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Abstract

In this paper, a new consistent method based on local projections for the stabilization of
a Dirichlet condition is presented in the framework of finite element method with a fictitious
domain approach. The presentation is made on the Poisson problem but the theoretical and
numerical results can be straightforwardly extended to any elliptic boundary value problem.
A numerical comparison is performed with the Barbosa-Hughes stabilization technique. The
advantage of the new stabilization technique is to affect only the equation on multipliers and
thus to be equation independent.

Keywords: Local projection stabilization method, X-FEM, fictitious domain method, Poisson
problem.

Introduction

The fictitious domain method is a technique allowing the use of regular structured meshes on
a simple shaped fictitious domain containing the real domain. Generally, this technique is used
for solving elliptic problems in domains with unknown or moving boundary without having to
build a body fitted mesh. There exist two main approaches of fictitious domain method. The
“thin” interface approach where the approached interface has the same dimension as the original
interface. This approach was initiated by V.K. Saul’ev in [30]. In this context, there exist
different techniques to take account of the boundary condition: the technique where the fictitious
domain mesh is modified locally to take account of the boundary condition (see for instance
reference [30, 21]); The technique of penalization which allows to conserve the Cartesian mesh of
the fictitious domain (see for instance reference [2, 18]) and the technique of Lagrange multiplier
introduced by R. Glowinski et al. [13, 16, 18, 17] where a second mesh is considered to conserve
the Cartesian mesh of the fictitious domain and to take account of the boundary condition.

The second approach of fictitious domain method is the “Spread” interface approach where
the approximate interface is larger than the physical interface. The approximate interface has
one dimension more than the original one. It was introduced by Rukhovets [29]. For example,
the following methods can be found in this group: Immersed boundary method [26, 27] and Fat
boundary method [22, 8].
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Recently, fictitious domain methods with a thin interface have been proposed in the context
of the extended finite element method (X-FEM) introduced by Moes, Dolbow and Belytscko
[24]. Different approaches are proposed in [23, 32, 6] to directly enforce an inf-sup condition on
a multiplier to prescribe a Dirichlet boundary condition. Another possibility is the use of the
stabilized Nitsche’s method [25] which is close to a penalization technique but preserving the
consisting and avoiding large penalty terms that would otherwise deteriorate the conditioning of
the system matrix [12]. We can cite also the method introduced in [11] which uses a stabilized
Lagrange multipliers method using piecewise constant multipliers and an additional stabilization
term employing the inter-element jumps of the multipliers. Finally let us mention [19] where an
a priori error estimate for non-stabilized Dirichlet problem is given and an optimal method is
developed using a Barbosa-Hughes stabilization (see [3, 4]).

In this paper, we perform a study similar to [19] for a local projection stabilization applied
to the fictitious domain method inspired by the X-FEM. To our knowledge, this technique was
used for the first time by Becker and Braack in [7]. Recently, this new technique was proposed
and analyzed by Burman [14, 10] in the context of the Lagrange finite element method and by
Barrenechea et al. [5] in the context of a more classical fictitious domain approch (uncut mesh).
The principle of the used local projection stabilization is to penalize the difference of the multiplier
with its projection on some pre-defined patches. The advantage of this technique is of at least
threefold: the method is consistent, there is no use of mesh other than the (possibly Cartesian)
one of the fictitious domain and the additional term concerns only the multiplier and is not model
dependent such as the Barbosa-Hughes stabilization technique.

The paper is organized as follows. In Section 1 we introduce the Poisson model problem
and in Section 2, the non-stabilized fictitious domain method. We present our new stabilization
technique in Section 3 together with the theoretical convergence analysis. Finally, Section 4 is
devoted to two and three-dimensional numerical experiments and the comparison with the use of
Barbosa-Hughes stabilization technique.

1 The model problem

Figure 1: Fictitious Ω̃ and real Ω domains.

For the sake of simplicity, the presentation and the theoretical analysis is made for a two-
dimensional regular domain Ω, although the method extends naturally to higher dimensions. Let
Ω̃ ⊂ R2 be a fictitious domain containing Ω in its interior (and generally assumed to have a
simple shape). We consider that the boundary Γ of Ω is split into two parts ΓN and ΓD (see Fig.
1). It is assumed that ΓD has a nonzero one-dimensional Lebesgue measure. Let us consider the
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following elliptic problem in Ω: 
Find u : Ω 7→ R such that:

−∆u = f in Ω,

u = 0 on ΓD ,

∂nu = g on ΓN ,

(1)

where f ∈ L2(Ω) and g ∈ L2(ΓN ) are given data. Concidering a Lagrange multiplier to prescribe
the Dirichlet boundary condition, a classical weak formulation of this problem reads as follows:

