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SUMMARY

The modelization of bending plates with through the thideeracks is investigated. We consider the
Kirchhoff-Love plate model which is valid for very thin pkg. Reduced Hsieh-Clough-Tocher triangles
and reduced Fraejis de Veubeke-Sanders quadrilateralssacefor the numerical discretization. We apply
the eXtended Finite Element Method (XFEM) strategy: enrieht of the finite element space with the

asymptotic bending singularities and with the discontinaicross the crack. The main point, adressed in
this paper, is the numerical computation of stress intgriaittors. For this, two strategies, direct estimate
and J-integral, are described and tested. Some practiles, mealing with the choice of some numerical

parameters, are underlined. Copyright2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the framework of linear elastic fracture mechanics, tbmputation of Stress Intensity Factors
is one of the most important problems. Although some arajtsolutions can be found in
literature, they always correspond to simple geometried laads. For general geometry and
loading conditions, numerical methods have to be emplogdthe goal of this paper is to
investigate efficient numerical tools for very thin crackgldtes, such as those which are widely
used for instance in aircraft structures. Let us also rermafhi through the thickness cracks will be
considered here and that the material the plate is made ohi®beneous and isotropic.

So the first tool we use is XFEM (eXtended Finite Element Mdjh@his is a strategy initially
developed for plane elasticity cracked problems (se€?]) and it is now the subject of a wide
literature (among many others, seg 4, 5, 6, 7, 8, 9] and references therein). It mainly consists in
the introduction of the discontinuity across the crack ahthe asymptotic displacements into the
finite element space.

At the moment, there are few previous works devoted to thetatian of XFEM to plate or shell
models. In L0, 11, 12], shell models are used: since the near tip asymptotic atigphent in this
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2 J. LASRY ET AL

model is unknown, no near-tip enrichment is used but onlydiseontinuous one. In particular,
in [12, 13], the crack tip is always on an element edge: it means the&k@pan entire elements
of the mesh. Moreover, the Mindlin-Reissner is used and thekcpropagation is investigated,
which is not the case of our work. Iri{f], which deals with cracked shells, the cracked part of
the domain is modelized by a three-dimensional XFEM forriaia It is matched with the rest of
the domain, formulated with a classical finite element sheibel. In this paper, a plate model is
kept on the entire domain, and we consider singular enrictine [15], the plate model used is
the Mindlin-Reissner one. However, in this reference, apdrtant locking effect for thin plates
has been detected despite the use of some classical lotkmglements. This suggests that this
locking effect is due to the XFEM enrichment.

Even though most of the finite element codes are based on thaliktiReissner plate model, the
so-called Kirchhoff-Love model provides also a realistésdription of the displacement for a thin
plate since it is the limit model of the three-dimensionabgicity model when the thickness vanishes
(see [L6]). For instance, the panels used in aeronautic structuaasbhe about a few millimeters
thin, for several meters long. On this kind of plates, theasledfect can generally be neglected and
consequently the Kirchhoff-Love model is mechanicallyrappiate. It has already been used for the
purpose of fracture mechanics (for instance, 48] Moreover, for through-thickness cracks, the
limit of the energy release rate of the three-dimensionalehoan be expressed with the Kirchhoff-
Love model solution (se€elB] and [L9]).

Since the Kirchhoff-Love model corresponds to a fourth orpertial differential equation,
a conformal finite element method needs the us&'ofcontinuously differentiable) elements.
We consider the reduced Hsieh-Clough-Tocher triangleuged HCT) and the reduced Fragjis
de Veubeke-Sanders quadrilateral (reduced FVS) becaegeatle the less costly conformat
elements 20]. In the XFEM framework, the knowledge of the asymptoticobraip displacement
is required. It is the case for a Kirchhoff-Love isotropi@g@ as it corresponds to the bilaplacian
singularities (seeZ1]). Thanks to all this material, it was possible to derive #itient XFEM for
thin cracked plates with Kirchhoff-Love theory. It is dééal in [22] and some of its features, used
in this paper, are recalled in the following.

Then, it is possible to introduce the second tool which dedils Stress Intensity Factors (SIF)
computation. For this, two different strategies are sugggesThe first one consists in a direct
estimate. It follows an idea introduced 3, for two-dimensional elasticity problem. And we have
adapted it to our bending plate problem and our XFEM formaiatLet us remark this approach
lies on the SIF definition as the limit, when the distance,rsap the crack tip tends to 0, of some
stress multiplied by/7, up to a mutiplicative coefficient. In classical FEM, theess is numerically
evaluated and strongly depends on the mesh refinemeritZJiidr plates, an alternative approach
is suggested, which uses the knowledge of the asymptogalsindisplacements and the numerical
evaluation of the displacements through what is called plaiement extrapolation technique. It
will be explained later we can directly use the singular @dispments we have introduced in the
numerical formulation. The second is more classical and Ugategral. This is the way chosen in
[15] for Mindlin-Reissner plates. In our case, we had to derhis approach for Kirchhoff-Love
model.

