will simulate the experimental
behavior is an interesting question.

3. Full discretization of the problem

3.1 Finite element model for the plate problem

Let us begin by the space discretization of the displacement. The Kirchhoff-Love model corresponds to
a fourth order partial differential equation. Consequently, a conformal finite element method needs the
use ofC 1 (continuously differentiable) finite elements. Here, we consider the classical Argyris triangle,
which usesP5 polynomials, and Fraeijs de Veubeke-Sanders quadrilateral (reduced FVS), see (8). For
the FVS element, the quadrangle is divided into four sub-triangles (see Figure 2). The basis functions
are P3 polynomials on each sub-triangle and matchedC 1 across each internal edge. In addition, to
decrease the number of degrees of freedom, the normal derivative is assumed to vary linearly along the
external edges of the elements (this assumption does not hold on the internal edges). Finally, for FVS
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quadrangles, there are only three degrees of freedom on eachnode: the value of the function and its
first derivatives. Let us assume from now on thath > 0 stands for the mesh parameter and thatV

h is
a finite dimensional subspace ofV built using the previous finite element methods. Then, following
(8) for Argyris triangle and (9) for FVS quadrangles, for allw∈ V, there exists a sequence(wh)h>0 of
elements ofVh such that

‖wh−w‖V → 0 , when h → 0.

Finally, let us remark that there also exists some non conformal approximations (see (10)), but we do
not use them here because we develop our theory within the frame of conformal methods.

external edges

internal edges

Figure 2. FVS quadrangle. Location of degrees of freedom andsub-triangles.

3.2 Time discretization

Now, we consider the time discretization of problem (2.8). For N ∈ N
∗, the time step is denoted by

∆ t = T/N. The time scheme is initialized by choosinguh
0 anduh

1 in K
h = K ∩ V

h such that

lim
h→0 , ∆ t→0

‖uh
0−u0‖V +

∣

∣

∣

uh
1−uh

0

∆ t
−v0

∣

∣

∣

H

= 0. (3.1)

As far as the loading is concerned, we assume thatf belongs toL2(0,T;L2(Ω)). Then, for allx ∈ Ω
andn ∈ {1, . . . ,N−1}, we set

fn(x) =
1

∆ t

∫ (n+1)∆ t

n∆ t
f (x,s) ds. (3.2)

For time discretization, we consider the corresponding fully discretized scheme which consists in
findinguh

n+1, for all n ∈ {2, . . . ,N−1} solution of the following inequality






























Finduh
n+1 ∈ K

h such that

(w−uh
n+1)

T M
(uh

n+1−2uh
n+uh

n−1

∆ t2

)

+ (w−uh
n+1)

T K (βuh
n+1+(1−2β )uh

n+ βuh
n−1) > (w−uh

n+1)
T f nβ

(3.3)

which is a classical Newmark scheme of parametersβ andγ = 1/2. If (ψi)i stand for the finite element
basis functions, in the previous expression
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• f nβ is the loading which generic term reads

f nβ
i =

∫

Ω

(

β fn+1 +(1−2β ) fn+ β fn−1

)

ψi dx;

• M is the mass matrix which generic term reads

Mi j =

∫

Ω
ψi . ψ j dx; (3.4)

• K is the rigidity matrix which generic term reads

Ki j = a(ψi , ψ j). (3.5)

Let us remark that the previous inequality is also equivalent to the inclusion


































Find uh
n+1 ∈ K

h such that

(M+ β ∆ t2 K)uh
n+1 + ∆ t2 ∂ I

Kh(uh
n+1) ∋ f h

n

where

f h
n =

(

2M− (1−2β )∆ t2K
)

uh
n −

(

M+ β ∆ t2K
)

uh
n−1 + ∆ t2 f nβ .

(3.6)

As K
h is a non-empty closed convex subset ofW

h and thanks to lemma 2.1, we easily obtain by induc-
tion onn thatuh

n+1 is uniquely defined for alln ∈ {1, . . . ,N−1}. This kind of variational inequality
has been intensively studied by Paoli and Schatzman (see (6)and (5)).

4. A convergence result for a Newmark-Dumont-Paoli kind scheme

The discrete problem associated to (3.3) reads


































Finduh
n+1 ∈ K

h such that for allwh ∈ K
h

∫

Ω

uh
n+1−2uh

n+uh
n−1

∆ t2 . (wh−uh
n+1) dx + a(βuh

n+1+(1−2β )uh
n+ βuh

n−1 , wh−uh
n+1)

>

∫

Ω

[

β fn+1 +(1−2β ) fn+ β fn−1

]

. (wh−uh
n+1) dx.

In (1), Dumont and Paoli studied the same kind of problem, corresponding to a fully discretized beam
problem. They established unconditional stability and gave a convergence result forβ = 1/2, whereas
a conditional stability result is obtained whenβ ∈ [0,1/2[. In the following, we shall adapt their proof
to the case of a Kirchhoff-Love plate, restricting ourselves to the caseβ = 1/2. So the fully discretized
scheme we consider reads







































Finduh
n+1 ∈ K

h such that for allwh ∈ K
h

∫

Ω

uh
n+1−2uh

n+uh
n−1

∆ t2 . (wh−uh
n+1) dx + a

(

uh
n+1 +uh

n−1

2
, wh−uh

n+1

)

>

∫

Ω

fn+1 + fn−1

2
. (wh−uh

n+1) dx.

(4.1)
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The following result, which states that the discrete solution is uniformly bounded in time, is straigh-
forwardly obtained by adapting the proof of Proposition 3.1of (1).

LEMMA 4.1 Letβ = 1/2, then there exists a positive constantC( f ,u0,v0) depending only on the data
such that for allh > 0 and for allN > 1

∣

∣

∣

uh
n+1−uh

n

∆ t

∣

∣

∣

2

H

+
1
2

a(uh
n,u

h
n) +

1
2

a(uh
n+1,u

h
n+1) 6 C( f ,u0,v0) (4.2)

for n ∈ {1, . . . ,N−1}, where(uh
n+1)1 6 n 6 N−1 are solutions of problem (4.1).

Now, let us build the sequence of approximate solutions(uh,N)h>0,N>1 of problem (4.1) by linear
interpolation











If t ∈ [n∆ t,(n+1)∆ t] , 0 6 n 6 N−1 , we set

uh,N(x,t) = uh
n(x)

(n+1)∆ t− t
∆ t

+ uh
n+1(x)

t −n∆ t
∆ t

(4.3)

which is defined onΩ × [0,T]. Let us observe that these functions are continuous in time (obvious)
and space (for alln, uh

n belongs toH2(Ω) which is included inC 0(Ω̄ )). Moreover, because of (4.2),
for all h > 0 andN > 1, functionsuh,N belongs toL∞(0,T;V) and are uniformly bounded in this space.

As u̇h,N(x,t) =
uh

n+1(x)−uh
n(x)

∆ t
for t ∈ [n∆ t,(n+ 1)∆ t], using again (4.2), functions ˙uh,N belong

to L∞(0,T;L2(Ω)) and are also uniformly bounded in this space. So there existsa subsequence still
denoted(uh,N)h>0,N>1 andu ∈ U such that we have the following convergences

uh,N ⇀ u weakly* in L∞(0,T;V),
u̇h,N ⇀ u̇ weakly* in L∞(0,T;L2(Ω)).