Find u ∈ V and λ ∈W such that
a(u, v) + 〈λ, v〉W,X = l(v) ∀v ∈ V,
〈µ, u〉W,X = 0 ∀µ ∈W,

(2)

where
V = H1(Ω), X =

{
w ∈ L2(ΓD) : ∃v ∈ V,w = v|Γ

D

}
, W = X ′,

a(u, v) =

∫
Ω
∇u.∇vdΩ, l(v) =

∫
Ω
f v dΩ +

∫
Γ
N

g v dΓ,

and 〈µ, v〉W,X denotes the duality pairing between W and X, endowed with the following norms:

‖v‖V = (a(v, v))1/2, ‖f‖X = inf
v∈V ;f=v|Γ

D

‖v‖V , ‖µ‖W = sup
v∈V

〈
µ, v
〉
W,X

‖v‖V
.

With the following norms we prove easy that

‖v‖X ≤ ‖v‖V ∀v ∈ V,
c1‖µ‖W ≤ ‖µ‖0,Γ

D
∀µ ∈ L2(ΓD),

where c1 is the inverse of the trace constant. Let V0 =
{
v ∈ V :

∫
Γ
D
v dΓ = 0

}
. Then, a direct

consequence of Peetre-Tartar lemma (see [15]) is that a(., .) is coercive on V0 i.e. there exists
α > 0 such that

a(v, v) ≥ α‖v‖2V ∀v ∈ V0. (3)

From this, the existence and uniqueness of a solution to Problem (2) follows. Classically, Problem
(2) is also equivalent to the problem of finding the saddle point of the Lagrangian

L(v, µ) =
1

2
a(v, v) + 〈µ, v〉W,X − l(v), (4)

defined on V × X. The existence and uniqueness of a solution to Problem (2) is obtained by
standard techniques.

2 The fictitious domain method

The fictitious domain approach requires the introduction of two finite-element spaces on the
fictitious domain Ω̃. Namely Ṽ h ⊂ H1(Ω̃) and W̃ h ⊂ L2(Ω̃). Note that Ω̃ may always be chosen
as a sufficiently large rectangle (a, b) × (c, d) such that Ω ⊂ (a, b) × (c, d) which allows Ṽ h and

W̃ h to be defined on the same structured mesh T h (see Fig. 2). In what follows, we shall assume
that

Ṽ h = {vh ∈ C(Ω̃) : vh|T ∈ P (T ) ∀T ∈ T h}, (5)
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where P (T ) is a finite-dimensional space of regular functions satisfying P (T ) ⊇ Pk(T ) for some
integer k ≥ 1.

Figure 2: Example of a real domain and a structured mesh of the fictitious domain.

For the approximation on the real domain Ω, we consider the following restriction of Ṽ h and
W̃ h on Ω and ΓD , respectively:

V h = Ṽ h
|Ω , and W h = W̃ h

|Γ
D

,

which are natural discretization of V and W . An approximation of Problem (2) is then defined
as follows: 

Find uh ∈ V h and λh ∈W h such that

a(uh, vh) +

∫
Γ
D

λhvhdΓ = l(vh) ∀vh ∈ V h,∫
Γ
D

µhuhdΓ = 0 ∀µh ∈W h.

(6)

We choose W̃ h and Ṽ h in such a way that the following condition is satisfied:

1|Γ
D

∈W h. (7)

Let us define the following space:

V h
0 = {vh ∈ V h :

∫
Γ
D

µhvhdΓ = 0 ∀µh ∈W h}. (8)

Then a(., .) is V h
0 -elliptic since V h

0 ⊂ V0. Without any additional treatment, the following result
is proved in [19]:

Proposition 1 Let Ṽ h defined by (5), assume (7) is satisfied and, in addition

inf
µh∈Wh

‖λ− µh‖W ≤ hβ, β ≥ 1/2. (9)

µh ∈W h :

∫
Γ
D

µhvhdΓ = 0 ∀vh ∈ V h =⇒ µh = 0. (10)
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Then, one has the following error estimate:

‖uh − u‖V ≤ C
√
h, h→ 0+.

This means that, without any treatment, the guaranteed rate of convergence is limited to O(
√
h)

which is confirmed is some numerical situations. This reflects a certain kind of numerical locking
phenomenon.

3 A local projection stabilized formulation

In this section, we present a stabilization technique consisting in the addition of a supplementary
term involving the local orthogonal projection of the multiplier on a patch decomposition of the
mesh.