The paper is organized as follows. Section 2 describes tlkehpooblem. Section 3 is devoted to
the extended finite element discretization of the Kirchiiaffe model. In Section 4, two strategies
for SIF computation are detailed. In the last section, nicagresults are presented and discussed,
which illustrate the capabilities of these methods, andknt derive some practical rules for the
choice of some numerical parameters.

2. THE MODEL PROBLEM

2.1. Notations and variational formulation
Let us consider a thin platége. a plane structure for which one dimension, called the theskn
is very small compared to the others. For this kind of strregustarting frorma priori hypotheses
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SIF COMPUTATION FOR BENDING PLATES WITH XFEM 3
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Figure 1. The cracked thin plate (the thickness is overdiaethe sake of clarity).

on the expression of the displacement fields, a two-dimeasiproblem is usually derived from
the three-dimensional elasticity formulation by meanségration along the thickness. Then, the
unknown variables are set down on the mid-plane of the pliztieoted here by.

This mid-planev is an open subset &?. In the three-dimensional cartesian referential, theeplat
(see Figl) occupies space

{(xl,x27x3) € R®/(x1,12) € wandas € | —¢; 6[}

So, thers coordinate corresponds to the transverse direction, dtigeainid-plane points have their
third coordinate equal t0. The thickness iQe. Finally, we assume that the plate has a through
the thickness crack and that the material is homogeneousairdpic, of Young’'s modulu® and
Poisson’s ratio .

In plate theory, the following approximation of the threeadnsional displacements is usually
considered

ur (w1, 22,3) = wy(w1,20) + 23 ¢1(21,22)
up(r1, 02, 23) = Up(x1,x2) + 23 Po(T1,72) 1)
U3(I1,I2,ZC3) - u3(IlaI2)

In these expressiong, andu, are the membrane displacements of the mid-plane pointewhik
the deflectiong; and¢- are the section rotations. In the case of an isotropic nedi¢hie variational
formulation splits into two independent problems: the ficsiled the membrane problem, deals only
with membrane displacements, while the second, calledeheibg problem, concerns deflection
and rotations. The membrane problem corresponds to theicdplane elasticity problem and has
been already treated in many references (see for instahéd)| So, here, we only consider the
bending problem.

In industrial finite element codes, the most widely usedepiabdel is the Mindlin-Reissner one,
for which the displacement is given b{)( Nevertheless, for reasons mentioned in the introdugtion
we choose here to work with the Kirchhoff-Love model, whiende seen as a particular case of
(1), as it is obtained by introducing the so-called Kirchhiofive assumptions, which read

_ : ¢ = —0us
Vus + ¢ = 0 ie. {¢2 — yus (2)

where the notatiow,, stands for the partial derivative with respectap . A first consequence of
this relation is that the transverse shear strain is idatiyizero, which avoids the shear locking
problem. A second consequence 2¥ is that the section rotation only depends on the transverse
displacement. It means that this displacement is the ordgiownn function for the bending problem.
For convenience, it will be denoted fyin the following. So, in the Kirchhoff-Love framework and
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4 J. LASRY ET AL

Mode | Mode Il

Figure 2. Fracture modes for Kirchhoff-Love bending modgf (is the crack). Left: a symmetric bending
leads to mode I. Right: a shear bending leads to mode II.

for a pure bending problem, the three-dimensional displese reads

ul(Il,IQ,Ig) = —x3 81u(x1,x2) 5
u2(:v1,:v2,:v3) = —XI3 62u(x1,:c2) ,
uz(z1, 22, 23) = u(x1,72)

For the sake of simplicity, we assume the plate is clampedsonoundary and the crack faces are
traction free. Then, the plate is subjected to a volume farag/ of coordinates f1, fo, f3), and two
surface forces, say™ andg—, applied on the top and bottom surfaces. The variationahfibation
(or virtual work formulation) of the Kirchhoff-Love modeérnds as

Findu € HZ(w) such thatforany € HE(w)

2Fe3 3)
/wm [(1—v) 025u + v Audag| Dagvde = /W[Fv — M, 0qv] dax.
where:
-F = fadrs + gf + g5, whichis the resulting transverse loading,

—€
€

-M, = / z3 fo dzs + € (95 — g5 ), which is the resulting moment loading.

Moreoveré(;; stands for the Kronecker's symbol and the summation cormerver repeated
indices is adopted, Greek indices varying{in2}. Finally, H(w) is the classical Sobolev space of
square integrable functions whose first and second derdstn the distributions sense are square
integrable, and which vanish on the boundary, like theinmarderivative (seeZ4] for instance).

