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The aim of this Note is to present a quasi-optimal a priori error estimate for the linear
finite element approximation of the so-called two-dimensional Signorini problem, i.e. the
equilibrium of a plane linearly elastic body in contact with a rigid foundation. Previous
works on that subject give either non-optimal estimates or with a more restrictive
supplementary condition on the solution.
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r é s u m é

On présente dans cette Note une estimation optimale de l’erreur d’approximation par
éléments finis affines du problème de Signorini, c’est à dire du problème de l’équilibre
d’un corps élastique en contact avec une fondation rigide. Les travaux précédents sur ce
sujet donnent soit des résultats non optimaux, soit avec des conditions supplémentaires
plus contraignantes sur la solution.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The a priori error estimate for the finite element approximation of Signorini’s problem, i.e. the static contact problem of
a linearly elastic structure (see [4]), has been addressed for the first time by J. Haslinger in [7]. Since then, it has been the
subject of various works. If we limit ourselves to the approximation by linear finite elements, we can distinguish two types
of approximations. The first one consists in directly approximating the variational inequality describing the Signorini prob-
lem, the only unknown being the elastic displacement [7,8,11]. The second approach, sometimes called hybrid formulation,
involves a Lagrange multiplier to enforce the non-penetration in some weaker sense [9,2,12,10].

A priori error estimate in the H1-norm for the displacement of order h3/4 have been established in [8], for the direct
approximation, and in [2], for the hybrid one, under H2 regularity assumption on the solution. The order h has been shown
in [9,2,12] with an additional regularity assumption on the contact stress (H1(ΓC ), where ΓC is the contact boundary). Note
that an order h was early proposed in [11] but with an erroneous estimate in negative norm for the Lagrange interpolation
operator. More optimal estimates have been proven with the additional assumption that the number of transitions between
contact and non-contact is finite on the contact boundary. Order h

√| log h| in obtained in [1] and h 4
√| log h| in [2], and
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Fig. 1. Linearly elastic body Ω in contact with a rigid foundation.

finally h in [10] where the result is also extended to three-dimensional problems. This condition may seem reasonable at
first glance. However, there exist some infinitely oscillating solutions to the elasticity problem in the simple situation of a
transition between Neumann and Dirichlet conditions [6]. Thus, infinitely oscillatory situation cannot be a priori excluded.

The result presented here concerns the direct approximation and is quasi-optimal in the sense that the only requirement
for the solution to obtain the O (h) estimate is the H2+ε regularity for an arbitrary small ε. The argument is limited to
two-dimensional domains.

2. Signorini’s problem

Let Ω ⊂ R2 be a bounded regular domain which represents the reference configuration of a linearly elastic body submit-
ted to a Neumann condition on ΓN , a Dirichlet condition on ΓD and a unilateral contact condition on ΓC between the body
and a rigid foundation, where ΓN , ΓD and ΓC are non-overlapping open parts of ∂Ω , the boundary of Ω (see Fig. 1).

The displacement u(t, x) of the body obeys the following equations:

−divσ(u) = f , in Ω, σ(u) = A ε(u), in Ω, σ(u)n = g, on ΓN , u = 0, on ΓD , (1)

where σ(u) is the stress tensor, ε(u) = (∇u + ∇uT )/2 is the linearized strain tensor, A is the fourth order elasticity tensor
which satisfies usual conditions of symmetry, coercivity and boundedness, n is the outward unit normal to Ω on ∂Ω and
f , g are given force densities. On ΓC , it is usual to decompose the displacement and the stress in normal and tangential
components as follows, assuming ΓC to have the C 1 regularity:

uN = u.n, uT = u − uN n, σN(u) = (
σ(u)n

)
.n, σT (u) = σ(u)n − σN(u)n.

Assuming also that there is no initial gap between the solid and the rigid foundation, the frictionless unilateral contact
condition is expressed by the following complementary condition:

uN � 0, σN(u) � 0, uNσN(u) = 0, σT = 0. (2)

A classical weak form (see [4]) can be obtained introducing

V = {
v ∈ H1(Ω;Rd), v = 0 on ΓD

}
, K = {v ∈ V : v N � 0 on ΓC },

a(u, v) =
∫
Ω

A ε(u) : ε(v)dx, l(v) =
∫
Ω

f .v dx +
∫
ΓN

g.v dΓ.