Let Sh be the one-dimensional mesh resulting in the intersection of T h and ΓD . The idea is
to aggregate the possibly very small elements of Sh in order to obtain a set of patches having a
minimal and a maximal size (for instance between 3h and 6h). In practice, this operation can
be done rather easily (even for three-dimensional problems). A practical way to obtain such a
patch decomposition will be described in the next section. An example of patch aggregation is
presented in Fig. 3.

Let H be the minimum length of these patches and denote by SH the corresponding subdivi-
sion of ΓD . Let

WH =
{
µH ∈ L2(ΓD) : µH|S ∈ P0(S), ∀S ∈ SH

}
,

be the space of piecewise constants on this mesh. A classical result, presented in [16], states
that under a reasonable regularity assumption on ΓD , an inf-sup condition is satisfied between
WH and V h for minimal size of 3h for the patches. This implies in particular that an optimal
convergence can be reached if the multiplier is taken in WH . However, this assumes a relatively
coarse approximation of the multiplier. Our approach is to use this result in order to stabilize
the approximation obtained with the multiplier defined on the finer discretization W h.

Let us first recall the result of Girault and Glowinski in [16]. Under the assumption that ΓD
is of class C 1,1 and a condition for the patches S ∈ SH to be approximated by a fixed set of
line segments having approximatively the same length (see [16], condition (4.17)) with a length
between 3h and ηh for a constant η > 3, then the following inf-sup (or LBB) condition holds for
a constant β∗ > 0, independent of h and H:

∀µH ∈WH , sup
vh∈V h

∫
Γ
D

vh µH dΓ

‖vh‖V
≥ β∗‖µH‖W . (11)

Remark 1. The inf-sup condition in [16] is given for the whole boundary Γ = ∂Ω. However,
(11) is easily obtained by restricting to multipliers µH being nonzero only on ΓD and for
coarse meshes compatible with ΓD .

In the following, we will assume that the conditions to obtain inf-sup condition (11) are satisfied.
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Figure 3: Example of a patch aggregation (in red and green) of size approximatively 2h of the
intersection of the boundary of the real domain and the mesh. Note the practically inevitable
presence of very small intersections.

Let PWHbe the local orthogonal projection operator from L2(ΓD) onto WH which is defined
by

∀µ ∈ L2(ΓD), ∀S ∈ SH PWH (µ) |S =
1

mes(S)

∫
S
µdΓ.

The stabilized formulation consists in approximate the Lagrangian (4) by:

Lh(vh, µh) = L(vh, µh)− γ

2

∫
Γ
D

(µh − PWH (µh))2dΓ,

where, for the sake of simplicity, γ is a chosen constant. The corresponding optimality system
reads as follows:

Find uh ∈ V h and λh ∈W h such that

a(uh, vh) +

∫
Γ
D

λhvhdΓ = l(vh) ∀vh ∈ V h,∫
Γ
D

µhuhdΓ− γ
∫

Γ
D

(λh − PWH (λh))(µh − PWH (µh))dΓ = 0 ∀µh ∈W h.

(12)

Lemma 1 Assume that (7) and (11) hold, then for any γ > 0 there exists a unique solution of
the stabilized problem (12).

Proof. Suppose (uh1 , λ
h
1) and (uh2 , λ

h
2) are two solutions to Problem (12). Let us denote ūh =

uh1 − uh2 , λ̄h = λh1 − λh2 and λ̄H = PWH (λh1)− PWH (λh2). Then, from Problem (12) we obtain
a(ūh, ūh) +

∫
Γ
D

λ̄hūhdΓ = 0,∫
Γ
D

λ̄hūhdΓ− γ
∫

Γ
D

(λ̄h − λ̄H)2dΓ = 0 ∀µh ∈W h.
(13)
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Consequently,

a(ūh, ūh) + γ

∫
Γ
D

(λ̄h − λ̄H)2dΓ = 0, (14)

which implies that ūh = 0 and λ̄h = λ̄H (i.e. λ̄h ∈ WH). Moreover, it follows from (11) that
there exists vh ∈ V h such that ∫

Γ
D

λ̄Hvh ≥ β∗‖λ̄H‖W ‖vh‖V , (15)

and thus

β∗‖λ̄H‖W ≤
1

‖vh‖V

∫
Γ
D

λ̄HvhdΓ =
1

‖vh‖V

∫
Γ
D

λ̄hvhdΓ =
1

‖vh‖V
a(ūh, vh) = 0.

This implies the uniqueness of the solution and, since the dimension of the linear system (12) is
finite, the existence as well.