2.2. Asymptotic displacement near the crack tip and fractnodes

In the Kirchhoff-Love plate model, there are two fracturedas. Applying a symmetric bending
leads to the first fracture one, while applying an anti-syrmiméending or a transverse shear, leads
to the second (see Fig).
To characterize them, let us recall that the governing eguaélated to the bending variational
problem @) reads
2F¢3
3(1 —v?)
on the mid-planev. Itis a bilaplacian problem for which the singularities arell-known (see 21)).
So, close to the crack tip, the displacement may be written &s u,. + us , whereu,. stands for
the regular part of the transverse displacement and beton$(w). The singular part., reads

A’y = F 4+ 0,M, (4)

_ 3/2 v+ 7 3 0 3v+5 3 0
ug(r, 6) A r [Kl <73(1/— 0 cos29+cos 5 + K, 73@_ D 81n29+sm2 (5)

in polar coordinates relatively to the crack tip (see Bgwith

\/5 1—12

Axr = 2 Ee(3+v)

(6)
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SIF COMPUTATION FOR BENDING PLATES WITH XFEM 5
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Figure 3. System of polar coordinates relatively to the ket (the crack is in bold line).

This singular displacement belongsAd/?~"(w) for anyn > 0. In addition, the scalar coefficients
K, andK, are the so-called "Stress Intensity Factors”, which areslyidised in fracture mechanics
for crack propagation.

To conclude, we recall that the Kirchhoff-Love plate theooyresponds to the limit of the three-
dimensional elasticity theory, when the thickness vargshiwever, the singularities we present
here are deduced from the Kirchhoff-Love theory, and noinfrihe three-dimensional elasticity
theory. The reader interested by the link between the sanijigls of these two theories is referred

to [25].

3. EXTENDED FINITE ELEMENT APPROXIMATION OF THE KIRCHHOFEOVE MODEL

3.1. Classical finite element approximation

Let us introduce now the finite element discretization ofwhgational formulation §). In order to
have a conformal method, the finite element spééehas to satisfW” < HZ(w). This leads to
the use of’* finite elements. Among the available elements having tlgjslegity, the reduced HCT
triangles (seeq(], p. 356-357) and FVS quadrangles (s2@]p. 359-360) are of particular interest.
For both elements, the triangle (resp. quadrangle) is dividto three (resp. four) sub-triangles (see
Fig. 4). The basis functions arB; polynomials on each sub-triangle and matcliédacross each
internal edge. In addition, to decrease the number of dafréss of freedom), the normal derivative
is assumed to vary linearly along the external edges of #mmehts (this assumption does not hold
on the internal edges). At the end, there are only three debah node for both elements: the value
of the function and its first derivatives. So, these elemkat® the two following advantages:

1. The computational cost is limited to three dof for eachenodl the mesh, like a classical
Mindlin-Reissner element (the deflection and the two saatibations).

2. The theoretical error is i®(h) andO(h?) for the H? and L2 norm (respectively), on regular
problems { stands for the mesh parameter). The minimum regularityrapsion for this
error estimate to hold is that the exact solution belongg t¢v) (see p6]).

So, the reduced HCT or FVS elements and standard Mindlinesisrhave the same features as
far as numerical cost and accuracy are concerned.

3.2. XFEM enrichment

To define our XFEM enrichment strategy, we follow ideas pnésé in previous papergl|5]. As
usual, the discontinuity of the displacement across thekcis represented using Heaviside-like
function, which is multiplied by the finite element shapedtions. For the nhonsmooth enrichment
close to the crack tip, an enrichment area of fixed size is ddfand the nonsmooth functions are
added inside all this area. The strategy, which is used m ghper, is inspired by the so called
"XFEM dof gathering with pointwise matching”, introduced[4] and developed for plates i2F)].

As noticed in P], such functions enrichment scheme does not satisfy a [wadition of unity
since enriched basis functions do not vanish at the edgesiched elements. To solve this problem,
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6 J. LASRY ET AL

external edges

| /
internal edges internal edges

Figure 4. HCT triangle and FVS quadrangle. Location of degref freedom and sub-triangles.

the authors introduced the so-called "shifted” Heavisidection, which is of particular interest
when the so-called branch functions, which regdscos(6/2) in their case, is not used for the
enrichment, as they did in their paper. However, here, wethsebranch functions. So we do
not use the "shifted” Heaviside function because, firstjmal convergence results for our finite
element scheme were already obtained numerically &g& pnd, second, Nicaise & aP[] have
theoretically proved that an approach such4sq optimal.

Let us now describe more precisely the enrichment. Sd; et the boundary of the enrichment
area (see Figh). It cutsw into two sub-domains: the enrichment area, sayand the rest of the
domain, sayws. Then, the support of the singular added functions is thelevlrichment area but
they are not multiplied by the finite element basis functi@w instead of 6 additional dof per node
inside the enrichment area, there are only 2 singular daffewhole system. Consequently, if the
unknowns defined on each sub-domajrare denoted by, their expressions read

