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SUMMARY

The modelization of bending plates with through the thickness cracks is investigated. We consider the
Kirchhoff-Love plate model which is valid for very thin plates. Reduced Hsieh-Clough-Tocher triangles
and reduced Fraejis de Veubeke-Sanders quadrilaterals areused for the numerical discretization. We apply
the eXtended Finite Element Method (XFEM) strategy: enrichment of the finite element space with the
asymptotic bending singularities and with the discontinuity across the crack. The main point, adressed in
this paper, is the numerical computation of stress intensity factors. For this, two strategies, direct estimate
and J-integral, are described and tested. Some practical rules, dealing with the choice of some numerical
parameters, are underlined. Copyrightc© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the framework of linear elastic fracture mechanics, the computation of Stress Intensity Factors
is one of the most important problems. Although some analytical solutions can be found in
literature, they always correspond to simple geometries and loads. For general geometry and
loading conditions, numerical methods have to be employed.So the goal of this paper is to
investigate efficient numerical tools for very thin crackedplates, such as those which are widely
used for instance in aircraft structures. Let us also remarkonly through the thickness cracks will be
considered here and that the material the plate is made of is homogeneous and isotropic.

So the first tool we use is XFEM (eXtended Finite Element Method). This is a strategy initially
developed for plane elasticity cracked problems (see [1, 2]) and it is now the subject of a wide
literature (among many others, see [3, 4, 5, 6, 7, 8, 9] and references therein). It mainly consists in
the introduction of the discontinuity across the crack and of the asymptotic displacements into the
finite element space.

At the moment, there are few previous works devoted to the adaptation of XFEM to plate or shell
models. In [10, 11, 12], shell models are used: since the near tip asymptotic displacement in this
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2 J. LASRY ET AL

model is unknown, no near-tip enrichment is used but only thediscontinuous one. In particular,
in [12, 13], the crack tip is always on an element edge: it means the crack span entire elements
of the mesh. Moreover, the Mindlin-Reissner is used and the crack propagation is investigated,
which is not the case of our work. In [14], which deals with cracked shells, the cracked part of
the domain is modelized by a three-dimensional XFEM formulation. It is matched with the rest of
the domain, formulated with a classical finite element shellmodel. In this paper, a plate model is
kept on the entire domain, and we consider singular enrichment. In [15], the plate model used is
the Mindlin-Reissner one. However, in this reference, an important locking effect for thin plates
has been detected despite the use of some classical locking-free elements. This suggests that this
locking effect is due to the XFEM enrichment.

Even though most of the finite element codes are based on the Mindlin-Reissner plate model, the
so-called Kirchhoff-Love model provides also a realistic description of the displacement for a thin
plate since it is the limit model of the three-dimensional elasticity model when the thickness vanishes
(see [16]). For instance, the panels used in aeronautic structures can be about a few millimeters
thin, for several meters long. On this kind of plates, the shear effect can generally be neglected and
consequently the Kirchhoff-Love model is mechanically appropriate. It has already been used for the
purpose of fracture mechanics (for instance, see [17]). Moreover, for through-thickness cracks, the
limit of the energy release rate of the three-dimensional model can be expressed with the Kirchhoff-
Love model solution (see [18] and [19]).

Since the Kirchhoff-Love model corresponds to a fourth order partial differential equation,
a conformal finite element method needs the use ofC1 (continuously differentiable) elements.
We consider the reduced Hsieh-Clough-Tocher triangle (reduced HCT) and the reduced Fraejis
de Veubeke-Sanders quadrilateral (reduced FVS) because they are the less costly conformalC1

elements [20]. In the XFEM framework, the knowledge of the asymptotic crack tip displacement
is required. It is the case for a Kirchhoff-Love isotropic plate as it corresponds to the bilaplacian
singularities (see [21]). Thanks to all this material, it was possible to derive an efficient XFEM for
thin cracked plates with Kirchhoff-Love theory. It is detailed in [22] and some of its features, used
in this paper, are recalled in the following.

