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Résumé — Nous proposons une adaptation de la méthode de Dynamique Singuliére pour certains
schémas numériques modélisant les vibro-impacts d’une poutre ou d’une plaque sur des obstacles rigides.
Elle est appliquée sur deux problémes pour lesquels on a démontré 1’existence d’une solution, mais sans
avoir d’information sur le bilan énergétique. Par cette nouvelle méthode d’approximation par éléments
finis les semi-discrétisations en espace sont stables et bien posées a la différence des approximations
classiques.

Mots clés — Inéquations Variationnelles, Méthodes Eléments Finis, Plaques et poutres élastiques, Dy-
namique sous contraintes unilatérales, Coefficient de restitution.

1 Introduction

Dans le but de mieux comprendre le comportement non-linéaire des panneaux solaires d’un satellite
durant le lancement et éviter I’endommagement de la structure, nous considérons la dynamique d’une
poutre ou d’une plaque élastiques vibrant entre deux obstacles rigides. Nous modélisons le contact par
des conditions de type Signorini entre le déplacement et la réaction de contact. Pour cette classe de
probléemes, nous proposons différentes familles de schémas totalement discrétisés et nous explorons 1’in-
fluence d’une loi d’impact donnée par un coefficient de restitution entre les vitesses avant et apres choc.
De fagon classique les schémas totalement discrétisés pour ce type de probleémes combinent une approxi-
mation éléments finis en espace, et un schéma en temps. Mais, dans ce cadre la plupart des méthodes
sont instables, ou présentent des oscillations numériques parasites. Nous avons adapté la méthode de
Dynamique Singuliere proposée par Y. Renard [10] (inspirée de méthode de redistribution de masse
[5]). Il s’agit de faire une formulation semi-discréte en espace qui résout ces difficultés en changeant
la matrice de masse dans I’inéquation variationnelle. Ceci empéche que les forces inertielles créent des
oscillations numériques parasites et fournit des solutions conservatives quand le coefficient de restitu-
tion est égal a 1, ce qui assure la stabilité€. Nous décrivons et comparons dans cet exposé les solutions
de ces familles de schémas totalement discrétisés et leur convergence vers le probléme continu pour les
impacts d’une poutre ou d’une plaque. De plus, nous avons étendu au cas des plaques de Kirchhoff-
Love [8] un théoreme d’existence [3], de convergence et de stabilité relatif a la dynamique d’une poutre
d’Euler-Bernouilli contrainte par des obstacles rigides.

2 Problemes d’élasto-vibro-impacts

Pour le probleme de vibro-impact entre une poutre d’Euler-Bernouilli et un obstacle rigide, nous
disposons du résultat de [3], ol la convergence d’une solution du probléme complétement discrétisé vers
celle du modele continu est établie, mais sans que rien ne soit dit sur la conservation de 1’énergie a la
limite. Une des difficultés provient de la discontinuité du champ de vitesses aux instants d’impact. De
plus des contre-exemples sont connus a 1’unicité d’une solution. Dans [8] nous avons exhibé un schéma
convergeant de type Newmark pour le cas de la dynamique sans frottement du modele de plaque de
Kirchhoff-Love (K-L) sous les conditions de non-pénétration de Signorini.



Considérons une plaque mince d’épaisseur 2¢ et de plan moyen Q C R? un ouvert, borné, connexe
du plan, ayant pour bord dQ. Nous la supposons libre sur I'y = dQ\ I, et encastrée sur un ensemble de

mesure non-nulle I, C 0Q
ou

a(x,t) =0, u(xt)=0, Vxel.,. D
Le bord dQ est initialement fixe et plat et sa normale extérieure est notée n. Par ailleurs, le matériau

constituant la plaque est supposé homogene et isotrope, de masse volumique p, de module d’ Young E et
3

€
de coefficient de Poisson v. Dans la suite, on notera D = W la rigidité a la flexion. La plaque est
soumise a un chargement vertical f : Q x [0,T] — R. Le déplacement vertical u : Q x [0,T] — R est
limité par des obstacles rigides représentés par deux applications g| et g» de Q dans R telles qu’il existe
g>0:
g1(x) < —g <0< g < gk , xeQ

u appartient donc au convexe admissible :
K={eV/gak) <vx) < gk, weQ}

H=L*Q), V= {weH*(Q)/wkx) =0 = 0d,wk),Vx € T}

puisque I’opérateur associé au modele de K-L est un bilaplacien. Alors, sous forme faible, la fleche u est
solution de I’inéquation variationnelle :

Trouveru : Q x [0,7] — Ktel que

/ /8[2 w—u dxdt+/ t),w(t)—u(.r))dt > /OT/Qf (w—u) dxdt 2

vw € L2(0,T;K) , u(.,0) = up € K, u(.,0) = v

La résultante des efforts extérieurs est la forme linéaire :

:/f(x,t).w(x,t) dx 3)
Q

Le travail virtuel des efforts intérieurs est donné par la forme bilinaire :

D
a(u,v) = /Q 27)8 [(1 -V) aéﬁu + VAudup aéﬁv dx. 4

Les solutions de (2) représentent la fleche de la plaque depuis sa position initiale, avec p sa densité,

2Ee?
D= W la rigidité a la flexion, E est le module de Young, et 0 < v < 0.5 est le coefficient de

Poisson.