2
ub = Zaitpi—l- ZbiH%—F ZCiFi )
1

€N i€y i= %
uf = D aipi+ Y biHg
1€ No i€ Js

wherep; are the basis functions of the reduced HCT/FVS elements.jdie of H function is
located on the crack; the sétdenotes the dof whose shape function support is complete$ged
by the crack (see Figh). Furthemore N; and N, are the set of dof that are locatedun andw-
(N1 N N, is not empty and corresponds to the set of nodes that are drotiredarnyl’). In a same
way, J; are the set of dof of that are located i; and.JJ; N J> is not empty for the same reason.
Finally, the singular enrichment functions, derived fros, @re

7 3 0
F = r?? (3(17—’—_1) 00559 + COSE) )
3v+5 3 0
= 3/2 g — 3 —
Fy T (3(V_1) 511129 + 51n2>

Naturally, a matching condition is needed at the interfag®gvben the enrichment area and the
rest of the domain, in order to insure the continuity of thediion and its derivatives. The following
relations were chosen at this aim

/u}f/\ :/ugA, YAeEA
r

r
Opult = /—8nu§u, YueM
r r
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SIF COMPUTATION FOR BENDING PLATES WITH XFEM 7

I . boundary
between each domait

Figure 5. Set of elements which represents the support aidhemooth functions.

whereA andM are appropriate multiplier spaces. Hefieis the space of piecewise polynomials of
degree2 and M piecewise polynomials of degrde and we have checked i27] that this choice
keeps an optimal rate of convergence for the finite elemdmarse. Finally, let us observe the change
of sign in front of the normal derivativé,«; is due to the fact that the outside normal vector has an
opposite sign whether it is useddnu’ or d,u} .

Figure 6. Set of nodes to be enriched along the crack.

4. COMPUTATION OF STRESS INTENSITY FACTORS

In industrial applications dealing with cracked structjrehe plate displacement is not
straightforwardly meaningful in terms of crack propagatidhe SIF are linked to the energy release
rateG, and they provide such an information (we havé + K2 proportional toG). However, the
calculation of SIF usually needs the use of some specifictpestments, such as computation of
J-integral for instance.

4.1. First method: direct estimate

An interesting feature of the previously described methoglpis that it can lead to a direct estimate
of SIF. Comparing expressions of the asymptotic displaceiitg with the numerical displacement
(7), it appears that, if the method is convergent, the finite el@moefficientgc;); should be close
to (K;); , up to a multiplicative constant, we shall calculate now.

Actually, in the expression of the singular displacemerikim€hhoff-Love theory ), it appears
two singular modes. However, in the above XFEM formulatitve, singular enrichments, and 3
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8 J. LASRY ET AL

are exactly these two singular fonctions. In particularthia sub-domaim; containing the crack
tip, the numerical solution reads

2
1

i€EN1 i€Jy i=

To show how coefficients; can be good approximations of SIF, up to a multiplicativestant to
be determined, let us go back to the mathematical definitibitise SIF, in Kirchhoff-Love theory,
which are

Kl = HII(IJ\/ZO’QQ(T,@ZO,,T?,:E) y
r— 8
KQ = lim 3+V\/§0’12(7’,9:O,I3:€) ()

r—0 1+v

The singular stresses aredn(1/+/r) in the vicinity of the crack tip. However, if we calculate the
components;, andas, resulting from numerical displacement, multiply the result by,/r and
maker tends to0, all the regular terms are cancelled and only the coeffisientemain, up to
a multiplicative constant. So these coefficients fit wellhatihe SIF definitions. We only have to
evaluate the multiplicative constant.

Now, let us give the calculation in details féf;, the same procedure being convenient oy
Under the assumption of isotropic and homogeneous matesgadecall the link betweesy, andu

E
02 = —T3T—— [V@flu + 8%214

1—-v
Replacingu by «} in this expression and reporting it iB)(leads to
EeV2

Kh = — T2 | lim /7 02 ul + lim /r 9%,ul
— UV r—0 r—0

l1 l2

These two limitsi; and I, exist. Since the most singular part af is in O(r3/2), we have
925u = O(r~'/2). Apart from the crack, the element edges and the internahdaries of the

HCT/FVS elements, the basis functionsigfareC?, sod? ;u; exists, and we have
}iil%\ﬁazgu}f = }iﬂ%zci VroigF;

as
lim /1 95500 = 0 5 lim \/r 5501 H = 0

The calculation of the second derivativesreffonctions is not difficult and gives

: v+1 . v—3
71‘1_%\/;8121F1(T70) = v—1 ) }1_%\/;832}71(7’70) = v—1 )
lim Vr 03 Fa(r,0) = 0 , lim VT 02, Fy(r,0) = 0

These expressions show thap is not involved in the estimation of¢!. We deduce that

1 — .
I, = cly+ andly, = cly 3,andf|nally
v—1 v—1
2F
K{I: _\/— E(?)"‘I/)Cl
1—v2

The calculation forK, can be carried out the same way. The definiti8nifvolveso ., which is
proportional tod%,u. So, here, we have to calculate the cross derivatives ofifumeF; and obtain

. . v+1
lim /7 07, F1(r,0) = 0 , lim /7 0%, F5(r,0) = ,
r—0 r—0 v—1
Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(2010)
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SIF COMPUTATION FOR BENDING PLATES WITH XFEM 9

which gives
B V2Ee(3+v)

1—0v2

Kg = Co

As the numerical values of coefficients result directly from the solving of the linear system
associated to the calculation ef, no post-treatment is necessary to obtain approximatiohs
andK?’ of the SIF.