3.1 Convergence analysis

In this section, we establish an optimal a priori error estimate for the following standard finite
element spaces:

Ṽ h = {vh ∈ C(Ω̃) : vh|T ∈ P (T ) ∀T ∈ T h}, (16)

W̃ h = {µh ∈ L2(Ω̃) : µh|T ∈ P
′(T ) ∀T ∈ T h}, (17)

where P (T ) (resp. P ′(T )) is a finite-dimensional space of regular functions satisfying P (T ) ⊇
Pk(T ) (resp. P (T ) ⊇ Pk′ (T )) for an integer k ≥ 1 (resp. k

′ ≥ 0).

Theorem 1 Let Ṽ h and W̃ h be defined by (16) and (17), respectively such that (7) is satisfied.
Let (u, λ) be the solution of the continuous problem (2) such that u ∈ H2(Ω) and λ ∈ H1/2(ΓD).
Assume that (11) is satisfied and assume also the existence of a constant η > 3 with 3h ≤ H ≤ ηh.
Then, the following estimate holds for C > 0 a constant independent of h:

|‖(u− uh, λ− λh)‖| ≤ Ch
(
‖u‖2,Ω + ‖λ‖1/2,Γ

D

)
, (18)

where |‖(u, λ)‖|2 = ‖u‖2V + ‖λ‖2W and (uh, λh) is the solution to Problem (12).

Proof. Let λH = PWH (λh). As u and uh are both in V 0 then for all vh ∈ V h and µH ∈WH we
have:

α‖uh − u‖2V ≤ a(uh − u, uh − u) = a(uh − u, vh − u) + a(uh − u, uh − vh),

≤ ‖uh − u‖V ‖vh − u‖V −
∫

Γ
D

(λh − λ)(uh − vh)dΓ,

= ‖uh − u‖V ‖vh − u‖V −
∫

Γ
D

λhuhdΓ +

∫
Γ
D

λuhdΓ +

∫
Γ
D

(λh − λ)(vh − u)dΓ,

= ‖uh − u‖V ‖vh − u‖V − γ‖λh − λH‖20,Γ
D

+

∫
Γ
D

(λ− µH)(uh − u)dΓ

+

∫
Γ
D

(λh − λ)(vh − u)dΓ,
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because in particular

∫
Γ
D

(λh−λ)u dΓ = 0. Then, still for all vh ∈ V h and µH ∈WH , we deduce

that
α‖uh − u‖2V + γc1‖λh − λH‖2W ≤M‖uh − u‖V ‖vh − u‖V

+‖λ− µH‖W ‖uh − u‖V + ‖λh − λ‖W ‖u− vh‖V .
(19)

Besides, ∫
Γ
D

(λ− λh)vhdΓ = a(uh − u, vh) ∀vh ∈ V h,

and therefore one obtains∫
Γ
D

(µ̄h − λh)vhdΓ = a(uh − u, vh) +

∫
Γ
D

(µ̄h − λ)vhdΓ ∀vh ∈ V h; ∀µ̄h ∈W h. (20)

Now, for µH = λH − µ̄H ∈ WH with µ̄H ∈ WH , the inf-sup condition (11) ensures the existence
of vh ∈ V h such that together with (20) we get

β∗‖λH − µ̄H‖W ≤ 1

‖vh‖V

∫
Γ
D

(µ̄H − λH)vhdΓ,

≤ 1

‖vh‖V

∫
Γ
D

(µ̄h − λh)vhdΓ +
1

‖vh‖V

∫
Γ
D

(µ̄H − λH − (µ̄h − λh))vhdΓ,

≤ ‖uh − u‖V + ‖µ̄h − λ‖W + ‖µ̄H − λH − (µ̄h − λh)‖W .

As a consequence, one has

β∗‖λH − λ‖W ≤ β∗‖λ− µ̄H‖W + ‖uh − u‖V + ‖µ̄h − λ‖W
+‖µ̄H − µ̄h‖W + ‖λH − λh‖W ,

and

β∗2‖λH − λ‖2W ≤ 5‖u− uh‖2V + 5β∗2‖λ− µ̄H‖2W + 5‖λ− µ̄h‖2W
+5‖µ̄H − µ̄h‖2W + 5‖λH − λh‖2W ∀µ̄h ∈W h. (21)

By combining inequalities (19) and (21) one obtains for all µ̄h ∈ W h, µH ∈ WH , µ̄H ∈ WH and
vh ∈ V h

(α− 5δ)‖u− uh‖2V + δβ∗2‖λ− λH‖2W + (γc1 − 5δ)‖λh − λH‖2W
≤ ‖uh − u‖V ‖vh − u‖V + ‖λ− µH‖W ‖uh − u‖V + ‖λ− λh‖W ‖u− vh‖V

+5δβ∗2‖λ− µ̄H‖2W + 5δ‖λ− µ̄h‖2W + 5δ‖µ̄h − µ̄H‖2W ,

≤ δ

2
‖u− uh‖2V +

1

2δ
‖u− vh‖2V +

δ

2
‖u− uh‖2V +

1

2δ
‖λ− µH‖2W +

ξ

2
‖λ− λh‖2W

+
1

2ξ
‖u− vh‖2V + 5δβ∗2‖λ− µ̄H‖2W + 5δ‖λ− µ̄h‖2W + 5δ‖µ̄h − µ̄H‖2W .

