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Résumé — The aim of this paper is to study numerical convergence and stability of mixed formulation of
X-FEM cut-off for incompressible isotropic linear plane elasticity problem in a cracked domain using a
cut-off function to localize the singular enrichment area. The difficulty is caused by both, the so called inf-
sup condition which depends on the connection between the approximation spaces for the displacement
and pressure, and the discontinuity of the displacement field across the crack. We prove that a quasi-
optimal convergence rate holds in spite of the presence of elements cut by the crack.

1 Introduction

The Finite Element Methods (F.E.M.) are widely used in engineering analysis, and has deep mathe-
matical foundations. However, the treatment of incompressible or nearly incompressible problems, with
only one unknown field variable, leads to numerical locking of this approximation. For the analysis of
such problems, it is necessary to use a mixed formulation. However, mixed finite element methods are not
stable in all cases, some of them show spurious pressure oscillations if displacement and pressure spaces
are not properly chosen [1]. For a mixed formulation to be stable it must verify consistency, ellipticity and
the so called inf-sup (or LBB) condition. The later is a severe condition which depends on the connection
between the approximation spaces for the displacement and pressure [2]. The presence of a crack in a
structure reveals two types of discontinuities : a strong discontinuity that requires an adapted mesh to the
shape of the crack, hence the domain is meshed at each time step ; and a weak discontinuity that requires
refinement at the crack tip. These two operations lead to a huge computational cost. In order to overcome
these difficulties and to make the finite element method more flexible, many alternative methods had
been developed. Apart from mixing meshless methods and finite elements, another alternative consists in
using the concept of "partition of unity" introduced by Babuška, to creates an independence between the
mesh and the crack. Among the class of partition of unity finite element methods, the Generalised Finite
Element Method (GFEM) and the eXtended Finite Element Method (X-FEM) are the most advanced.
The X-FEM allows to model cracks, material inclusions and holes on nonconforming meshes. It was
introduced by Moës and al [3]. It consists in enriching the basis of the classical finite element method
by a step function along the crack line and by some non-smooth functions representing the asymptotic
displacement around the crack tip. In spite of the singular enrichment of the finite element basis, the ob-
tained convergence error of X-FEM remains of order if linear finites elements are used. To improve this
convergent rate and to obtain an optimal accuracy, Chahine and al introduced a new enrichment strategy
[4] : the so called X-FEM cut-off. This enrichment strategy uses a cut-off function to locate the crack tip
surface. In their work, Chahine et al have shown that the X-FEM cut-off has an optimal convergence rate
of order h and that the conditioning of the stiffness matrix does not deteriorate. In this work, we extend
the numerical results given by Chahine et al. [4] to an incompressible isotropic linear plane elasticity
problem in fracture mechanics. In particular, this formulation must satisfy the famous inf-sup condition
(or LBB).
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FIGURE 1 – Cracked domain

2 Model problem and descritisation

Let Ω be a two-dimensional cracked domain, Γc denotes the crack and Γ the boundary of Ω. We
assume that Γ \ Γc is partitioned in two parts : ΓN where a Neumann surface force t is applied and
ΓD where a Dirichlet condition u = 0 is imposed (see Fig. 1). We assume that we have a traction-free
condition on Γc. Let f be the body force applied on Ω. The equilibrium equation and boundary conditions
are given by

−div σ(u) = f, in Ω, (1)

σ(u) = C : ε(u), in Ω, (2)

u = 0, on ΓD, (3)

σ(u) ·n = t, on ΓN , (4)

σ(u) ·n = 0, on Γc. (5)

with n is the outside normal to the domain Ω. Let p be the hydrostatic pressure defined in two dimensions
by :

p =− tr(σ)
2

.

Now we decompose the stress tensor σ in two parts : the spherical part and the deviatoric part σd given
by :

σ
d(u) = σ(u)+ pI = 2µε

d(u),

where

ε
d(u) = ε(u)− div(u)

2
I.

Then, the strong mixed formulation is written as follows

−div[σd− pI] = f in Ω, (6)

divu = 0 in Ω. (7)

Let V =
{

v ∈ H1(Ω) with u = 0 on ΓD
}

and Q = L2(Ω). Taking the inner poduct of (6) with a test
function v ∈V , and multiplying (6) by a test function q ∈ Q. On applying Green’s formula for elasticity,
we find the weak mixed formulation


Find (u, p) ∈ (V,Q) such that :∫

Ω
σd(u) : ε(v)dΩ−

∫
Ω

pdivvdΩ =
∫

Ω
f ·vdΩ+

∫
ΓN

t ·vdΓ, ∀v ∈V,∫
Ω

qdivudΩ = 0, ∀q ∈ Q.

Accordingly, the weak mixed formulation of the isotropic incompressible linear elastic problem is writ-
ten as :
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
Find (u, p) ∈ (V,Q) such that :
a(u,v)−b(v, p) = L(v), ∀v ∈V,

b(u,q) = 0, ∀q ∈ Q,
(8)

with
a(u,v) =

∫
Ω

σd(u) : ε(v)dΩ,
b(v, p) =

∫
Ω

pdivvdΩ,
L(v) =

∫
Ω

f ·vdΩ+
∫

ΓN
t ·vdΓ.