To conclude this section, let us remark that a similar ideadieeady been described and tested
in [23]. In this paper, a numerical method, close to the one we megdwre, is applied on a
two-dimensional elasticity problem. This method uses tR&M formulation named "geometrical
enrichment”in p] and "XFEM with fixed enrichment area” inf], except that an enrichment zone of
fixed area is not defined. The authors prefer to select frontoitaee layers of nodes surrounding
the crack tip. Three meshes are used, the mesh parametgrdigitied by two at each refinement.
With a single layer of enriched nodes, the error on the SIFdsrd 15% and the mesh refinement
does not improve significantly the accuracy. Adding a sedawdr of enriched nodes makes the
error fall to globally 1% and, with the third layer, under 1¥owever, this paper shows clearly
that the mesh refinement does not lead to a strict decreasw @frtor. Finally, let us mention a
recent work of Nicaise & al47], which shows a rather slow theoretical convergence of oxde
for bi-dimensional elasticity with XFEM.

4.2. Second method: J-integral computation

4.2.1. Method description and formulatidfor Kirchhoff-Love theory, the expression of the J-
integral has already been establishedlif [ Its expression is

1
J = — 3 /maﬁ Oapu by dl + / Mag bg O1qu dl — / Oa Mag bg O1u dl
r r r

wherem,, s stands for the bending moment aindfor the outward unit vector normal to the contour
of integrationI". However, this expression is not the one used in numerigalpeations, since it
does not allow to separate the contributions of each SlFaretiergy release rate. In addition, it
needs to carry out integrations on contours, which is not sugded for finite element computations.
The usual technigue allowing to do accurate SIF calculatiaa J-integrale is described if][ It is
based upon works of Destuynder, described in details faams in [L9].

Now, the formulation adapted to the case of Kirchhoff-Lolat@theory is presented. It follows
quite closely the one described ifj[which deals with the case of two-dimensional elasticgy,
J-integral can be rewritten

1
J = / Mag (61au bﬁ — 5 afU bl) dl — / 6a Mag bg 81u dl
T r

Following [1], we introduce two states. State ((b)fj) , ")) matches the numerical solution which

SIF we want to evaluate. State ((27)&23 , u®) is an auxiliary state corresponding to the asymptotic
displacement of mode | or I, depending on the SIF we want koudate. The J-integral for the sum
of these two states reads

S /F(msgijfg) {(&auuwamu@)) by % (B + 8,0 bl] ;
_ /(aamglﬁuaamgg) (o0 + 000 b,
r

It is developed as
Ju+2 — g 4 5@ 4 a2 (9)

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(2010)
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10 J. LASRY ET AL

wherel(1:?) js the so-called interaction integral

1
12— / (mﬁjgalau(?) +mfgalau<1>) bs — 3 (mggaaﬁu@) +m§fgaa5u<1>) byl
I
- BamMo1u® + 9omPou®) by dl . (10)
af af B
r

Introducing now the formula, established i/, which links J-integral to SIF

2em(1+v)

J="——"" (K? + K2
3E(3+v) (KT + K3)
we rewrite it in the case of the sum of the 2 states and find
2em(1 +v)

J0HD _ S0 4 O 4 s (K§1)K§2) n K§1>K§2>) . (11)

3E(3+v)
Since the right hand sides (8) and(11) are equal, we deduce

(1,2) _ 4€7T(1 + V)

1
3E(3+v)

(K{VK® + KVKD)
So if, in this relation, state (2) is mode | (withi® = 1 et k¥ = 0), the value of the SIF is
obtained with the value of the interaction integral, sinoevjpus equation becomes

der(1+v) .

142 = 71(() . 12
3E(3+v) ! (12)
K, can be calculated in the same way.

4.2.2. Transformation of the interaction integral into adain integral The previous section shows
that calculating interaction integral @) with singular crack fields enables to deduce the values of
the SIF with (2). However, for numerical purpose, the interaction intéggaransformed into a
domain integral. Here again, we follow][

First, let us rewrite the interaction integrdld) in a more compact form

142 = /(Ag bs + Bby) dl
r

with
Ag = (m%@lau@) + mggamu(l)) — ((%msgalu@) + Bamfgalu(l))
_ w2 @) (1)
B = —3 (maﬁaaﬁu + maﬂaagu )

The value ofl(*?) remains unchanged if the integrand is multiplied by a regfulaction, sayg,
whose value id on the area defined bly, et0 on another contou€, that enclose§'. So, if we
assume there is no surface force applied on distefined by contou€, , 1(1:2) reads also

12 = /(Aﬁ Bs + BBy) qdl
r
whereC'is defined byC = T' U Cy U C_- UC, , while B denotes the outward normal @
(see Fig.7). Then, using divergence theorem and taking the limit otconl", whenI" tends to the

point (0, 0), the contour integral becomes a surface one and dordacomes the complete disc
that contains the crack tip and which is boundedly. Thus, we have

712 = / [05(Asq) + 01(Bq) ] dA

A
/ [ (OsAs + O1B) g + Ag 95q + Boig] dA
A

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(2010)
Prepared usingimeauth.cls DOI: 10.1002/nme



SIF COMPUTATION FOR BENDING PLATES WITH XFEM 11

Figure 7. Integration contours fdf!-2) calculation.