As the injectionH2(Ω)) →֒ H1+ξ (Ω)) is compact (Rellich’s lemma, forξ < 1), and with Simon’s
lemma ((11), Corollary 4, page 85), we deduce that{ w ∈ L∞(0,T;V) , ẇ ∈ L∞(0,T;L2(Ω)) } is
compactly embedded inC 0(0,T;H1+ξ (Ω)), and then inC 0([0,T] × Ω̄ ). Therefore, after another
subsequence extraction if necessary, we have

uh,N → u strongly inC
0(0,T;H1+ξ (Ω)) and inC

0([0,T] × Ω̄).

Consequently, we obtain the following results.

• As L∞(0,T;L2(Ω)) is included inL2(0,T;L2(Ω)), u̇ belongs to this space. Moreover, as all
functionsuh,N belong toL2(0,T;K), u also belongs to it. Sou belongs toŨ.

• For everyh and N, uh,N(x,0) = uh
0(x) which converges towardsu0 in V (see (3.1)). As

V ⊂ H1+ξ (Ω) with continuous injection, thenu(.,0) = u0 .

Then, we shall prove the following result.

THEOREM 4.1 Let β = 1/2. Then, the sequence of approximate solutions(uh,N)h>0,N>1 given by
(4.3) converges weakly* tou in { w∈ L∞(0,T;V) / ẇ∈ L∞(0,T;L2(Ω)) }. Moreover,u belongs toŨ,
is such thatu(.,0) = u0 and is a solution of Problem (2.8).
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The corollary is that the frictionless elastodynamic problem for a Kirchhoff-Love bending plate be-
tween two rigid obstacles has at least one solution.

Proof of Theorem 4.1.

Construction of a discrete test-function.

To obtain (2.8) from (4.1), a first point is to associate to anytest-function ˜w a discrete one which is close
to it. A natural idea would be to definewh

n as the linear projection, defined by the bilinear forma, on
spaceVh of an approximate value of ˜w at timen∆ t. Unfortunately, this projection does not preserve
unilateral constraints. Then, this choice would not necessarily give a test-function inKh.

So, letw̃ be a test-function such that ˜w ∈ Ũ andw̃(.,T) = u(.,T). Forε ∈ ]0,T/2[, we defineφ as a
C 1-function such that







0 6 φ(t) 6 1 , t ∈ [0,T]
φ(t) = 0 , t ∈ [T −3ε/2,T]
φ(t) = 1 , t ∈ [0,T −2ε].

(4.4)

We setw = (1−φ) u + φ w̃. Then, by construction,w(.,t) = u(.,t) for all t ∈ [T −3ε/2,T]. And,
sinceK is convex, we have immediatelyw ∈ Ũ.

Now, letη ∈ ]0,ε/2[ andχ ∈ ]0,1[. Following (1), we definewη,χ by

wη,χ(x,t) = u(x,t) +
1
η

∫ t+η

t

(

(1− χ)w(x,s) − u(x,s)
)

ds , t ∈ [0,T − ε/2]. (4.5)

Sinceu∈ U andw∈ Ũ, we have clearly






wη,χ − u ∈ C 0(0,T − ε/2;V)

wη,χ ∈ L∞(0,T − ε/2;V) ∩ C 0(0,T − ε/2;H1+ξ (Ω))
ẇη,χ ∈ L2(0,T − ε/2;L2(Ω)).

Moreover, we can selectη such thatwη,χ satisfies strictly the constraint. More precisely, for all
t ∈ [0,T − ε/2] and for allx ∈ Ω

wη,χ(x,t) =
1
η

∫ t+η

t
(1− χ)w(x,s) ds + u(x,t) − 1

η

∫ t+η

t
u(x,s) ds.

Let us recall that, in the definition of convexK, it is introduced a scalarg such that

g1(x) 6 −g < 0 < g 6 g2(x) , ∀x∈ Ω .

First, asw∈ Ũ, we haveg1(x) 6 w(x,t) 6 g2(x) for all x andt. So,

g1(x)+ χg 6 (1− χ)g1(x) 6
1
η

∫ t+η

t
(1− χ)w(x,s) ds 6 (1− χ)g2(x) 6 g2(x)− χg.

Second, let us recall thatu belongs toC 0([0,T] × Ω̄). Thus, by uniform continuity on a compact
set, for allδ ∈ ]0,χg/2[ (constantg > 0 is defined by (2.7)), there existsη > 0 such that for allx,
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|u(x,t) − u(x,s)| < δ whenever|t − s| < η . Then

∣

∣

∣
u(x,t) − 1

η

∫ t+η

t
u(x,s) ds

∣

∣

∣
6

1
η

∫ t+η

t

∣

∣u(x,t) − u(x,s)
∣

∣ ds 6
1
η

η δ = δ < χ
g
2
.

Finally, we have

g1(x) +
χ g
2

6 wη,χ (x,t) 6 g2(x) − χ g
2

, ∀ x ∈ Ω , ∀ t ∈ [0,T − ε/2] (4.6)

and it ensures thatwη,χ(x,t) ∈ [g1(x)+ χg/2,g2(x)− χg/2].

LEMMA 4.2 Construction of a discrete test-function
Forx ∈ Ω , let wh

n be

wh
n(x) =

{

uh
n+1(x) + πh(wη,χ (x,n∆ t) − u(x,n∆ t)) if n∆ t 6 T − ε

uh
n+1(x) if n∆ t > T − ε

whereπh is linear projection, defined by the bilinear forma, on spaceVh. Then there existsh0 > 0 and
N0 > 1 such that, for allh ∈ ]0,h0[ and for allN > N0 , wh

n belongs toKh, for all n ∈ {1, . . . ,N−1}.

Proof of Lemma 4.2.

- It is obvious thatwh
n belongs toVh andK

h whenn∆ t > T − ε.

- Otherwise, whenn∆ t 6 T − ε, wh
n is written as follows

wh
n(x) = uh,N(x,(n+1)∆ t) − u(x,(n+1)∆ t)

+ u(x,(n+1)∆ t) − u(x,n∆ t)
+ wη,χ(x,n∆ t)
+ (πh− Id)(wη,χ(x,n∆ t) − u(x,n∆ t)).

First, as(uh,N)h>0,N>1 converges strongly tou in C 0(0,T;H1+ξ (Ω)), and using the continuity of the
canonical injection fromH1+ξ (Ω) into C 0(Ω̄ ), for h small enough andN large enough, we obtain

sup
x∈Ω̄

|uh,N(x,(n+1)∆ t) − u(x,(n+1)∆ t)| 6 C ‖uh,N − u‖
C 0(0,T;H1+ξ (Ω)) 6

χ g
6

.

Second,u is continuous on the compact set[0,T] × Ω̄ . So, by uniform continuity, there exists∆ t0 or
N0 = T/∆ t0 , such that if∆ t 6 ∆ t0 or N > N0 , we have

sup
x∈Ω̄

|u(x,(n+1)∆ t) − u(x,n∆ t)| 6
χ g
6

.

Third, let us introduce the following constantγh , which depends onh. Because of the canonical em-
bedding fromV to H1+ξ (Ω) and the convergence of the finite element scheme, for allh > 0, it exists
γh such that

∀w∈ V , ‖πh w − w‖H1+ξ (Ω) 6 γh ‖w‖V and lim
h→0

γh = 0. (4.7)
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Then, forh small enough

sup
x∈Ω̄

|(πh− Id)(wη,χ(x,n∆ t) − u(x,n∆ t))| 6 C ‖(πh− Id)(wη,χ(.,n∆ t) − u(.,n∆ t))‖H1+ξ (Ω)

6 C γh ‖wη,χ − u‖L∞(0,T−ε/2;V) 6
χ g
6

.