Then, it is possible to introduce the second tool which dealswith Stress Intensity Factors (SIF)
computation. For this, two different strategies are suggested. The first one consists in a direct
estimate. It follows an idea introduced in [23], for two-dimensional elasticity problem. And we have
adapted it to our bending plate problem and our XFEM formulation. Let us remark this approach
lies on the SIF definition as the limit, when the distance, sayr, to the crack tip tends to 0, of some
stress multiplied by

√
r, up to a mutiplicative coefficient. In classical FEM, the stress is numerically

evaluated and strongly depends on the mesh refinement. In [12] for plates, an alternative approach
is suggested, which uses the knowledge of the asymptotic singular displacements and the numerical
evaluation of the displacements through what is called a displacement extrapolation technique. It
will be explained later we can directly use the singular displacements we have introduced in the
numerical formulation. The second is more classical and uses J-integral. This is the way chosen in
[15] for Mindlin-Reissner plates. In our case, we had to derive this approach for Kirchhoff-Love
model.

The paper is organized as follows. Section 2 describes the model problem. Section 3 is devoted to
the extended finite element discretization of the Kirchhoff-Love model. In Section 4, two strategies
for SIF computation are detailed. In the last section, numerical results are presented and discussed,
which illustrate the capabilities of these methods, and enable to derive some practical rules for the
choice of some numerical parameters.

2. THE MODEL PROBLEM

2.1. Notations and variational formulation

Let us consider a thin plate,i.e. a plane structure for which one dimension, called the thickness,
is very small compared to the others. For this kind of structures, starting froma priori hypotheses
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Figure 1. The cracked thin plate (the thickness is oversizedfor the sake of clarity).

on the expression of the displacement fields, a two-dimensional problem is usually derived from
the three-dimensional elasticity formulation by means of integration along the thickness. Then, the
unknown variables are set down on the mid-plane of the plate,denoted here byω.

This mid-planeω is an open subset ofR
2. In the three-dimensional cartesian referential, the plate

(see Fig.1) occupies space

{
(x1, x2, x3) ∈ R

3 / (x1, x2) ∈ ω and x3 ∈ ] − ε ; ε [
}

.

So, thex3 coordinate corresponds to the transverse direction, and all the mid-plane points have their
third coordinate equal to0. The thickness is2ε. Finally, we assume that the plate has a through
the thickness crack and that the material is homogeneous andisotropic, of Young’s modulusE and
Poisson’s ratioν.

In plate theory, the following approximation of the three-dimensional displacements is usually
considered







u1(x1, x2, x3) = u1(x1, x2) + x3 φ1(x1, x2) ,
u2(x1, x2, x3) = u2(x1, x2) + x3 φ2(x1, x2) ,
u3(x1, x2, x3) = u3(x1, x2) .

(1)

In these expressions,u1 andu2 are the membrane displacements of the mid-plane points whileu3 is
the deflection,φ1 andφ2 are the section rotations. In the case of an isotropic material, the variational
formulation splits into two independent problems: the first, called the membrane problem, deals only
with membrane displacements, while the second, called the bending problem, concerns deflection
and rotations. The membrane problem corresponds to the classical plane elasticity problem and has
been already treated in many references (see for instance [4, 5]). So, here, we only consider the
bending problem.

In industrial finite element codes, the most widely used plate model is the Mindlin-Reissner one,
for which the displacement is given by (1). Nevertheless, for reasons mentioned in the introduction,
we choose here to work with the Kirchhoff-Love model, which can be seen as a particular case of
(1), as it is obtained by introducing the so-called Kirchhoff-Love assumptions, which read

∇u3 + φ = 0 i.e.