Let δ and ξ be such that δ < min
(α

6
;
γc1
5

)
and ξ < min

(
2δβ∗2; 2(γc1 − 5δ)

)
, then, still for all

µ̄h ∈W h, µH ∈WH , µ̄H ∈WH and vh ∈ V h, one deduces that

(α− 6δ)‖u− uh‖2V + (γc1 − 5δ − ξ

2
)‖λh − λH‖2W + (δβ∗2 − ξ

2
)‖λ− λH‖2W

≤ (
1

2δ
+

1

2ξ
)‖u− vh‖2V +

1

2δ
‖λ− µH‖2W + 8δβ∗2‖λ− µ̄H‖2W + 8δ‖λ− µ̄h‖2W

+8δ‖µ̄h − µ̄H‖2W .
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Denoting by Πh (resp. PWh) the Lagrange interpolation operator (resp. the L2(ΓD)-projection)
in V h (resp. in W h), we have the following standard finite-element estimates:

‖u−Πhu‖V ≤ Ch‖u‖2,Ω,
‖λ− PWh(λ)‖W ≤ Ch‖λ‖1/2,Γ

D
,

‖λ− PWH (λ)‖W ≤ CH‖λ‖1/2,Γ
D
.

Finally, the theorem is established by taking vh = Πhu, µ̄h = PWh(λ), µ̄H = PWH (λ) and
µH = PWH (λ).

Figure 4: Example of a two-dimensional triangular structured mesh used for the numerical test
and partition of the boundary for Neumann and Dirichlet conditions.

4 Numerical tests

In this section, we present 2D and 3D-numerical tests for a fictitious domain being Ω̃ = ] −
1/2, 1/2[d for d = 2 and d = 3, respectively. The two-dimensional exact solution is chosen to

be u(x) = −5(R4 − r4(2.5 + 1.5 sin(8θ +
2π

9
))) where r =

√
x2

1 + x2
2, R = 0.47 and the three-

dimensional one is u(x) = 5(ρ3 − R3) with ρ =
√
x2

1 + x2
2 + x3

3. In both cases, the real domain

is Ω = {x ∈ Rd : u(x) < 0} and the Dirichlet and Neumann boundary conditions are defined
on ΓD = Γ ∩ {x ∈ Rd : xd < 0} and ΓN = Γ ∩ {x ∈ Rd : xd > 0}, respectively. The two-
dimensional domain is represented in Fig. 4 with an example of a triangular structured mesh.
The exact solutions are shown in Fig. 5.
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(a) Two-dimensional exact solution (b) Three-dimensional exact solution

Figure 5: Exact solutions

The numerical tests are performed with GETFEM++, the C++ finite-element library devel-
oped by our team (see [28]).

4.1 Numerical solving

The algebraic formulation of Problem (12) reads
Find U ∈ RNu and L ∈ RNλ such that

KU +BTL = F,

BU −MγL = 0,

(22)

where U is the vector of degrees of freedom for uh, L the one for the multiplier λh, Nu and
Nλ the dimensions of V h and W h, respectively, K is the stiffness matrix coming from the term
a(uh, vh), F is the right-hand side corresponding to the term `(vh), and B and Mγ are the
matrices corresponding to the terms

∫
Γ
D
λhvhdΓ and γ

∫
Γ
D

(λh − PWH (λh))(µh − PWH (µh))dΓ,

respectively.
Before presenting the numerical experiments, we shall describe in details two important as-

pects of the implementation of the method. Namely, the extraction of a basis for W h and the
repartition of the elements having an intersection with ΓD into patches.

The extraction of a basis of W h could be non-trivial in some cases, except when a piecewise
constants (P0) finite-element method is used to approximate the multiplier or in some other cases

when ΓD is curved. Indeed, if one selects all the shape functions of W̃ h whose supports intersect
ΓD , some of them can be linearly dependent, especially when ΓD is a straight line. In order
to eliminate linearly dependent shape functions, the choice here is to consider the mass matrix∫

Γ
D
ψiψjdΓ where the ψi are the finite-element shape functions of W̃ h. A block-wise Gram-

Schmidt algorithm is used to eliminate local dependencies and then the potential remaining
kernel of the mass matrix is detected by a Lanczos algorithm. In the presented numerical tests,
since curved boundaries are considered the kernel of the mass matrix is either reduced to 0 or is
very small. In [1] some numerical experiments are presented for a straight line in 2D using the
same technique. The selection of a basis of W h using this technique took far less computational
time than the assembly of the stiffness matrix.