Dans (2) les solutions ont une régularité faible en espace et en temps, en particulier les vitesses M
peuvent étre discontinues en temps, y compris pour des données régulieres. De plus la discrétisation de
la dynamique continue (2) ne décrit pas completement le mouvement [6], cela oblige a introduire (au

moins dans le schéma numérique) une loi d’impact. Par exemple, s’il y a impact en (xo, ), une loi peut
étre donnée (au moins formellement) par une relation entre la vitesse avant et aprés impact :

i(xo,ty) = —eii(xo, 1, ), quand u(.,7) € JK. (5)

Dans le cas d’une poutre ou d’une plaque les équations sont obtenues par passage a la limite dans
I’épaisseur, ce qui élimine de fait 1’élasticité transversale. Du coup ’introduction du coefficient de resti-
tution pallie cette absence au moment des impacts.



3 Discrétisations

3.1 Schémas de type Newmark-Dumont-Paoli

Dans cette section nous présentons une discrétisation spatiale et temporelle du déplacement. Les
schémas numériques de type B-Newmark sont stables et convergeants quand la dynamique est linéaire,
i.e. quand les contraintes ne sont pas actives. Du fait que I’opérateur differentiel de K-L gouvernant le
probleme d’impact pour la plaque est du quatrieéme ordre, il est nécessaire de faire appel a une méthode
éléments finis de classe %', si on souhaite utiliser une méthode conforme. Pour les tests numériques nous
utiliserons les éléments de type HCT ou FVS [2]. Nous notons At = % le pas de temps. Nous supposons
h > 0 et notons V" le sous-espace de dimension finie de V tel que, pour tout w € V, il existe une suite
(W")nso vérifiant : |[w" —wlly — 0,w" € V" Vh >0, h— 0. Nous initialisons la discrétisation de (2), par
ug et u}l’ dans K" := KNV”, tels que (u}f)h>0 reste bornée, et limy,_o Ar—0 Hug —up||v+] u’f&u‘g —volm =0.
La force est donnée par :

. 1 (n+1)At
=— .,8)ds. 6
e ) ©)
Alors, pour tout n € {1,...,N — 1} nous résolvons I’inclusion suivante :
h h 20 2 Uy ety h
Trouver u, | € K" / (M+BAK)u,, | + At“0lgs (%) > f (7)
e
avec fl = <2M AR (1 2[3)1{) ' — B (M + AﬂK) |+ AP,
et
F'"P = BF™' 4 (1-2B)F" +BF"" ®

avec F* de composantes F¥ = / F(x, kAr) .y (x) dQ. ou les y; désignent les Ny fonctions de bases du
Q

schéma éléments finis choisis.
La matrice de masse M = (M ;); ; est donnée par

M; ;= (Vi, V))u. )

et la matrice de rigidité K = (K; ;); j est donnée par
Kij=a(yi,y))- (10)

Théoreme 1 (Résultat d’existence [8])
Soient ¢ = 0, B = 1/2, pour tout h >0 et N > 1 pour n € {1,...,N — 1}, on note (u',|)1<p<n—1 les
solutions de (7). La suite des approximations (upn)n>0,N>1 obtenues par interpolation linéaire :

At —t t—nlt
up N (x,1) = uz(x)% +ufl’+1(x)%, pour nANt <t < (n+1)At

admet une sous-suite qui converge faible-+ dans {w € L= (0,T;K), w € L*((0,T);H)} vers une solution
de (2).

De par I’hypothese e = 0 (de chocs inelastique), ce schéma de type Newmark est dissipatif.