Problem (1)–(2) is then formally equivalent to the variational inequality{
Find u ∈ K satisfying

a(u, v − u) � l(v − u), ∀v ∈ K .
(3)

3. Finite element discretization

A linear finite element approximation of Problem (3) is obtained given a regular family of triangulations T h of Ω (in
the sense of Ciarlet [3]). For the sake of simplicity, we assume Ω to be polygonal (which means that ΓC is a line segment).
We consider the classical finite element space

V h = {
vh ∈ C 0(Ω) : v|T ∈ P 1(T ) ∀T ∈ T h, vh = 0 on ΓD

}
,

and the discrete convex set K h = K ∩ V h of admissible displacements. Then, the finite element approximation of Problem (3)
reads as{

Find uh ∈ K h satisfying

a(uh, vh − uh) � l(vh − uh), ∀vh ∈ K h.
(4)

We consider the following classical adaptation of Falk’s lemma (see [7,8,11]):
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Lemma 3.1. Provided f ∈ L2(Ω), g ∈ L2(ΓN ), a(· , ·) coercive, for u solution to (3) with σN ∈ L2(ΓC ) and uh solution to (4), there
exists C > 0 a constant such that

∥∥u − uh
∥∥

1,Ω
� C inf

vh∈K h

(∥∥u − vh
∥∥

1,Ω
+

∫
ΓC

σN vh
N dΓ

)
+ C inf

v∈K

∫
ΓC

σN
(

v N − uh
N

)
dΓ. (5)

Proof. We give the proof for the self-consistency of the Note. Denoting α > 0 the coercivity constant of a(· , ·) one has

α
∥∥u − uh

∥∥2
1,Ω

� a
(
u − uh, u − uh) = a(u, u) + a

(
uh, uh) − a

(
u, uh) − a

(
uh, u

)
.

Using the two variational inequalities, one deduces for arbitrary v ∈ K and vh ∈ K h

α
∥∥u − uh

∥∥2
1,Ω

� a
(
u, v − uh) − l

(
v − uh) + a

(
u, vh − u

) − l
(

vh − u
) + a

(
uh − u, vh − u

)
.

Using now a Green formula (see [11]) one obtains a(u, v) − l(v) = ∫
ΓC

σN v N dΓ. From this and the complementarity condi-
tion, which gives σN uN = 0 a.e. on ΓC , one obtains

α
∥∥u − uh

∥∥2
1,Ω

�
∫
ΓC

σN
(

v N − uh
N

)
dΓ +

∫
ΓC

σN vh
N dΓ + M

∥∥u − uh
∥∥

1,Ω

∥∥u − vh
∥∥

1,Ω
,

where M > 0 is the continuity constant of a(· , ·). One can conclude with Young’s inequality. �
4. Quasi-optimal error estimate

Theorem 4.1. Provided f ∈ L2(Ω), g ∈ L2(ΓN), a(· , ·) coercive, for u solution to (3) with u ∈ H2+ε(Ω) for some ε > 0 and uh solution
to (4), there exists C > 0 a constant independent of h such that

∥∥u − uh
∥∥

1,Ω
� Ch‖u‖2+ε,Ω . (6)

Proof. Since K h ⊂ K the second infimum of (5) vanishes. Considering Πh : H2(Ω) → V h the classical Lagrange interpolation
operator and since Πhu ∈ K h one deduces from (5)

∥∥u − uh
∥∥2

1,Ω
� C

(∥∥u − Πhu
∥∥2

1,Ω
+

∫
ΓC

σN
(
Πhu

)
N dΓ

)
, (7)

where, here and hereafter, C > 0 denotes a constant whose value may vary from an occurrence to another but which
is independent of h and of a possibly considered element. Since a classical interpolation error estimate [3] gives ‖u −
Πhu‖1,Ω � Ch|u|2,Ω we can focus on the last term of (7). Let E h be the set of edges on ΓC such that uN (c) < 0 for c one
of the vertices of the edge. Then∫

ΓC

σN
(
Πhu

)
N dΓ =

∑
e∈E h

∫
e

σN
(
Πhu

)
N dΓ,

because (Πhu)N vanishes on each edge for which uN (a) = 0 on the two vertices. Now, for e ∈ E h and due to the comple-
mentarity condition, one has∫

e

σN
(
Πhu

)
N dΓ =

∫
e

σN
((

Πhu
)

N − uN
)

dΓ � ‖σN‖0,e
∥∥(

Πhu
)

N − uN
∥∥

0,e

� C

(
h‖σN‖2

0,e + 1

h

∥∥(
Πhu

)
N − uN

∥∥2
0,e

)
.