Finally, using the previous results, forh small enough andN large enough, we have

− χ g
2

6 wh
n(x) − wη,χ (x,n∆ t) 6

χ g
2

for all x ∈ Ω andn ∈ {1, . . . ,N−1}, which leads to

g1(x) 6 wη,χ(x,n∆ t) − χ g
2

6 wh
n(x) 6 wη,χ(x,n∆ t) +

χ g
2

6 g2(x)

by using (4.6). And we can conclude thatwh
n belongs toKh. 2

Transformation of inequality (4.1).

Now, our goal is to show that the limitu is solution of the continuous impact problem (2.8). So, to use
the previous lemma, in all the following, we will assume thath ∈ ]0,h0[ andN > N0 . Thus, we set
∆ t = T/N. In (4.1), we takewh = wh

n, we multiply by∆ t and add onn to obtain























































N−1

∑
n=1

(

∫

Ω

uh
n+1−2uh

n+uh
n−1

∆ t2 . (wh
n−uh

n+1) dx
)

∆ t

+
N−1

∑
n=1

( 1
2

a
(

uh
n+1+uh

n−1 , wh
n−uh

n+1

) )

∆ t

>

N−1

∑
n=1

( 1
2

∫

Ω
( fn+1 + fn−1) . (wh

n−uh
n+1) dx

)

∆ t.

(4.8)

From the definition of the discrete test-function (lemma 4.2), we havewh
n − uh

n+1 = 0 as far as

n∆ t > T − ε. So the above sums end to integerN′ which is the integer part of
T − ε

∆ t
.
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Moreover, up to the coefficient∆ t, the first term of (4.8) can be rewritten

N′

∑
n=1

∫

Ω

uh
n+1−2uh

n+uh
n−1

∆ t2 . (wh
n−uh

n+1) dx

=
N′

∑
n=1

∫

Ω

( uh
n+1−uh

n

∆ t
− uh

n−uh
n−1

∆ t

)

.
wh

n−uh
n+1

∆ t
dx

=

∫

Ω

uh
N′+1−uh

N′

∆ t
.

wh
N′ −uh

N′+1

∆ t
dx −

N′

∑
n=1

∫

Ω

uh
n−uh

n−1

∆ t
.
(wh

n−uh
n+1)− (wh

n−1−uh
n)

∆ t
dx

−
∫

Ω

uh
1−uh

0

∆ t
.

wh
0−uh

1

∆ t
dx

= −
N′+1

∑
n=1

∫

Ω

uh
n−uh

n−1

∆ t
.
(wh

n−uh
n+1)− (wh

n−1−uh
n)

∆ t
dx −

∫

Ω

uh
1−uh

0

∆ t
.

wh
0−uh

1

∆ t
dx

aswh
N′+1 − uh

N′+2 = 0. Finally, we have














































































∫

Ω

uh
1−uh

0

∆ t
. (wh

0−uh
1) dx

+
N′

∑
n=1

( 1
2

∫

Ω
( fn+1 + fn−1) . (wh

n−uh
n+1) dx

)

∆ t

6

N′

∑
n=1

( 1
2

a
(

uh
n+1+uh

n−1 , wh
n−uh

n+1

) )

∆ t

−
N′+1

∑
n=1

(

∫

Ω

uh
n−uh

n−1

∆ t
.
(wh

n−uh
n+1)− (wh

n−1−uh
n)

∆ t
dx
)

∆ t.

(4.9)

The goal of the remainder of this proof is to makeh and∆ t tend to zero. So each term of the previous
expression will be examined separately in the four following steps.

Step 1. By definition,wh
0(x) −uh

1(x) = πh(wη,χ (x,0) − u(x,0)). Then

∫

Ω

uh
1−uh

0

∆ t
(wh

0−uh
1) dx =

∫

Ω

uh
1−uh

0

∆ t
(πh− Id)(wη,χ(x,0) − u(x,0)) dx

+

∫

Ω

uh
1−uh

0

∆ t
(wη,χ(x,0) − u(x,0)) dx.

So, (4.7) leads to

|(πh− Id)(wη,χ(.,0) − u(.,0))|H 6 ‖(πh− Id)(wη,χ(.,0) − u(.,0))‖H1+ξ (Ω)

6 γh ‖(wη,χ(.,0) − u(.,0))‖V
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with lim
h→0

γh = 0. Finally, from (3.1), it is known that lim
h→0 , ∆ t→0

∣

∣

∣

uh
1−uh

0

∆ t
−v0

∣

∣

∣

H

= 0, and we obtain

∫

Ω

uh
1−uh

0

∆ t
(wh

0−uh
1) dx

h , ∆ t → 0−→
∫

Ω
v0(x) . (wη,χ (x,0) − u(x,0)) dx. (4.10)

Step 2. The second term of (4.9) can be split in two parts of the same following form

N′

∑
n=1

∫

Ω
fn′ (wh

n−uh
n+1) dx ∆ t =

N′

∑
n=1

∫

Ω
fn′(x) πh(wη,χ(x,n∆ t) − u(x,n∆ t)) dx ∆ t

=
N′

∑
n=1

∫

Ω
fn′(x) (πh− Id)(wη,χ(x,n∆ t) − u(x,n∆ t)) dx ∆ t

+
N′

∑
n=1

∫ (n′+1)∆ t

n′∆ t

∫

Ω
f (x,s)

[

(wη,χ(x,n∆ t) − u(x,n∆ t)) − (wη,χ (x,s) − u(x,s))
]

dx ds

+
N′

∑
n=1

∫ (n′+1)∆ t

n′∆ t

∫

Ω
f (x,s) (wη,χ(x,s) − u(x,s)) dx ds

≡ S1 + S2 + S3

from the definition offn′ (see (3.2)), and those of the discrete test-functionwh
n . Here, we haven′ = n+1

or n′ = n−1. Let us examine successively each of these terms.

(1) As in step 1, (4.7) leads to

|(πh− Id)(wη,χ(.,n∆ t) − u(.,n∆ t))|H 6 γh ‖(wη,χ(.,n∆ t) − u(.,n∆ t))‖V

6 γh ‖wη,χ − u‖L∞(0,T−ε/2;V)

for all n ∈ {1, . . . ,N′}. Then we deduce :

|S1| =
∣

∣

∣

N′

∑
n=1

∫

Ω
fn′(x) (πh− Id)(wη,χ(x,n∆ t) − u(x,n∆ t)) dx ∆ t

∣

∣

∣

6

(

N′

∑
n=1

| fn′ |H ∆ t

)

γh ‖wη,χ − u‖L∞(0,T−ε/2;V)

6

(√
T ‖ f‖L2(0,T;H)

)

γh ‖wη,χ − u‖L∞(0,T−ε/2;V)
h → 0−→ 0.
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(2) The definition ofwη,χ (4.5) leads to

(wη,χ (x,n∆ t) − u(x,n∆ t)) − (wη,χ(x,s) − u(x,s))

=
1
η

∫ n∆ t+η

n∆ t

(

(1− χ)w(x,t) − u(x,t)
)

dt − 1
η

∫ s+η

s

(

(1− χ)w(x,t) − u(x,t)
)

dt

=
1
η

∫ s

n∆ t

(

(1− χ)w(x,t) − u(x,t)
)

dt − 1
η

∫ s+η

n∆ t+η

(

(1− χ)w(x,t) − u(x,t)
)

dt.