Discretization of the elasticity problem follows the usual steps. We approximate (u, p) by (uh, ph) ∈
Vh×Qh. The subspaces Vh and Qh are finite dimensional spaces that will be defined later. The discretized
problem is then :


Find(uh, ph) ∈ (Vh,Qh) such that

a(uh,vh)−b(vh, ph) = L(vh), ∀vh ∈Vh,
b(uh,qh) = 0, ∀qh ∈ Qh.

(9)

REMARK : The existence of a stable finite element approximate solution (uh, ph) depends on choosing
a pair of spaces Vh and Qh such that the following condition holds :

inf
q∈Qh

sup
v∈Vh

b(vh,qh)

‖ qh ‖0,Ω ‖ vh ‖1,Ω
≥ β0.

where β0 > 0 independent of h. This is the “Ladyzhenskaya-Brezzi-Babuška condition” (LBB) also
called the “inf-sup condition” [1]. The verification of this condition for a couple (Vh,Qh) is very difficult
to prove in practical situations. Therefore, the numerical evaluation of the inf-sup has been widely studied
(see Chapelle and Bathe [2]). The numerical evaluation gives an indication of the verification of the LBB
condition for a given finite element discretization. The numerical inf-sup test is based on the following
proposition.

Proposition 1 ([2]) Let [M]uu and [M]pp be the matrices associated with the H1-inner product in Vh and
the L2-inner product in Qh, respectively, and let µmin be the smallest nonzero eigenvalue of the eigenvalue
problem :

[B]T [M]−1
uu [B]V = µ2 [M]pp V.

Then the value of β0 in the LBB condition is simply µmin.

The numerical test proposed in [2] is to test the stability of the mixed formulation by calculating βh
with increasingly refined meshes. Indeed, if log(βh) continuously decreases as h goes to 0, Chapelle and
Bathe [2] predicted that the finite element violates the LBB condition. Otherwise, if βh stabilizes when
the number of elements increases, then the numerical inf-sup test is verified.

3 X-FEM cut off

The idea of XFEM is to use a classical finite element space enriched by some additional functions.
These functions result from the product of global enrichment functions and some classical finite element
functions. This variant of X-FEM uses a cut-off function to find the singular enrichment surface. Indeed,
for this method, the enrichment is introduced on all crack tip surface and not only on the nodes. The
classical enrichment strategy for this problem is to use the asymptotic expansion of the displacement and
pressure fields at the crack tip area. Indeed, the displacement is enriched by the Westergaard functions.

F =
{

Fj(x),1≤ j ≤ 4
}
=

{√
r sin

θ

2
,
√

r cos
θ

2
,
√

r sin
θ

2
sinθ,

√
r cos

θ

2
sinθ

}
.
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For the pressure, the asymptotic expansion at the crack tip is given by [5]

p(r,θ) =
2KI

3
√

2πr
cos

θ

2
+

2KII

3
√

2πr
sin

θ

2
.

This expression is used to obtain the basis of enrichment of the pressure in the area of the crack tip [5] :
F p

1 =
1√
r

cos
θ

2
,

F p
2 =

1√
r

sin
θ

2
.

We note that the displacement and pressure are also enriched with a Heaviside function at the nodes
whose shape functions support is totally cut by the crack. Using this enrichment strategy, the discretisa-
tion spaces Vh and Qh take the following forms :

Vh =

{
vh = ∑

i∈I
αkψu,k + ∑

i∈IH

βkHψu,k +
4

∑
j=1

γ jFu
j χ; αk,βk,γ j ∈ R ∀i, j

}
,

Qh =

{
ph = ∑

i∈I
pi ϕp,i + ∑

i∈IH

bp
i Hϕp,i +

2

∑
j=1

cp
j F

p
j χ; pi,b

p
i ,c

p
j ∈ R ∀i, j

}
,

with ψu,k is the vector shape function defined by :

ψu,k =



(
ϕu,i

0

)
if i =

k+1
2

,

(
0
ϕu,i

)
if i =

k
2
,

(10)

and ϕu,i (resp.ϕp,i) is a scalar schape function for displacement (resp. for pressure).
χ is a is a polynom of order 5 between r0 and R1 such that :{

χ(r) = 1 if r < r0,
χ(r) = 0 if r > r1.

(11)

4 Numerical study

In this section we numerically study the inf-sup condition and a comparison between the convergence
rates of the X-FEM fixed area and X-FEM cut off. The numerical test is made on a non-cracked domain

FIGURE 2 – Cracked specimen

defined by
Ω̄ =]−0.5,0.5[×]−0.5,0.5[,

and the considered crack is the line segment Γc =]− 0.5;0[×{0} (see Fig. 2). To remove rigid body
motions, we must eliminate three degrees of freedom, see Fig. 2. In this numerical test, we impose a
boundary condition of Neumann type to avoid this additional error in the transition zone between the
boundary conditions of Dirichlet and Neumann. The finite element method is defined on a structured
triangulation of Ω̄, (see Fig. 3(a)).