A direct calculation shows easily thag.4;s + 0.8 = 0. Hence, we obtain

2 = / {(m&lg Oau? + m((fg Blau(l)) — (Bamsg ou® + (“)amgg Blu(l))} Ogq dA
A
1 (1) ) ) (1)
-5 . (maﬁ Oapu'™ + My Oapl ) O1q dA
. . 2E:3
Finally, settingD = 30—07) let us observe that
— UV
m) depu® = =D [(1=0)32u® + v AuD 6,5] 02 5u®

= =D [(1-1)a25u® 2@ + v Au® Au®] = w3 dugu)

Hence, the final expression of interaction integral reads

I(172) _ /A {(m&lg alau(Q) + mgi; alau(l)) _ (aamg}g alu(Q) + aamgi; 61u(1)):| 6Bq dA
- / m'}) Oapu® d1qdA . (13)
A

4.2.3. Numerical calculation of the interaction integrllow, our purpose is to calculate the
interaction integrall(1:?) given by (L3), in the the case of Kirchhoff-Love model, treated with
reduced HCT/FVS elements. Expressidi)(contains three terms. There is no difficulty for the

two ones which contain the bending momemgg without derivatives. But the third term, which

includesaamgg is harder to handle, as it involves third order derivativéshe displacements.
On the one hand, the functions we integrate are surely nati2). On the other hand, it
cannot be expected that the third derivatives of a functiay rbe correctly approximated by
reduced HCT/FVS elements: for these elements, error etdgm@ae only obtained up to the second
derivatives. So we will transforml@) in order to avoid these third derivatives.

The expression, we want to modify, reads

X = - / (02 0ru® + 0.m3) 014D 93q dA
A
It is split in two terms
X = — /A Dol O1u® d5q dA — /A daml) O1ut) 95q dA
X1 X2
Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(2010)
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12 J. LASRY ET AL

X, can be computed without any particular difficulty, as it degonly on the crack tip singular
functions. It only needs computation of third derivativégreese singularitiesX; is integrated by
parts

X, = / m{) 0a(81u® 95q) dA — / m{y 01u® 95q b di
A 0A

X11 X12

There is no problem concerning, ;. As far asX, is concerned, in the case wher@) is the exact
mode |, it can be checked thatu(?) cancels along the crack (this term cancels whea =), and
thenX;2 = 0. Butin the case of mode IIX;, calculation is more difficult: this term differs from
0, but only along the crack whetiq is not 0. It is along the intersection between the crack aad th
boundary of the ring of integration. Nevertheless, in oumetcal tests, for the mode I, we shall
neglect this term. Despite this simplification, computasi@f K, were not less precise than those
of K.

To conclude this section, let us present briefly some featafeumerical implementation. The
calculation of interaction integral’-2) needs to define explicitly function. Let us recall this
function is identically equal to 1 inside an area contairtimg crack tip, O outside a zone enclosing
the first one, and matches regularly from one zone to the other. Since onlydgvies ofq are
needed in13), those functions differ from 0 on a ring between the two zoihe practice, we define
a ring of elements around the crack tip on which the J-inleigravaluated (see Fig). In our
numerical tests, this ring is made of elements located attainalistanceR ; from the crack tip.
Furthemore, the functioqis represented on the reduced HCT/FVS basis. The nodals/aheeset
to 1 on the internal boundary of the ring, to 0 on the exteroaltaary while the degrees of freedom
associated to the derivatives are set to 0 on both boundaries

Figure 8. Ring of elements enclosing the crack tip.

5. NUMERICAL RESULTS

5.1. Description of the numerical study

The numerical experiments presented in this section werfnpeed with the open-source finite
element library Getfem++23].

5.1.1. Test case3wo test-cases with a straight through crack are considerehis paper. The
solution of the first one is the sum of the two singular modes

u®r = F1 +F2

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(2010)
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SIF COMPUTATION FOR BENDING PLATES WITH XFEM 13

The sides of the crack follow a free edge condition. On thé eéshe domain boundary, a non-
homogeneous Dirichlet condition is given, whose valueesponds ta*. Consequently, the exact
values of K; and K, are1/ Ak, where Ak, is defined by §). Finally, the plate we took is the
squarg—0.5,0.5] x [—0.5,0.5], with the crack tip at the origin.