Moreover, ifϕ belongs toL2(0,T;H), a andb being such that 06 a < b 6 T, one has

∣

∣

∣

∫ b

a
ϕ(.,t) dt

∣

∣

∣

2

H

=

∫

Ω

(

∫ b

a
ϕ(x,t) dt

)2

dx 6 (b−a)

∫

Ω

∫ b

a
ϕ2(x,t) dtdx 6 (b−a) ‖ϕ‖2

L2(0,T;H)

or else

∣

∣

∣

∫ b

a
ϕ(.,t) dt

∣

∣

∣

H

6
√

b−a ‖ϕ‖L2(0,T;H).

This result implies that

|(wη,χ (.,n∆ t) − u(.,n∆ t)) − (wη,χ(.,s) − u(.,s))|H

6
2
√

|s−n∆ t|
η

‖(1− χ)w−u‖L2(0,T;H) 6
2
√

|s−n∆ t|
η

‖(1− χ)w−u‖L2(0,T;V).

As sbelongs to[(n−1)∆ t,n∆ t] or [(n+1)∆ t,(n+2)∆ t], in all cases, we obtain

|S2| =
N′

∑
n=1

∫ (n′+1)∆ t

n′∆ t

∫

Ω
f (x,s)

[

(wη,χ(x,n∆ t)−u(x,n∆ t)) − (wη,χ (x,s)−u(x,s))
]

dxds

6

(

N′

∑
n=1

∫ (n′+1)∆ t

n′∆ t
| f (.,s)|H ds

)

2
√

2 ∆ t
η

‖(1− χ)w−u‖L2(0,T;V)

6
√

T ‖ f‖L2(0,T;H)

2
√

2 ∆ t
η

‖(1− χ)w−u‖L2(0,T;V)
∆ t → 0−→ 0.

(3) Finally, aswη,χ − u belongs toC 0(0,T − ε/2;V) which is contained inL2(0,T;H), as f is in
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L2(0,T;H) andN′ is the integer part of
T − ε

∆ t
, then we can make∆ t go to zero and obtain

S3 =
N′

∑
n=1

∫ (n′+1)∆ t

n′∆ t

∫

Ω
f (x,s) (wη,χ (x,s) − u(x,s)) dx ds

=























∫ (N′+2)∆ t

2∆ t

∫

Ω
f (x,s) (wη,χ (x,s) − u(x,s)) dx ds if n′ = n+1

∫ N′∆ t

0

∫

Ω
f (x,s) (wη,χ (x,s) − u(x,s)) dx ds if n′ = n−1

∆ t → 0−→
∫ T−ε

0

∫

Ω
f (x,s) (wη,χ(x,s) − u(x,s)) dx ds.

So that we can conclude this step and have

N′

∑
n=1

( 1
2

∫

Ω
( fn+1 + fn−1) . (wh

n−uh
n+1) dx

)

∆ t
h , ∆ t → 0−→

∫ T−ε

0

∫

Ω
f (wη,χ − u) dx ds. (4.11)

Step 3. We carry on the convergence of the third term of (4.9). Here, we shall use some results we recall
hereafter.
- The bilinear forma defines a scalar product onV which is equivalent to the canonical scalar product
(see lemma 2.1). So there existsC > 0 such that|a(w,w)| 6 C ‖w‖V , for all w ∈ V.
- πh is the linear projection on spaceVh defined by the bilinear forma. In particular, for allwh ∈ V

h

andv ∈ V, a(wh,πhv) = a(wh,v).

Now, let us observe that

1
2

N′

∑
n=1

a
(

uh
n+1+uh

n−1,w
h
n−uh

n+1

)

∆ t =
1
2

a(uh
0,w

h
0−uh

1) ∆ t

+
1
2

N′+1

∑
n=1

a
(

uh
n−1,(w

h
n−uh

n+1) − (wh
n−1−uh

n)
)

∆ t

+
1
2

N′

∑
n=1

a
(

uh
n+1+uh

n,w
h
n−uh

n+1

)

∆ t

≡ 1
2

S1 +
1
2

S2 + S3

aswh
N′+1 − uh

N′+2 = 0. Now, each of these terms will be studied.

(1) By definition,wh
0(x) −uh

1(x) = πh(wη,χ(x,0) − u(x,0)). So

|S1| = |a(uh
0,w

h
0−uh

1)| ∆ t = |a(uh
0,wη,χ (.,0) − u(.,0)| ∆ t

6 C2 ‖uh
0‖V ‖wη,χ(.,0) − u(.,0)‖V ∆ t

h , ∆ t → 0−→ 0

(uh
0)h being bounded as the time scheme is initialized by choosinguh

0 such that lim
h→0

‖uh
0−u0‖V = 0 (see

(3.1)).
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(2) Here again, from the definitions of the test functionswh
p and the projectionπh, we have

S2 =
N′+1

∑
n=1

a
(

uh
n−1,(w

h
n−uh

n+1) − (wh
n−1−uh

n)
)

∆ t

=
N′+1

∑
n=1

a
(

uh
n−1,(wη,χ − u)(.,n∆ t) − (wη,χ − u)(.,(n−1)∆ t)

)

∆ t.

Following Step 2-(2), withs = (n−1)∆ t, we obtain

|(wη,χ −u)(.,n∆ t) − (wη,χ −u)(.,(n−1)∆ t)|H 6
2
√

∆ t
η

‖(1− χ)w−u‖L2(0,T;H).

This property can be extended to the space derivatives (in the distribution sense) of(1−χ)w−u exactly
in the same way and leads to

‖(wη,χ −u)(.,n∆ t) − (wη,χ −u)(.,(n−1)∆ t)‖V 6
2
√

∆ t
η

‖(1− χ)w−u‖L2(0,T;V). (4.12)

Then, using this inequality and (4.2), we have

|S2| 6

N′+1

∑
n=1

√

a(uh
n−1,u

h
n−1)

2 C
√

∆ t
η

‖(1− χ)w−u‖L2(0,T;V) ∆ t

6

N′+1

∑
n=1

√

2 C( f ,u0,v0)
2 C

√
∆ t

η
‖(1− χ)w−u‖L2(0,T;V) ∆ t

6 T
√

2 C( f ,u0,v0)
2 C

√
∆ t

η
‖(1− χ)w−u‖L2(0,T;V)

∆ t → 0−→ 0.

(3) As functionuh,N is linear in time on each interval[n∆ t,(n+1)∆ t] (see (4.3)), we have

∫ (n+1)∆ t

n∆ t
uh,N(.,s) ds =

1
2

(uh
n+1+uh

n) ∆ t
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which allows to rewrite the third term as

S3 =
1
2

N′

∑
n=1

a
(

uh
n+1+uh

n , wh
n−uh

n+1

)

∆ t =
N′

∑
n=1

∫ (n+1)∆ t

n∆ t
a
(

uh,N(.,s) , wh
n−uh

n+1

)

ds

=
N′

∑
n=1

∫ (n+1)∆ t

n∆ t
a
(

uh,N(.,s) , (wη,χ −u)(.,n∆ t)
)

ds

=
N′

∑
n=1

∫ (n+1)∆ t

n∆ t
a
(

uh,N(.,s) , (wη,χ −u)(.,n∆ t) − (wη,χ −u)(.,s)
)

ds

+

∫ T−ε

0
a
(

uh,N(.,s) , (wη,χ −u)(.,s)
)

ds

−
∫ ∆ t

0
a
(

uh,N(.,s) , (wη,χ −u)(.,s)
)

ds −
∫ T−ε

(N′+1)∆ t
a
(

uh,N(.,s) , (wη,χ −u)(.,s)
)

ds

With (4.12) in which(n−1)∆ t is replaced bys, that belongs to[n∆ t,(n+1)∆ t], we obtain

N′

∑
n=1

∫ (n+1)∆ t

n∆ t
a
(

uh,N(.,s) , (wη,χ −u)(.,n∆ t) − (wη,χ −u)(.,s)
)

ds

6 C2 T ‖uh,N‖L∞(0,T;V)
2
√

∆ t
η

‖(1− χ)w−u‖L2(0,T;V)
∆ t → 0−→ 0

as functions(uh,N)h>0,N>1 are uniformly bounded because of (4.2). The same reason leads to

∣

∣

∣

∫ ∆ t

0
a
(

uh,N(.,s) , (wη,χ −u)(.,s)
)

ds
∣

∣

∣

6

∫ ∆ t

0
C2 ‖uh,N(.,s)‖V‖(wη,χ −u)(.,s)‖V ds

6 ∆ t C2 ‖uh,N‖L∞(0,T;V)‖(wη,χ −u)‖L∞(0,T−ε/2;V)
∆ t → 0−→ 0

and, in a similar way

∫ T−ε

(N′+1)∆ t
a
(

uh,N(.,s) , (wη,χ −u)(.,s)
)

ds
∆ t → 0−→ 0.