The Von Mises stress for this test is presented in Fig. 3(b). As expected the Von Mises stress is con-
centrated at the crack tip.
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(a) Structured triangulation (b) Von Mises stress for mixed modes using
P+

1 /P1 elements

FIGURE 3 – Structured triangulation and Von Mises stress

FIGURE 4 – Evaluation of the inf-sup condition for the mixed problem.

4.1 Numerical inf-sup test

In this section we numerically study the inf-sup condition and its dependence on the position of
the crack. First, the inf-sup condition is approximated using gradually refined structured triangulation
meshes. The evolution of the numerical inf-sup value is plotted in Fig. 4 with respect to the element size.
From this figure we can conclude that the numerical inf-sup value is stable for all studied formulations
(P+

2 /P1disc, P+
2 /P1, P2/P1, P2/P0).

Let δ be the crack position as shown in Fig. 5. To test the influence of the position of the crack on
the inf-sup condition, we calculate the LBB condition by decreasing δ. The tests are made, on a P+

1 /P1
formulation, with h = 1/60 (see Fig. 6(a)) and h = 1/40 (see Fig. 6(b)).
The results presented on Figs. 6(a) and 6(b) show that the inf-sup condition remains bounded regardless
of the position of the crack. Hence, one can conclude that our formulation is stable independently of the
position of the crack.

FIGURE 5 – Position of the crack.
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(a) h = 1/60 (b) h = 1/40

FIGURE 6 – Evolution of the inf-sup condition as, a function of the position of the crack

4.2 convergence rate

(a) L2-displacement (b) H1-displacement

(c) L2-pressure error

FIGURE 7 – Error for the mixed problem with enriched P+
1 /P1 elements (logarithmic scales)

Figures 7(a), 7(b) and 7(c) show a comparison between the convergence rates of the X-FEM fixed
area and X-FEM cut off for the L2-norm and H1-norm (P1+/P1 element are used). These errors are
obtained by running the test problem for some values of the parameter ns, where ns is the number of

subdivision (number of cells) in each direction h =
1
ns

.

Figure 7(b) confirms that the convergence rate for the energy norm is of order h for both variants, of
the X-FEM : with fixed area and cut-off. Figure 7(a) shows that the convergence rates for the L2-norm
in displacement is of order h2 for both variants. Figure 7(c) shows that the convergence rates for the
L2-norm in pressure is h for both variants. Furthermore, the rate of convergence for the L2-norm is better
than the one for the H1-norm, which is quite usual.
Compared to the X-FEM method with a fixed enrichment area, the convergence rate is very close but the
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Number of cells in each
direction

Number of degrees of freedom
X-FEM fixed enrichment area X-FEM Cut Off

40 13456 11516
60 30046 25666
80 53376 45416

TABLE 1 – Number of degrees of freedom

error values are large.

In order to test the computational cost of X-FEM cut-off, Table (1) shows a comparison between
the number of degrees of freedom for different refinements of the classical method X-FEM with fixed
enrichment area and the cut off method. This latter enrichment leads to a significant decrease in the
number of degrees of freedom. Figure 8 shows that the conditioning of the linear system associated to
the cut-off enrichment is much better than the one associated with the X-FEM with a fixed enrichment
area. We can conclude that, similarly to the X-FEM with fixed enrichment area, the X-FEM cut off leads

FIGURE 8 – Conditioning number of the stiffness matrix for the mixed problem.

to an optimal convergence rate but it reduces the approximation errors without significant additional
costs.

5 Convergence of the High-order X-FEM

The numerical tests of the higher order X-FEM method (P+
2 /P1 disc, P+

2 /P1, P2/P1 and P2/P0) do not
give an optimal order of convergence (see Figs. 9(a), 9(b), 9(c) and 9(d)). This means that the enrichment
function does not capture the behavior of the solution at the crack tip.

This result was expected as the main singularity belongs to H3/2(Ω). Then, for the X-FEM cut-off,
the convergence rate remains limited to h3/2 with high order polynomials.

To have an optimal convergence rate, we must make an asymptotic expansion of order 2 to find the
correct expression of the enrichment basis for the displacement and pressure.

6 conclusion

By this study we can conclude that the X-FEM cut-off mixed formulation is stable, regardless of
the position of the crack. Similar to the X-FEM with fixed enrichment area, the X-FEM cut-off gives an
optimal convergence rate but without significant additional costs. For shape functions of higher order, the
convergence rate is limited to h3/2. This result was expected as the main singularity belongs to H3/2(Ω).
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(a) Enriched P+
2 /P1 disc element (b) Enriched P+

2 /P1 element

(c) Enriched P2/P1 element (d) Enriched P2/P0 element

FIGURE 9 – Error for the mixed problem with enriched P+
1 /P1 elements (logarithmic scales)
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