The decomposition into patches is made using a graph partitioner algorithm. In the presented
numerical tests we use the free software METIS [20]. The nodes of the graph consist in the
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elements having an intersection with ΓD and the edges connect adjacent elements. Additionally,
a load corresponding to the size of the intersection is considered on each elements. The partition
is a very fast operation.

4.2 Comparison with the Barbosa-Hughes stabilization technique

In our numerical test, we compare the new stabilization technique to the one studied in [19] in
the same framework which use the technique introduced by Barbosa and Hughes in [3, 4]. For
the self consistency of the paper, we briefly recall the principle of the symmetric version of the
Barbosa-Hughes stabilization technique applied to Problem (6) as it is presented in [19].

This technique is based on the addition of a supplementary term involving an approximation
of the normal derivative on ΓD . Let us assume that we have at our disposal an operator

Rh : V h −→ L2(ΓD),

which approximates the normal derivative on ΓD (i.e. for vh ∈ V h converging to a sufficiently
smooth function v, Rh(vh) tends to ∂nv in an appropriate sense). Several choices of Rh are
proposed in [19]. To obtain the stabilized problem, the Lagrangian (4) is approximated by the
following one

Lh(vh, µh) = L(vh, µh)− γ

2

∫
Γ
D

(µh +Rh(vh))2dΓ, vh ∈ V h, µh ∈W h,

where the stabilization parameter γ depends on the mesh parameter γ := hγ0, with γ0 a positive
constant over Ω. The corresponding discrete problem reads as follows:

Find uh ∈ V h and λh ∈W h such that

a(uh, vh) +

∫
Γ
D

λhvhdΓ− γ
∫

Γ
D

(λh +Rh(uh))Rh(vh)dΓ = l(vh) ∀vh ∈ V h,∫
Γ
D

µhuhdΓ− γ
∫

Γ
D

(λh +Rh(uh))µhdΓ = 0 ∀µh ∈W h.

(23)

More details and a convergence analysis can be found in [19]. Note that this is also a consistent
modification of the Lagrangian and that a close relationship between Barbosa-Hughes stabilization
technique and Nitsche’s one [25] has been explained in [31].

4.3 Two-dimensional numerical tests

A comparison is done between the non-stabilized problem (6), the local projection stabilized prob-
lem (12) and the Barbosa-Hughes stabilized one (23) in the two-dimensional case. Additionally,
we test different pairs of elements for the main unknown u and the multiplier. Namely, we test
the following methods: P2/P1, P1/P1, P1/P0, P1/P2, Q1/Q0 and Q1/Q0. The notation Pi/Pj
(resp. Qi/Qj) means that solution u is approximated with a Pi finite-element method (resp. a
Qi finite-element method) and the multiplier with a continuous Pj finite-element method (resp.
continuous Qj finite-element method).

Without stabilization. A solution is plotted in Fig. 6 for a P1/P2 method. Of course,
for this pair of elements, a uniform discrete inf-sup cannot be satisfied since the multiplier is
discretized with a reacher element than the main unknown. As a consequence, a local locking
phenomenon (Fig. 6(a)) on the Dirichlet boundary (flat part of the solution) holds together with
a very noisy multiplier (Fig. 6(b)). This indicates the presence of spurious modes. Some similar
results can be observed with the P1/P1 and P1/P0 methods.
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(a) Solution on Ω with no stabi-
lization for the P1/P2 method.

(b) Multiplier on ΓD with no sta-
bilization for the P1/P2 method.

Figure 6: Non-stabilized case with the P1/P2 method.

(a) Convergence of ‖u− uh‖0,Ω (b) Convergence of ‖u− uh‖1,Ω

(c) Convergence of ‖λh − λ‖0,Γ
D

Figure 7: Convergence curves in the non-stabilized case.
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The convergence curves in the non-stabilized case are given in Fig. 7(a) for the error in the
L2(Ω)-norm on u, in Fig. 7(b) for the error in the H1(Ω)-norm on u and in Fig. 7(c) for the
error in the L2(ΓD)-norm on the multiplier. One notes that the convergence rates for the P1/P2,
P1/P1 and P1/P0 methods in H1(Ω)-norm are close to 0.5 which is in good agreement with the
general result of Proposition 1. In this cases, there is no convergence of the multiplier (still due
to the presence of some spurious modes). Conversely, for the P2/P1, Q2/Q1 and Q1/Q0 methods,
one observes a nearly optimal convergence rate. This does not imply that a mesh independent
inf-sup condition is systematically satisfied in these cases. In [19], some numerical experiments
show that the solution can be deteriorated in the vicinity of very small intersections between the
mesh and ΓD (especially for the multiplier).