Finally, as the inclusion ofL∞(0,T;V) into L2(0,T;V) is continuous, functions(uh,N)h>0,N>1, being
uniformly bounded inL∞(0,T;V), are also uniformly bounded inL2(0,T;V). So, up to a possible
subsequence extraction,(uh,N)h>0,N>1 converges weakly in this space towardsu (uniqueness of the
limit). So that we obtain

∫ T−ε

0
a
(

uh,N(.,s) , (wη,χ −u)(.,s)
)

ds
h , ∆ t → 0−→

∫ T−ε

0
a
(

u(.,s) , (wη,χ −u)(.,s)
)

ds
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and then

1
2

N′

∑
n=1

a
(

uh
n+1 +uh

n−1,w
h
n−uh

n+1

)

∆ t
h , ∆ t → 0−→

∫ T−ε

0
a
(

u(.,s) , (wη,χ −u)(.,s)
)

ds. (4.13)

Step 4. At last, let us study the convergence of the fourth term of (4.9). To simplify the presentation, we
introduce the notation

ψ∆ t(x,t) =
(wη,χ −u)(x,t + ∆ t) − (wη,χ −u)(x,t)

∆ t
, ∀t ∈ [0,T − ε/2] , ∀x∈ Ω

and we recall that, by definition ofN′, wh
N′+1 − uh

N′+2 = 0 and that, by definition of the discrete
test-functions (see lemma 4.2),wh

p(x)−uh
p+1(x) = πh(wη,χ (x, p∆ t) − u(x, p∆ t)). Then, we deduce

the following decomposition

N′+1

∑
n=1

(

∫

Ω

uh
n−uh

n−1

∆ t
.
(wh

n−uh
n+1)− (wh

n−1−uh
n)

∆ t
dx
)

∆ t

= −
∫

Ω

uh
N′+1−uh

N′

∆ t
. (wh

N′ −uh
N′+1) dx

+
N′

∑
n=1

(

∫

Ω

uh
n−uh

n−1

∆ t
. (πh− Id)ψ∆ t(.,(n−1)∆ t) dx

)

∆ t

+
N′

∑
n=1

∫ n∆ t

(n−1)∆ t

∫

Ω

uh
n−uh

n−1

∆ t
. (ψ∆ t(.,(n−1)∆ t)−ψ∆ t(.,t)) dxdt

+
N′

∑
n=1

∫ n∆ t

(n−1)∆ t

∫

Ω

uh
n−uh

n−1

∆ t
. ψ∆ t(.,t) dxdt

≡ S1 + S2 + S3 + S4.
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(1) First, using (4.2) and the definition ofwh
N′ , we have

|S1| =
∣

∣

∣

∫

Ω

uh
N′+1−uh

N′

∆ t
. (wh

N′ −uh
N′+1) dx

∣

∣

∣

=
∣

∣

∣

∫

Ω

uh
N′+1−uh

N′

∆ t
. πh(wη,χ (x,N′∆ t) − u(x,N′∆ t)) dx

∣

∣

∣

6

∣

∣

∣

uh
N′+1−uh

N′

∆ t

∣

∣

∣

H

∣

∣

∣
πh(wη,χ(.,N′∆ t) − u(.,N′∆ t)) dx

∣

∣

∣

H

6
√

C( f ,u0,v0)
∣

∣

∣
πh(wη,χ(.,N′∆ t) − u(.,N′∆ t)) dx

∣

∣

∣

H

6
√

C( f ,u0,v0)
∣

∣

∣
(πh− Id) (wη,χ (.,N′∆ t) − u(.,N′∆ t)) dx

∣

∣

∣

H

+
√

C( f ,u0,v0)
∣

∣

∣
wη,χ (.,N′∆ t) − u(.,N′∆ t) dx

∣

∣

∣

H

.

Let us recall that, by construction,w(.,t) = u(.,t) for all t ∈ [T −3ε/2,T] and thatN′ is the integer
part of T−ε

∆ t . So, for∆ t small enough, it is possible to haveN′∆ t > T − 3ε/2. Consequently, the
definition ofwη,χ (4.5) leads to

wη,χ(.,N′∆ t)−u(.,N′∆ t) =
1
η

∫ N′∆ t+η

N′∆ t

(

(1− χ)w(.,t) − u(.,t)
)

dt =
χ
η

∫ N′∆ t+η

N′∆ t
u(.,t) dt

Moreover, following Step 2-(2), ifϕ belongs toL∞(0,T;H), a andb being such that 06 a < b 6 T,
one has
∣

∣

∣

∫ b

a
ϕ(.,t) dt

∣

∣

∣

2

H

6 (b−a)

∫

Ω

∫ b

a
ϕ2(x,t) dtdx 6 (b−a)2 sup

t
|ϕ(.,t)|2H = (b−a)2 ‖ϕ‖2

L∞(0,T;H)

or else
∣

∣

∣

∫ b

a
ϕ(.,t) dt

∣

∣

∣

H

6 (b−a) ‖ϕ‖L∞(0,T;H).

As u belongs toL∞(0,T;V), this result implies that

∣

∣

∣
wη,χ(.,N′∆ t) − u(.,N′∆ t)

∣

∣

∣

H

=
χ
η

∣

∣

∣

∫ N′∆ t+η

N′∆ t
u(.,t) dt

∣

∣

∣

H

6 χ ‖u‖L∞(0,T;H) 6 χ ‖u‖L∞(0,T;V).