4 La méthode de dynamique singuliere

L’idée, développée dans [10], est de construire une méthode ayant les propriétés de la méthode de
redistribution de masse en effectuant des approximations de la vitesse et du déplacement par des mé-
thodes d’éléments finis différentes. Autrement dit, on garde V" pour 1’approximation du déplacement
et on considere un second espace élément fini H” destiné a approcher la vitesse. Les multiplicateurs A"



appartiennent i I’espace A, ils approximent les réactions de contact A € V. Le probleme semi-discrétisé
s’écrit alors :

( Trouver u" : [0,T] — V" v/ 1 [0,T] — H" et A : [0,T] — V' qui satisfont
o'
/ pi wh —u")dx+ a(u W —ul) = 1(Wh —u") + <7uh,vh>~, wwh e V' v €]0,T],

|-

Me Al </.1 kh,uh)zO, V' e A",

L u"(0) =ult, V'(0)=vh

) dx=0 Yq¢" e H", vt €]0,T], (11)
h

Bien stir quand V* = H" on retrouve 1’approximation classique. Voyons maintenant I’expression matri-
cielle de ce probleme :

B'V (1) +AU (1) = L+ BT\ (1), Vr€]0,T],
CV(t)=BU(t), Vt €]0,T],

Me) e AL, (Mr)—u)BU >0, Yue A, vielo,T],
U(0) = Uy, V(0)=Vp.

12)

ou les vecteurs L, U et V ont pour coordonnées

“h u "E:IJ‘VH v “'2:‘/¢1

La matrice K a pour composante K; ; = a(y;, ), C est la matrice de masse obtenue a 1’aide des éléments

finis H” et B est la matrice B ;= / PPy dx ou @; sont les Ny fonctions de forme de H". Comme la
Q

matrice C est toujours inversible, on a V(r) = C ' BU(t) et donc en notant M; = B'C ' B, I'inconnue V
peut étre éliminée et le probleme (12) se réécrire sous la forme (7) a ceci pres que la matrice de masse
M; est singuliere ici.

Dans [10], est donnée une condition de type inf-sup qui lie V", H" et A" pour que le probleme (12)
soit bien posé. Cette condition n’est satisfaite que si H” est strictement moins riche que V” sur la zone
de contact et dépend aussi de la maniere de prendre en compte la condition de contact. On montre aussi
dans [10] que la solution est alors d’énergie constante.

En particulier, une discrétisation de type HCT, Argyris, ou FVS pour le déplacement " et constante
par éléments pour la vitesse V" avec une condition de contact aux noeuds, est une discrétisation qui
satisfait expérimentalement la condition inf-sup. Les tests numériques donnent des résultats conservatifs
comme dans le cas de la méthode de redistribution de masse. Le point commun avec cette derniere
méthode est que lorsque la condition inf-sup est satisfaite la matrice de masse est aussi singulicre.

4.1 Implémentation

Ici nous notons pour simplifier " = U". Pour expliquer comment 1’algorithme fonctionne dans le
cas général, commencons par réécrire le probleme avec e = 0 comme suit :

Trouver U"*! € K" tel que pour tout W € K"

(13)
(vV'__l/n+1)7v (;A 5 l]n+l + B P(l/n4-l> Ei (VV'__l]ﬂ+1)T
avec |
N —2U"+U"
F" = FmB — MA—+2 - K ((1-2p)u+pu"t)

F"B donné par (8). Puisque la matrice A = At2 M + B K est définie positive et symétrique, 1’ inéquation
(13) est équivalente au probleme d’optimisation

1 N
U™ = Argminy g <2 wlAw — (F)T W)

4



Remarquons qu’il s agit d’un probléme de minimisation sous contraintes convexes K" qui peut étre clas-
siquement résolu de différentes fagons. Comme dans [3], nous utilisons la fonction Matlab "quadprog",
qui est basées sur une méthode de multiplicateurs de Lagrange.

Pour le cas e # 0, nous avons la formulation suivante :

Un+l + eUnfl

= ¢ K" tel que pour tout W € K"

Un+1,e
14+e

Trouver

Un+1 U+ Unfl
Ar?

(W_Un+1,e)T (M +K (BUn+1_|_(1_2B)Un_|_BUn—1)>

> (W_Un-‘rLe)T Fn,B

Alors, il est possible d’exprimer U"! comme U™t = (1 +¢) U""1¢ — e U™ ! et de le remplacer dans
I’inégalité précédante
1 +e)Unthe —2U" + (1 —e)Um~!

Ar?