(a) Solution on Ω with Barbosa-
Hughes stabilization for the P1/P1

method.

(b) Multiplier on ΓD with
Barbosa-Hughes stabilization for
the P1/P1 method.

Figure 8: Barbosa-Hughes stabilized case with the P1/P1 method.

Barbosa-Hughes stabilization. Fig. 8 shows that the Barbosa-Hughes stabilization tech-
nique eliminates the locking phenomenon (Fig. 8(a)) and the spurious modes on the multiplier
(Fig. 8(b)). The convergence curves in the Barbosa-Hughes stabilized case are given in Fig. 9(a)
for the error in the L2(Ω)-norm on u, in Fig. 9(b) for the error in the H1(Ω)-norm on u and in
Fig. 9(c) for the error in the L2(ΓD)-norm on the multiplier. The rates of convergence for the
error in L2(Ω)-norm (resp. H1(Ω)-norm) on u with Barbosa-Hughes stabilization are optimal:
of order 3 (resp. of order close to 2) for both P2/P1 and Q2/Q1 and of order 2 (resp. order 1)
for the remaining pairs of elements. Fig. 9(c) shows that the approximation of the multiplier
is considerably improved. Concerning the error in L2(ΓD)-norm for the multiplier the rate of
convergence is also close to optimality for all pairs of elements.
We refer to [1] for the study of the influence of the stabilization parameter. A rather small
influence is noted on the error in L2(Ω) and H1(Ω)-norms on u. Concerning the error in L2(ΓD)-
norm of the multiplier, the value of the stabilization parameter can be divided into two zones.
A coercive zone where the error decreases when the stabilization parameter γ0 increases and a
non-coercive zone for large values of the stabilization parameter where the error evolves randomly
according to the stabilization parameter.

Local projection stabilization. Similarly to the Barbosa-Hughes stabilization, the local
projection stabilization gives some optimal rates of convergence for all pairs of elements and
eliminates the locking phenomena (Fig. 10(a)) and the spurious modes on the multiplier (Fig.
8(b)). The convergence curves are shown in Fig. 11(a) for the error in the L2(Ω)-norm on u, in
Fig. 11(b) for the error in the H1(Ω)-norm on u and in Fig. 11(c) for the error in the L2(ΓD)-norm
on the multiplier. The rates of convergence for the P1/P2, P1/P1, P1/P0 and Q1/Q0 methods
are in good agreement with the theoretical result of Theorem 1. For the P2/P1 and Q2/Q1
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(a) Convergence of ‖u− uh‖0,Ω (b) Convergence of ‖u− uh‖1,Ω

(c) Convergence of ‖λh − λ‖0,Γ
D

Figure 9: Convergence curves in the Barbosa-Hughes stabilized case (γ = 0.0001 for P2/P1 and
Q2/Q1 methods and γ = 0.1 for the remaining methods).

(a) Solution on Ω with local pro-
jection stabilization for the P1/P1

method.

(b) Multiplier on ΓD with lo-
cal projection stabilization for the
P1/P1 method.

Figure 10: Local projection stabilized case with the P1/P1 method.
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(a) Convergence of ‖u− uh‖0,Ω (b) Convergence of ‖u− uh‖1,Ω

(c) Convergence of ‖λh − λ‖0,Γ
D

Figure 11: Convergence curves in the local projection stabilized case (γ = 0.00001 for P2/P1 and
Q2/Q1 methods and γ = 0.01 for the remaining methods).
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methods, the rates are close to optimality. For these methods, if one tries to extend the result
of Theorem 1 to a H3(Ω) regular exact solution, one finds that the rate of convergence of the
error estimate depends on the interpolation error of the local orthogonal projection which limits
the rate of convergence to 3/2 for the H1(Ω)-norm and 1 for the L2(ΓD)-norm on the multiplier
(The same observation was shown in the case of Stokes and Darcy’s equations by Burman [9]).
This limitation is observed on Fig. 11(c) on the multiplier of the Q2/Q1 method, but not for the
P2/P1 method (for an unknown reason).
Concerning the error in L2(ΓD)-norm the value of the stabilization parameter can also be divided
into two zones (see Figs. 12, 13 and 14). The first zone where the error decreases when the
stabilization parameter γ increases. The second zone, for large values of the parameter, where
the error increases (Figs. 13, 14) or remains almost constant (Fig. 12). Figure 12 for the
P1/P0 elements indicates that a large value of the stabilization parameter does not affect too
much the quality of the solution. This behavior has been noted whenever a piecewise constant
multiplier is considered. Conversely, for all remaining couples of elements, an excessive value of
the stabilization parameter leads to a bad quality solution (see Figs. 13, 14).
Now, concerning the minimal patch size, the inf-sup condition is proven to be satisfied in [16]
for a size equal or greater to 3h. Numerically, the inf-sup condition seems to be satisfied for
smaller values of the minimal patch size. In our numerical experiments we found an optimal
value between h and 2h. For the P1/P0 method, a minimal patch size equal to h seems to be
inadequate (Fig. 12(a)). A value of 2h is found to be more optimal (Fig. 12(b)). Conversely, a
value of h is slightly more optimal for the P1/P1 pair of elements (Fig. 13).