The second test case is more classical and comes 28nlf consists in a square plate with
a central straight through crack of length, and a constant moment, is applied on the edges
parallel to the crack. The dimensions of the plate are sdie tinfinite”, which means that reference
SIF values are correct only if the crack is small comparecheodimensions of the plate. These
reference values are

K, = Ve
2 g2
For the numerical tests, we took a plate of edgevith a crack of siz€« = 0.2. This remains
significant compared t@®[)], where calculations are carried out with = 0.18. Since the problem
is symmetric, only half of the domain is considered.

aaaaaa

2a

CLLLGG
Mo
Figure 9. Second test case. Plate with central crack siajectmoments applied on two edges.

5.1.2. Goals of the study¥he aim of the numerical experiments is to study the errorertadour
SIF calculation methods, with respect to the following paeters:

e mesh parameték,

e enrichment radiu®k which corresponds to the "size” af, (see Figure),

e integration ring radiug ; ,for J-integral method only,

e structured or non-structured meshes.

In addition, for J-integral, results are compared with momiched Finite Element Method.

Another goal of these numerical experiments is to bring elets of answer to the question of
the influence of parametefs andR ; and to propose eventually some practical rules for the ehoic
of these parameters, depending on the mesh/sidadeed, in §] and [4], the enrichment area
is a disc, of radii0.05 and 0.1, respectively. In 22], we took R = 0.15. However, in a more
general manner, we think the choice Bf depends on the result we try to set. For example, to
show the convergence of an enriched finite element methdéd or 2 norm, taking a fixed value
independant of is convenient. Nevertheless, on the most refined mesheshtliee of fixedR
leads to enrich numerous layers of elements, which may baewassary if we use only one mesh.
So, in our study, we introduce two strategies for the choicthe sizeR of enriched domaim; .
First, we consider several fixed valuesiof SecondR depends o, in such a way the enrichment

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(2010)
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14 J. LASRY ET AL

area covers several layers of elements around the crack tipeansR is equal tok h, wherek

is an integer we have taken between 1 and 5. Let us remarklasdakingR = h is very close

to the first XFEM formulation I, 15], where only the element contening the crack tip is enriched
by singular functions. Finally, as the results with the fixatue of R were not more accurate than
those withR depending ok, we only present results witR = & h in this paper. For more detalils,
the reader is referred t&]].

5.2. Direct Estimate

This first method was tested on the two above mentioned é&ssts¢ with triangular and
guadrangular, structured and non-structured meshesgef@ral values of the mesh parameter
Moreover, we have tested = k h, wherek goes from 1 to 5.

The results for the first test case, are given Eigand Fig.11. They show the method provides
very good estimates of SIF. The relative error is always iawan 5% and often lower than 1%. Let
us remark that an error of 5% is precise enough for many imdlisipplications. Nevertheless, the
convergence can be very slow on non-structured meshes. dvitigbdue to high conditionning of
the method, which reacha$'? on such meshes.

For the second test case, the size of the craak4s 0.11 on half domain, which is the rectangle
[0,0.5] x [—0.5,0.5]. So the crack is smaller than in the first test case. Moredhrerenrichment
area must not touch the bounddryx [—0.5,0.5], since it corresponds to a symmetry condition.
Indeed, singular enrichment does not satisfy this comlitibere, we use meshes which the level
of refinement is equivalent to those of the first test caseedtd$ to a more drastic constraint
on the choice ofR. We also tested the same valueskofbut a high value ok needs an initial
level of refinement more important. For example, for= 5, the less refined mesh, in structured
guadrangular meshes, needs around 60 elements on thetledgesof the domain. This explains
why some curves are not complete. However, when this levedfafement is reached, the error is
lower than 5%. The results are presented EL.

Despite its slow convergence, the "direct estimate” metik@imple, efficient, and provides SIF
values close to the exact ones. According to the tests,dsirgR improves the results. So, due
to the slow convergence, it may be more interesting to irsgé@athan to refine the mesh. We
observe also thaR = 5 h enables to reach always a satisfactory accuracy. It leatls p®pose
the following practical rule. Given a crack of lengththe domain has to be meshed with a minimum
h arounda/5 and the radius of the enrichment area is taken equalitoLet us remark this rule
indicates that the smaller is the crack, the more the mesiohaas refined in ordre to take care of
the crack. This is in accordance with intuition: the moreackris small compared to elements size,
the less it has influence on global solution. A very refinedhmgeshen necessary in order to "catch”
its effect.

5.3. J-integral

The same numerical experiments than in the previous sewtoa carried out. But, here, the radius
of the ring of integratiork ; has also been investigated.

5.3.1. First test casé@Ve have observed that, even if the results are accurate, dreenmesh to
another, the error is not strictly decreasing, as the vataeiged by J-integral oscillates around the
exact value. Hence, a mesh can give an error slightly gréfaera coarser one. That's why we give
convergence curves only on the first test case, and on steacineshes, for which less oscillatory
results are obtained.