(W . UnJrl,E)T (M (

+K (B(1+e) U+ (1=2B)U"+B(1—e)U" ")) > (W—urtte)’ prb
ce qui nous conduit a devoir résoudre

Trouver U"+1¢ € K" tel que pour tout W € K"

(14)

(W_Un+l7e)T (% Un+17e 4 BKUn+1,e) > (W_Un+1)T G"

avec

1 . 1
G" = T (F” + e (AtzMJr BK)U“)

Il s’apparente a (13) et ce résoud de la méme maniere.
En conséquence la procédure de résolution pour (7) suit celle de Paoli-Schatzman [7]. Nous com-
mencons par calculer 9"*! = A~! F. Puis nous arrivons 2 I’alternative suivante :

] QnJrl_,'_eUnfl
1 e —
1+e
Qn+l —|—€U"71

e Si
1+e
Un+1 — (1—1—6) UnJrl,e _ eUnfl'

oS appartient 2 K”, alors I’équation (14) est vérifiée, et nous posons U"! = Q"1 ;

n’appartient pas a K”, nous résolvons (14) par la fonction "quadprog", et nous avons

Bien entendu le fait que U"*!¢ soit dans K" ne garanti pas que U"*! soit aussi dans K", mais
seulement proche. Ceci est aussi souligné par Paoli-Schatzman [7].

Remark 1 Le probleme avec la masse singuliere se traite exactement de la méme fagon car la matrice

# M; + B K a les méme propriétés que la matrice A.

5 Résultats numériques

Nous considérons une plaque rectangulaire Q en acier de longueur 120cm, de largeur 40cm, et
d’épaisseur € = lem avec E = 210 GPa, p = 7.77 x 10°kg/m?, et v = 0.3. Supposons que la plaque
est au dessus d’un obstacles rigide plan i.e. gp = +ooet:

g1(x) =—-0.1, Vx=(x1,x) € Q.

Tous les tests numériques ont été réalis€é avec GETFEM++ [4] via I'interface Matlab. Nous souhaitons
mettre en évidence la conservation de I’énergie par nos schémas numériques. Pour cela nous imposons
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F1G. 1 — Etat initial de la plaque sous le chargement fj, maillage quadrangulaire (FVS).

un chargement initial f(x,# = 0) = fo = 8600 N (puis f(x,#) =0 pour (x,¢) € Qx]0,T]), nous déduisons
le déplacement uq associé a I’instant r = 0, et la vitesse a ’instant r = 0, vy = 0.
L’énergie totale associée s’écrit

E(w, ) = /Q [%(W)z(x,t)—}—%a(w,w) - f(x,t).w(x,t)]dQ,

la dissipation signifie que & («"!,v"*1) < &(u",v"). Rappelons que I’énergie cinétique est conservée si
et seulement si e = 1. Nous observons ce que fournissent les calculs quand Ax et At tendent vers zero.
5.1 Oscillations parasites

Nous tracons ci-dessous les déplacements des coins libres et celui du milieu des coins libres. Nous
obtenons qualitativement les méme résultats que dans [9] pour des poutres impactant des obstacles ri-
gides.

Displacement of the free corners of a plate il ing flat e -Di -Paoli method beta=1/2, 140 elts

time dt=106 sec.

FI1G. 2 — Déplacements des coins libres et celui du milieu des coins libres, méthode NDP-FVS masse
réguliere,e = 0,Ar = 107 sec. , 140 éléments.



Displacement of the free corners of a plate il ing flat e -Dumont-Paoli method beta=1/2, 140 clts
T T T T T T T 7
i
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disp right corner
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time dt=106 sec.
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F1G. 3 — Zoom sur les premiers impacts des coins libres et celui du milieu des coins libres, méthode
NDP-FVS masse réguliere, e = 0, At = 1072 sec. , 140 éléments.

Displacement of the free corners of a plate i ing flat : Di Paoli, FVS, method beta=1/2, 140 elts
T T T T T T T T
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-0.0991

-0.0092

- disp. right corner|
isp. left corner

-0.0993 disp. center point|

-0.0994

disp.

-0.0995

-0.0996

-0.0997

-0.0998

kAL N PN 2N e s ! o WERAT
0.068 0.069 0.07 0.071 0072 0.073 0.074 0.075 0.076
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FI1G. 4 — Zoom sur les premiers impacts des coins libres et celui du milieu des coins libres, méthode
NDP-FVS masse réguliere, e = 0, At = 5 X 107° sec. , 140 éléments.

5.2 Stabilité énergétique

Quand e = 0 nous obtenons aussi les méme résultats qualitatifs que [1] et [3] pour une poutre.
D’autres résultats numériques avec différentes valeurs de e et avec différentes masses singulieres
seront présentés lors du colloque.



Energy of a plate i ing flat Di Paoli method beta=12, 140 elts

wweweer NDP FVS dit =103 sec.
135 —=-— NDP FVS dt =104 sec.
————— NDP FVS dt =5"10'6 sec.
13 NDP FVS dt =106 sec.
il NDP FVS dt =510 sec.

Total Energy

FI1G. 5 — Evolution de I’énergie totale au cours du temps (3 sec.), méthode NDP-FVS masse réguli¢re,
e = 0, 140 éléments.
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