Finally, using (4.7), asγh goes to zero whenh goes to zero, we have
∣

∣

∣
(πh− Id) (wη,χ (.,N′∆ t) − u(.,N′∆ t)) dx

∣

∣

∣

H

6 ‖(πh− Id)(wη,χ(.,N′∆ t) − u(.,N′∆ t))‖H1+ξ (Ω)

6 ‖(πh− Id)(wη,χ(.,N′∆ t) − u(.,N′∆ t))‖V

6 γh ‖wη,χ − u‖L∞(0,T−ε/2;V) 6 χ ‖u‖L∞(0,T;V)

if h is chosen small enough. Hence, it leads to

|S1| 6 2 χ
√

C( f ,u0,v0) ‖u‖L∞(0,T;V) ≡ χ C ‖u‖L∞(0,T;V). (4.14)
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(2) Let us now derive an estimate forS2 .

|S2| =
∣

∣

∣

N′

∑
n=1

(

∫

Ω

uh
n−uh

n−1

∆ t
. (πh− Id)ψ∆ t(.,(n−1)∆ t) dx

)

∆ t
∣

∣

∣

6

N′

∑
n=1

∣

∣

∣

uh
n−uh

n−1

∆ t

∣

∣

∣

H

|(πh− Id)ψ∆ t(.,(n−1)∆ t)|H ∆ t

6
√

C( f ,u0,v0)
N′

∑
n=1

|(πh− Id)ψ∆ t(.,(n−1)∆ t)|H ∆ t

6 γh

√

C( f ,u0,v0)
N′

∑
n=1

‖ψ∆ t(.,(n−1)∆ t)‖V ∆ t ,

6 γh

√

C( f ,u0,v0)
√

N

(

N′

∑
n=1

‖∆ t ψ∆ t(.,(n−1)∆ t)‖2
V

)1/2

thanks to (4.2) and (4.7). Moreover, the definitions ofψ∆ t andwη,χ (4.5) lead to

‖∆ t ψ∆ t(.,(n−1)∆ t)‖2
V

= ‖(wη,χ −u)(x,n∆ t) − (wη,χ −u)(x,(n−1)∆ t)‖2
V

=
∥

∥

∥

∫ n∆ t+η

n∆ t

(1− χ)w(x,t) − u(x,t)
η

dt −
∫ (n−1)∆ t+η

(n−1)∆ t

(1− χ)w(x,t) − u(x,t)
η

dt
∥

∥

∥

2

V

=
∥

∥

∥

∫ n∆ t+η

(n−1)∆ t+η

(1− χ)w(x,t) − u(x,t)
η

dt −
∫ n∆ t

(n−1)∆ t

(1− χ)w(x,t) − u(x,t)
η

dt
∥

∥

∥

2

V

6 2
∥

∥

∥

∫ n∆ t+η

(n−1)∆ t+η

(1− χ)w(x,t) − u(x,t)
η

dt
∥

∥

∥

2

V

+ 2
∥

∥

∥

∫ n∆ t

(n−1)∆ t

(1− χ)w(x,t) − u(x,t)
η

dt
∥

∥

∥

2

V

. (4.15)

Now, if ϕ belongs toL2(0,T;H), one has

N′

∑
n=1

∣

∣

∣

∫ n∆ t

(n−1)∆ t
ϕ(.,t) dt

∣

∣

∣

2

H

=
N′

∑
n=1

∫

Ω

(

∫ n∆ t

(n−1)∆ t
ϕ(x,t) dt

)2

dx

6

N′

∑
n=1

∆ t
∫

Ω

∫ n∆ t

(n−1)∆ t
ϕ2(x,t) dtdx

6 ∆ t
∫

Ω

∫ T

0
ϕ2(x,t) dtdx = ∆ t ‖ϕ‖2

L2(0,T;H).
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In a similar way, asη < ε/2 andN′∆ t 6 T − ε (definition ofN′), we haveN′∆ t + η 6 T and then

N′

∑
n=1

∣

∣

∣

∫ n∆ t+η

(n−1)∆ t+η
ϕ(.,t) dt

∣

∣

∣

2

H

6 ∆ t ‖ϕ‖2
L2(0,T;H).

If ϕ belongs toL2(0,T;V), the previous properties can be extended to its space derivatives (in the
distribution sense) exactly in the same way and lead to

(

N′

∑
n=1

∥

∥

∥

∫ n∆ t

(n−1)∆ t
ϕ(.,t) dt

∥

∥

∥

2

V

+
N′

∑
n=1

∥

∥

∥

∫ n∆ t+η

(n−1)∆ t+η
ϕ(.,t) dt

∥

∥

∥

2

V

)1/2

6
√

2 ∆ t ‖ϕ‖L2(0,T;V).

Settingϕ =
1
η

((1− χ)w − u) in the above inequality, this result and (4.15) implie that

|S2| 6 γh

√

C( f ,u0,v0)
√

N

(

N′

∑
n=1

‖∆ t ψ∆ t(.,(n−1)∆ t)‖2
V

)1/2

6 γh

√

C( f ,u0,v0)
√

N
2
√

∆ t
η

‖(1− χ)w − u‖L2(0,T;V)

6 γh

√

C( f ,u0,v0)
2
√

T
η

‖(1− χ)w − u‖L2(0,T;V)
h → 0−→ 0.

(3) To treat the third term, we begin by the following transformation. First, let us recall that the defini-
tions ofψ∆ t andwη,χ lead, for allτ ∈ [0,T − ε/2], to

ψ∆ t(x,τ) =
(wη,χ −u)(x,τ + ∆ t) − (wη,χ −u)(x,τ)

∆ t

=
1

η∆ t

∫ τ+∆ t+η

τ+∆ t
((1− χ)w−u)(x,s) ds − 1

η∆ t

∫ τ+η

τ
((1− χ)w−u)(x,s) ds

=
1

η∆ t

∫ τ+η

τ
(((1− χ)w−u)(x,s+ ∆ t) − ((1− χ)w−u)(x,s)) ds

=
1

η∆ t

∫ τ+η

τ

(

∫ s+∆ t

s
((1− χ)ẇ− u̇)(x, r) dr

)

ds. (4.16)

Hence, we obtain

ψ∆ t(x,(n−1)∆ t) − ψ∆ t(x,t)

=
1

η∆ t

(

∫ (n−1)∆ t+η

(n−1)∆ t

∫ s+∆ t

s
((1− χ)ẇ− u̇)(x, r) drds−

∫ t+η

t

∫ s+∆ t

s
((1− χ)ẇ− u̇)(x, r) drds

)

=
1

η∆ t

(

∫ t

(n−1)∆ t

∫ s+∆ t

s
((1− χ)ẇ− u̇)(x, r) drds−

∫ t+η

(n−1)∆ t+η

∫ s+∆ t

s
((1− χ)ẇ− u̇)(x, r) drds

)

Now, a andb being such that 06 a < b 6 T, and settingϕ = (1− χ)ẇ− u̇ which belongs to
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L2(0,T;H), one has

∣

∣

∣

∫ b

a

∫ s+∆ t

s
ϕ(., r) drds

∣

∣

2
H

=

∫

Ω

(

∫ b

a

∫ s+∆ t

s
ϕ(x, r) drds

)2

dx

6

∫

Ω

(

∫ b

a

√
∆ t

[

∫ s+∆ t

s
ϕ2(x, r) dr

]1/2

ds

)2

dx

6

∫

Ω
(b−a) ∆ t

∫ b

a

∫ s+∆ t

s
ϕ2(x, r) dr ds dx

= (b−a) ∆ t
∫ b

a

(

∫

Ω

∫ s+∆ t

s
ϕ2(x, r) drdx

)

ds

6 (b−a)2 ∆ t ‖ϕ‖2
L2(0,T;H) (4.17)

and then

|ψ∆ t(.,(n−1)∆ t)−ψ∆ t(.,t)|H 6 2
|t − (n−1)∆ t|

η
√

∆ t
‖((1− χ)ẇ− u̇)‖L2(0,T;H).

Finally, using again (4.2), we obtain from these results

|S3| 6

N′

∑
n=1

∫ n∆ t

(n−1)∆ t

∣

∣

∣

uh
n−uh

n−1

∆ t

∣

∣

∣

H

|ψ∆ t(.,(n−1)∆ t)−ψ∆ t(.,t)|H dt

6
√

C( f ,u0,v0)
N′

∑
n=1

∫ n∆ t

(n−1)∆ t
2
|t − (n−1)∆ t|

η
√

∆ t
‖(1− χ)ẇ− u̇‖L2(0,T;H) dt

6
√

C( f ,u0,v0)
N′

∑
n=1

∆ t2

η
√

∆ t
‖(1− χ)ẇ− u̇‖L2(0,T;H)

6
√

C( f ,u0,v0)
T
√

∆ t
η

‖(1− χ)ẇ− u̇‖L2(0,T;H)
∆ t → 0−→ 0.