(a) With a minimal patch size equal to h (b) With a minimal patch size equal to 2h

Figure 12: Influence of the stabilization parameter for the error in the L2(ΓD)-norm of the
multiplier for the P1/P0-element.

4.4 Three-dimensional numerical tests

In this section, we compare the non-stabilized three-dimensional case to the local projection sta-
bilized three-dimensional case with the following pairs of finite-element methods: P2/P1, P1/P1,
P1/P0, P1/P2, Q2/Q1 and Q1/Q0.

Without stabilization. Convergence curves in the non-stabilized case are shown in Fig.
15. Perhaps due to the simple chosen geometry and exact solution, no locking phenomenon is
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(a) With a minimal patch size equal to h (b) With a minimal patch size equal to 2h

Figure 13: Influence of the stabilization parameter for the error in the L2(ΓD)-norm of the
multiplier for the P1/P1-element.

Figure 14: Influence of the stabilization parameter for the error in the L2(ΓD)-norm of the
multiplier for the P2/P1-element (with a minimal patch size equal to h).
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observed for the P1/P2, P1/P1 and P1/P0 methods. However, in these cases, the multiplier does
not converge probably due to the presence of spurious modes. The rate of convergence in the
H1(Ω)− norm on u is optimal for the P1/P1, P1/P0, P1/P2 and Q1/Q0 methods (see Fig. 15(b)).
For the remaining elements (Q2/Q1 and P2/P1) the rate of convergence is limited to 3/2.

(a) Convergence of ‖u− uh‖0,Ω (b) Convergence of ‖u− uh‖1,Ω

(c) Convergence of ‖λh − λ‖0,Γ
D

Figure 15: Convergence curves in the three-dimensional non-stabilized case.

Local projection stabilization. The local projection stabilization gives an optimal rate of
convergence for all pairs of elements and eliminates the spurious modes for the P1/P1, P1/P0 and
P1/P2 methods. Especially, the rate of convergence in the H1(Ω)-norm for the Q2/Q1 and P2/P1

are improved compared to the non-stabilized case.
Except for the Q2/Q1 pair of elements, the convergence rate for the L2(ΓD)-norm for the

multiplier are optimal (more than 1.5). For the Q2/Q1 pair of elements, the convergence rate for
the L2(ΓD)-norm is optimal but limited to 1.1 (we did not find any interpretation for that). The
rate of convergence in the L2(Ω)-norm is limited to 2 for all methods. For quadratic methods,
the fact that we used level set function of order 1 to approximate the curved domain limits
theoretically the rate of convergence to 3/2.
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(a) Convergence of ‖u− uh‖0,Ω (b) Convergence of ‖u− uh‖1,Ω

(c) Convergence of ‖λh − λ‖0,Γ
D

Figure 16: Convergence curves in the three-dimensional local projection stabilized case (γ =
0.00001 for P2/P1 and Q2/Q1 methods and γ = 0.01 for the remaining methods).
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5 Concluding remarks

In this paper, we presented a stabilization technique based on local projections for the fictitious
domain method inspired by the X-FEM introduced in [12, 19].

A main advantage compared to some other stabilization techniques like the Barbosa-Hughes
one, is that it only affects the multiplier equation in a manner that is independent of the problem
to be solved. This makes the extension to other linear or nonlinear problems very easy.

The two-dimensional theoretical result does not ensure an optimal rate of convergence when
a quadratic finite element is used for the main unknown due to the fact that the local projec-
tion is made on piecewise constants. The method could be generalized to the projection on
(discontinuous) piecewise affine or piecewise quadratic functions for high-order approximations.

The extension to the three-dimensional case of the theoretical result is of course subject to
obtaining an inf-sup condition of the same kind of the one obtained in [16].
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