A standard estimate (see [8]) gives
∑

e∈E h
1
h ‖(Πhu)N − uN‖2

0,e � 1
h ‖(Πhu)N − uN‖2

0,ΓC
� Ch2‖u‖2

2,Ω . We use a scaling argu-

ment to estimate the remaining term ‖σN‖2
0,e . Let ê = (0,1) be a reference segment and let us denote by σ̂N the normal

stress obtained from e on ê by a linear transformation. Since uN < 0 on one of the vertices of e and due to the comple-
mentarity condition, there exists a small interval (0, ε) on which σ̂N is a.e. equal to 0, eventually adapting the orientation
of the linear transformation to ensure the correspondence of 0 with the vertex on which uN < 0. In particular, this means
σ̂N ∈ H1/2+ε

0 (ê), where H1/2+ε
0 (ê) = {v ∈ H1/2+ε(ê), v(0) = 0}. We will prove later on that the semi-norm



Author's personal copy

328 Y. Renard / C. R. Acad. Sci. Paris, Ser. I 350 (2012) 325–328

|v|1/2+ε,ê =
( ∫

ê

∫

ê

(
v(x̂) − v( ŷ)

)2

|x̂ − ŷ|2+2ε
dx̂ d ŷ

)1/2

is equivalent on H1/2+ε
0 (ê) to the classical norm ‖v‖1/2+ε,ê = (‖v‖2

0,ê
+ |v|21/2+ε,ê

)1/2. This leads to

‖σN‖2
0,e = |e|‖σ̂N‖2

0,ê � Ch|σ̂N |21/2+ε,ê = Ch1+2ε|σN |21/2,e.

Since
∑

e∈E h |σN |21/2+ε,e � |σN |21/2+ε,ΓC
� C‖u‖2

2+ε,Ω , one finally obtains (6). The proof of equivalence on H1/2+ε
0 (ê) between

the two norms |v|1/2+ε,ê and ‖v‖1/2+ε,ê is a straightforward application of the Petree–Tartar lemma we recall here (see [5]
for instance).

Lemma 4.2. Let X, Y , Z be three Banach spaces, A ∈ L (X, Y ) be injective and T ∈ L (X, Z) be compact, if there exists c > 0 a con-
stant such that c‖x‖X � ‖Ax‖Y + ‖T x‖Z ∀x ∈ X then the range of A is closed or, equivalently, there exists α > 0 a constant such
that

α‖x‖X � ‖Ax‖Y ∀x ∈ X .

The equivalence is obtained by taking X = H1/2+ε
0 (ê), Y = L2(ê× ê), Z = L2(ê), Av = v(x̂)−v( ŷ)

|x̂− ŷ|1+ε and T the compact injection

between X and Z . A is injective since Av = 0 implies v is a constant a.e. on ê and since the only constant in H1/2+ε
0 (ê) is

zero. �
References

[1] F. Ben Belgacem, Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element method, SIAM J.
Numer. Anal. 37 (4) (2000) 1198–1216.

[2] F. Ben Belgacem, Y. Renard, Hybrid finite element methods for Signorini’s problem, Math. Comp. 72 (2003) 1117–1145.
[3] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and Its Applications, North-Holland Publishing, 1978.
[4] G. Duvaut, J.L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972.
[5] A. Ern, J.-L. Guermond, Éléments finis: théorie, applications, mise en œuvre, Mathématiques et Applications, vol. 36, SMAI, Springer-Verlag, 2002.
[6] P. Grisvard, Singularities in Boundary Value Problems, Masson, 1992.
[7] J. Haslinger, Finite element analysis for unilateral problems with obstacles on the boundary, Appl. Math. 22 (3) (1977) 180–188.
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