(4) Finally, from the definition ofuh,N (4.3), we have ˙uh,N(x,t) =
uh

n(x)−uh
n−1(x)

∆ t
whent belongs to

[(n−1)∆ t,n∆ t]. Hence,S4 can be rewritten

S4 =
N′

∑
n=1

∫ n∆ t

(n−1)∆ t

∫

Ω

uh
n−uh

n−1

∆ t
. ψ∆ t(.,t) dxdt

=

∫ T−ε

0

∫

Ω
u̇h,N . ψ∆ t dxdt −

∫ T−ε

N′∆ t

∫

Ω

uh
N′ −uh

N′−1

∆ t
. ψ∆ t(.,t) dxdt.
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Exactly as in the previous point, using (4.2) and (4.16)-(4.17), we obtain

∣

∣

∣

∫ T−ε

N′∆ t

∫

Ω

uh
N′ −uh

N′−1

∆ t
. ψ∆ t(.,t) dxdt

∣

∣

∣
6

∫ T−ε

N′∆ t

∣

∣

∣

uh
N′ −uh

N′−1

∆ t

∣

∣

∣

H

|ψ∆ t(.,t)|H dt

6

∫ T−ε

N′∆ t

√

C( f ,u0,v0)
1√
∆ t

‖(1− χ)ẇ− u̇‖L2(0,T;H) dt

6
√

C( f ,u0,v0)
√

∆ t ‖(1− χ)ẇ− u̇‖L2(0,T;H)
∆ t → 0−→ 0.

Moreover, following (4.16) withτ = t belonging to[0,T − ε], we have

ψ∆ t(x,t) =
1

η∆ t

∫ t+∆ t+η

t+∆ t
((1− χ)w−u)(x,s) ds − 1

η∆ t

∫ t+η

t
((1− χ)w−u)(x,s) ds

=
1

η∆ t

∫ t+η+∆ t

t+η
((1− χ)w−u)(x,s) ds − 1

η∆ t

∫ t+∆ t

t
((1− χ)w−u)(x,s) ds

∆ t → 0−→ 1
η

(((1− χ)w−u)(x,t + η) − ((1− χ)w−u)(x,t))

and this convergence is strong inL2(0,T − ε;V) as (1− χ)w− u ∈ L2(0,T;V). Furthermore, as
the inclusion ofL∞(0,T;H) into L2(0,T;H) is continuous, functions(u̇h,N)h>0,N>1, being uniformly
bounded inL∞(0,T;H), are also uniformly bounded inL2(0,T;H). So, up to a possible subsequence
extraction,(u̇h,N)h>0,N>1 converges weakly in this space towards ˙u (uniqueness of the limit). So that we
obtain
∫ T−ε

0

∫

Ω
u̇h,N ψ∆ t dxdt

h,∆ t→0−→
∫ T−ε

0

∫

Ω
u̇(x,t)

((1− χ)w−u)(x,t + η)− ((1− χ)w−u)(x,t)
η

dxdt

and then

S2 +S3+S4
h,∆ t → 0−→

∫ T−ε

0

∫

Ω
u̇(x,t)

((1− χ)w−u)(x,t + η)− ((1− χ)w−u)(x,t)
η

dxdt. (4.18)

Conclusion. Thanks to the previous convergence results (4.10)-(4.11)-(4.13)-(4.14) and (4.18), whenh
and∆ t tend to zero in inequality (4.9), we obtain for allε ∈]0,T/2[ andη ∈]0,ε/2[











































∫

Ω
v0(x) . (wη,χ(x,0) − u(x,0)) dx +

∫ T−ε

0

∫

Ω
f (wη,χ − u) dxdt

6

∫ T−ε

0
a
(

u(.,t) , (wη,χ −u)(.,t)
)

dt + χ C ‖u‖L∞(0,T;V)

−
∫ T−ε

0

∫

Ω
u̇(x,t)

((1− χ)w−u)(x,t + η)− ((1− χ)w−u)(x,t)
η

dxdt.

(4.19)

First, we shall makeη going to zero. As(1− χ)ẇ− u̇ ∈ L2(0,T;H), then

((1− χ)w−u)(x,t + η)− ((1− χ)w−u)(x,t)
η

=

∫ t+η

t

(1− χ)ẇ(x,s)− u̇(x,s)
η

ds

η → 0−→ (1− χ)ẇ(x,t)− u̇(x,t) strongly inL2(0,T − ε;H).
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With the same arguments, as(1− χ)w−u ∈ L2(0,T;V) ∩ C 0(0,T;H), we have first

wη,χ(x,t)−u(x,t) =
1
η

∫ t+η

t
((1− χ)w(x,s)−u(x,s)) ds

η → 0−→ (1− χ)w(x,t)−u(x,t) strongly inL2(0,T − ε;V)

and second, fort = 0,

wη,χ(x,0) − u(x,0)
η → 0−→ (1− χ)w(x,0)−u(x,0) strongly inH.

So, whenη goes to zero, inequality (4.19) becomes










































∫

Ω
v0(x) . ((1− χ)w(x,0)−u(x,0)) dx +

∫ T−ε

0

∫

Ω
f ((1− χ)w−u) dxdt

6

∫ T−ε

0
a(u(.,t) , ((1− χ)w−u)(.,t))) dt + χ C ‖u‖L∞(0,T;V)

−
∫ T−ε

0

∫

Ω
u̇ ((1− χ)ẇ− u̇) dxdt.

The proof is achieved by makingχ andε tend to zero, observing thatw− u = φ(w̃− u), whereφ is
defined by (4.4). 2

REMARK 4.1 Let us recall that, in their paper (1), Dumont and Paoli gave a more general result, includ-
ing in particular a conditional convergence when parameterβ belongs to[0,1/2[ . Actually, we could
have follow the same way. As a matter of fact, the coefficient

κh = sup
uh ∈ Vh\{0}

a(uh , uh)

|uh|2
H

,

they introduced in (1) to lead to a conditional stability, can be used in a same way for plates. It means
that the above Lemma 4.1, which states that the discrete solution is uniformly bounded in time, can
also be straighforwardly obtained from Proposition 3.1 of (1) under the same hypotheses. Then, up to
some technical details, if we follow more closely Dumont andPaoli’s proof, Theorem 4.1 remains valid.

The only point to discuss is the evaluation ofκh . In (1), the authors show thatκbeam
h ∼ EI

ρS
1

∆x4 ,

for a homogeneous and isotropic beam,∆x being the mesh size, which is uniform here. In the case
of a Kirchhoff-Love plate, if we assume it is made of a homogeneous and isotropic material too, then,
definition of bilinear forma(·, ·) shows thatκh is the highest eigenvalue of the bilaplacian operator on

the plate mesh. So, first, it proportional to
D

2 ρ ε
=

E ε2

3 (1−ν2) ρ
. Second, if the mesh is uniform of

sizeh, following for example (12), it is easy to see that the bilaplacian highest eigenvalue is of order

1/h4. Consequently, in our case, and under the previous assumptions,κ plate
h ∼ E ε2

3 (1−ν2) ρ
1
h4 , which

is quite close to the case of beams. Finally, from a practicalpoint of view, for a similar computational
cost, it is better to use an inconditionaly stable scheme. Consequently, we only tested the scheme with
β = 1/2.
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5. Numerical results and conclusions

We will consider a steel rectangular panel of length 120cm, width 40 cm and thickness equal to
ε = 0.5 cm. The flexural rigidity isD = 1.923 104, corresponding toE = 210 GPa, ν = 0.3
andρ = 7.77 103kg/m3. This plate is clamped along one edge and free along the threeothers. The
numerical tests are performed with GETFEM++ (13) and Matlab, using structured meshes (see Figures
3 and 4).