So Fig 13 and Fig.14 present convergence curves for structured meshes, batigtriar and
quadrangular. For this particular purpose, the radius efghrichment are® must be fixed, and
it is equal to 0.15 here. The comparison with a non-enrichaddé-Element Method (FEM) shows
that XFEM improves the SIF values and that the rate of correrg may be slightly better.

Now, let us present a more global study, in which the numkviahues of SIF are investigated,
with respect tah, R andR ;. Fig. 15 gives results folR = k h on non-structured triangular and
guadrangular meshes. Moreover, only resultg@rwere shown, curves fak, being very similar

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(2010)
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Structured triangular mesh Structured triangular mesh
1.01 1.01

—*—R=2h
—#—R=3h
0.995 R = 4h 0.995
—%— R =4h
R =5h
R =5h
0.99 0.99
20 40 60 80 100 120 20 40 60 80 100 120
Number of nodes Number of nodes
Non-structured triangular mesh Non-structured triangular mesh
1.05 1.05
—+—R=3h —+—R=3h
—x—R=4h —x— R =4h
R =5h R =5h

K1

0.95 0.95
20 40 60 80 100 120 20 40 60 80 100 120

Number of nodes Number of nodes

Figure 10. SIF calculations - Direct estimate - First tesiecaTriangular meshes.

[31]. For brevity, we do not present structured meshes redualfact, they do not bring additionnal
informations, and they have already been presented in e afadirect estimate (see Fig3 and
14).

So, our results show that the error often remains lower tBan®n structured meshes, this error
is generally less than 198{]. On non-structured meshes, takiRg = 3 h is enough to obtain an
error lower than 5% on all meshes. Such a valueRoseems to be minimal. Besides, on coarser
meshes, witliR = h, the error is often greater than 10%.

All in all, results are relatively stable with respect togimadiusR ;. To conclude, it can be
observed that Figl5 shows oscillations. Let us notice it is not the case for regoieshesdl].
That's why we explain it by the fact that, in our calculatipiise ring of integration is only
one element width, which may be too irregular on non-stmgtumeshes to have stable results.

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(2010)
Prepared usingimeauth.cls DOI: 10.1002/nme



16

1.01

0.995

J.LAS

Structured quadrangular mesh

RY ET AL

0.995

Structured quadrangular mesh

—*— R =4h —*—R=4h
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Figure 11. SIF calculations - Direct estimate - First tesiecaQuadrangular meshes.

Naturally, this explanation should be numerically testédwever, the error level on SIF appears to
be good enough to avoid a more complex estimate.

5.3.2. Second test castle recall the crack is smaller here, which limits the choit&koandR ;.
Again,wetakeR = 3hfork = 1,...,5.Inall cases, the radius of the ring of integrati®n varies
from 0.05 to 0.11, so that this ring can touch the boundary.®sults tend to show the precision
depends mainly of® ;. WhenR ; increases, the approximate SIF is closer to the exact onthand
best values are obtained for the greatest. Finally, exaegrtser meshes, the best value is always
lower than 5%, while the meshes with less than 2 elementsenrdtk induces significant errors.
Numerical results are brought together Fig, for non-structured meshes.
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Figure 12. SIF calculations - Direct estimate - Second tas¢c

To conclude on this second test case, we observe that anatsagrpossible ring of integration
must be chosen, in order to have the most accurate SIF. Tienyle of construction, we propose,
is still to takeh = a/5 (for a crack of lengthu) andR = 5 h.

6. CONCLUDING REMARKS

This paper adresses the modelization of bending platesthiittugh the thickness cracks in the
framework of linear elastic fracture mechanics. As verntpiates are considered, the Kirchhoff-
Love plate model is used. The main point, studied in this papehe numerical computation of
SIF. For that purpose, two strategies are described andagteal on two test cases.

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(2010)
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Figure 13. SIF convergence curves - J-integral - First tasée Triangular meshes.
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Figure 14. SIF convergence curves - J-integral - First tasec Quadrangular meshes.

First, the "direct estimate” method is simple, efficientdammovides SIF values close to the exact
ones. According to the tests, increasing the radiusf the enrichment area improves the results.
Moreover, it seems more interesting to incre@s¢han to refine the mesh. Second, a "J-integral”
approach is derived which gives also good results. Furtmentbe comparison with a classical
Finite Element Method shows that XFEM improves the SIF value

Finally, a practical rule may be emphasised. In all our testadiusk = 5 h enables to reach
always a satisfactory accuracy, for both SIF computaticategies. To make it possible, it leads to
the following mesh rule. Given a crack of lengththe domain has to be meshed with a minimum
arounda/5 and the radius of the enrichment area will be taken equ&lito

Naturally, some developments and applications of this vinatke to be done. The first one deals
with crack propagation as in/] 12, 13]. The second one, which is more challenging, concerns
cohesive models and shells, for which ideas developpe€,ifhZ, 13], among others, are a good
starting point.
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Figure 16. Normalizeds; versusR ; - J-integral - Second test case.
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