Let us recall the problem to be solved at each iteration


























Finduh
n+1 ∈ K

h such that

(M+ β ∆ t2 K)uh
n+1 + ∆ t2 ∂ I

Kh(uh
n+1) ∋ f h

n

wheref h
n =

(

2M− (1−2β )∆ t2K
)

uh
n −

(

M+ β ∆ t2K
)

uh
n−1 + ∆ t2 f nβ .

In practice, we have chosenβ = 1/2 in all the following computations. Since matrixA ≡ M + β ∆ t2 K
is symmetric and positive definite likeM andK, this problem is equivalent to the following minimization
problem

uh
n+1 = Argmin

w∈Kh

(

1
2

wT A w − wT f h
n

)

.

As the convex constraintsw ∈ K
h correspond to linear inequality constraints, such a problem can be

solved by using the Lagrange multipliers method, or interior-point methods, for instance. Here, as in
(14), we use the Matlab function "quadprog", which lies on the Lagrange multipliers method.

Figure 3. Bending clamped plate under a rigid obstacle: FVS quadrangular mesh.

5.1 Forced oscillations

In this section, we consider two flat symmetric obstacles along the plate length

g1(x) = −0.1 = −g2(x) , ∀x∈ Ω
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Figure 4. Bending clamped plate under a rigid obstacle: Argyris triangular mesh.

and we prescribe a sine-sweep base forced vibration, by meanof the following boundary conditions on
Γc

u(x,t) = c sin(ωt) ,
∂u
∂x

(x,t) = 0 , ∀x∈ Γc

with c = 0.09m andω = 10Hz. The displacements of the two free corners, for different time steps,
and for quadrangular and triangular meshes, are plotted on Figures 5, 6 and 7. Not surprisingly, due
to symmetry of the problem, the curves, corresponding to thedisplacements of the two corners, are
overlaid. Moreover, there is no significative qualitative difference between the FVS and the Argyris
approaches. As far as CPU times are concerned, they are givenin Table 1 for the numerical simulations
related to the previous test case. They are of same magnitudes for triangles and quadrangles, considering
the fact the degrees of freedom and the matrices sizes are different. Finally, analogous results as in (15),
for a beam impacting obstacles, are observed.

Time step 10−3 10−4 10−5

140 Argyris triangles 80 870 8880
140 FVS quadrilaterals 120 1220 12220

Table 1. CPU times in seconds (MacBook Pro computer with a 2.2GHz processor)

To complete this numerical study, some other results are given. First, the case of two flat symmetric
obstacles along the plate whereg1(x) = −0.01 = −g2(x), for all x ∈ Ω , is considered on Figure
8. Second, the case of various frequencies is investigated (see Figures 9, 10 and 11). All these results
confirm the previous conclusions.
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Figure 5. Displacement of a plate impacting flat obstacles - 140 FVS quadrilaterals and 140 Argyris triangles -∆ t = 10−3.

Figure 6. Displacement of a plate impacting flat obstacles - 140 FVS quadrilaterals and 140 Argyris triangles -∆ t = 10−4.
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Figure 7. Displacement of a plate impacting flat obstacles - 140 FVS quadrilaterals and 140 Argyris triangles -∆ t = 10−5.

Figure 8. Displacement of a plate impacting flat obstacles - 140 FVS and 140 Argyris elements -∆ t = 10−3 - Obstacle±0.01.
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Figure 9. Displacement of a plate impacting flat obstacles - 140 Argyris triangles -∆ t = 10−3 - ω = 10 Hz andω = 15 Hz.

Figure 10. Displacement of a plate impacting flat obstacles -140 Argyris triangles -∆ t = 10−3 - ω = 20 Hzandω = 25 Hz.
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Figure 11. Displacement of a plate impacting flat obstacles -140 FVS quadrilaterals -∆ t = 10−3 - ω = 30Hzandω = 35Hz.

5.2 Energy evolution

This section is devoted to the study of energy variations during the motion. So, here, a forced vibration
is not prescribed. The motion is due to an initial displacement u0, obtained as the static equilibrium
of the plate under a constant loadf0 = 8600N and an initial velocityv0 = 0. Moreover, the upper
obstacle is removed, which corresponds to setg2 = +∞. The lower obstacle is flat and remains to
g1 = −0.1 m.

First, as in the previous section, the displacements of the two free corners, and also the midpoint
between them, are given for rectangular (Figure 12) and triangular (Figure 13) meshes. The results are
very close. Here again, the three curves are overlaid. For the two corners, it was expected, but not for the
midpoint. To investigate this, a zoom was made on this curves(Figures 14, 15 and 16). They show a so
small difference in the motion of this three points that explains that this is not visible on the first figures.
Moreover, Figures 15 and 16 illustrate again there is no meaningful difference between triangular and
rectangular meshes. Finally, Figures 12 and 13 show the maximum displacements decrease as time
passes, which means that impacts create damping during the motion.
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Figure 12. Displacements in free vibrations - 140 FVS quadrilaterals -∆ t = 10−5.

Figure 13. Displacements in free vibrations - 160 Argyris triangles -∆ t = 10−5.
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Figure 14. Zoom on displacements in free vibrations - 140 FVSquadrilaterals -∆ t = 10−5.

Figure 15. Zoom on displacements in free vibrations - 140 FVSquadrilaterals -∆ t = 5 10−6.
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Figure 16. Zoom on displacements in free vibrations - 160 Argyris triangles -∆ t = 5 10−6.

Finally, we compare the variations of total energy obtainedfor different time steps and meshes. This
total energy is defined by

E(w,t) =
1
2

∫

Ω
(ẇ)2(x,t) dx +

1
2

a(w(.,t),w(.,t)) −
∫

Ω
f (x,t) . w(x,t) dx.

In the case of free vibrations, the loadingf is zero. The associated discrete energy reads

E(uh
n+1,u

h
n) =

1
2

∫

Ω

∣

∣

∣

uh
n+1−uh

n

∆ t

∣

∣

∣

2
dx +

1
2

a(uh
n,u

h
n).

Figures 17 and 18 show the discrete energy decreases. First of all, let us remark these curves exhibit a
small difference in the initial energy, which is due to difference of discretizations on the two meshes.
But it is a detail. The main point is that, in the two cases, energy is dissipated when the plate reaches
the obstacles. The same qualitative results were obtained in (2) and (1). By the way, our numerical
model is a fully implicit scheme. It seems that it corresponds to choose a restitution coefficient, defined
by (2.9), close to zero. The continuous problem energy will conserve if and only ife = 1, which is
a totally elastic shock. The results we obtain are then mechanically consistent. To conclude, when the
time step decreases, the loss of energy decreases too, whichtends to show the scheme creates a too big
numerical damping. Looking for energy conserving schemes for plates, as we did for beams in (15),
and also studying their convergence properties, is then of particular importance and will be the subject
of forthcoming papers.
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Figure 17. Total energy variations for different values of∆ t - 140 FVS quadrilaterals.

Figure 18. Total energy variations for different values of∆ t - 160 Argyris triangles.
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