{
φ1 = −∂1 u3

φ2 = −∂2 u3
(2)

where the notation∂α stands for the partial derivative with respect toxα . A first consequence of
this relation is that the transverse shear strain is identically zero, which avoids the shear locking
problem. A second consequence of (2) is that the section rotation only depends on the transverse
displacement. It means that this displacement is the only unknown function for the bending problem.
For convenience, it will be denoted byu in the following. So, in the Kirchhoff-Love framework and
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Figure 2. Fracture modes for Kirchhoff-Love bending model (ΓC is the crack). Left: a symmetric bending
leads to mode I. Right: a shear bending leads to mode II.

for a pure bending problem, the three-dimensional displacement reads






u1(x1, x2, x3) = −x3 ∂1u(x1, x2) ,
u2(x1, x2, x3) = −x3 ∂2u(x1, x2) ,
u3(x1, x2, x3) = u(x1, x2) .

For the sake of simplicity, we assume the plate is clamped on its boundary and the crack faces are
traction free. Then, the plate is subjected to a volume force, sayf of coordinates(f1, f2, f3), and two
surface forces, sayg+ andg−, applied on the top and bottom surfaces. The variational formulation
(or virtual work formulation) of the Kirchhoff-Love model reads as







Findu ∈ H2
0 (ω) such that for anyv ∈ H2

0 (ω)
∫

ω

2Eε3

3(1 − ν2)

[
(1 − ν) ∂2

αβu + ν ∆u δαβ

]
∂2

αβv dx =

∫

ω

[F v − Mα ∂αv] dx.
(3)

where:

- F =

∫ ε

−ε

f3 dx3 + g+
3 + g−3 , which is the resulting transverse loading,

- Mα =

∫ ε

−ε

x3 fα dx3 + ε (g+
α − g−α ), which is the resulting moment loading.

Moreoverδαβ stands for the Kronecker’s symbol and the summation convention over repeated
indices is adopted, Greek indices varying in{1, 2}. Finally,H2

0 (ω) is the classical Sobolev space of
square integrable functions whose first and second derivatives in the distributions sense are square
integrable, and which vanish on the boundary, like their normal derivative (see [24] for instance).

2.2. Asymptotic displacement near the crack tip and fracture modes

In the Kirchhoff-Love plate model, there are two fracture modes. Applying a symmetric bending
leads to the first fracture one, while applying an anti-symmetric bending or a transverse shear, leads
to the second (see Fig.2).

To characterize them, let us recall that the governing equation related to the bending variational
problem (3) reads

2Eε3

3(1 − ν2)
∆2u = F + ∂αMα , (4)

on the mid-planeω. It is a bilaplacian problem for which the singularities arewell-known (see [21]).
So, close to the crack tip, the displacement may be written asu = ur + us , whereur stands for
the regular part of the transverse displacement and belongsto H3(ω). The singular partus reads

us(r, θ) = AKL r3/2

[

K1

(
ν + 7

3(ν − 1)
cos

3

2
θ + cos

θ

2

)

+ K2

(
3ν + 5

3(ν − 1)
sin

3

2
θ + sin

θ

2

)]

(5)

in polar coordinates relatively to the crack tip (see Fig.3), with

AKL =

√
2

2

1 − ν2

Eε(3 + ν)
. (6)
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Figure 3. System of polar coordinates relatively to the crack tip (the crack is in bold line).

This singular displacement belongs toH5/2−η(ω) for anyη > 0. In addition, the scalar coefficients
K1 andK2 are the so-called ”Stress Intensity Factors”, which are widely used in fracture mechanics
for crack propagation.

To conclude, we recall that the Kirchhoff-Love plate theorycorresponds to the limit of the three-
dimensional elasticity theory, when the thickness vanishes. However, the singularities we present
here are deduced from the Kirchhoff-Love theory, and not from the three-dimensional elasticity
theory. The reader interested by the link between the singularities of these two theories is referred
to [25].

3. EXTENDED FINITE ELEMENT APPROXIMATION OF THE KIRCHHOFF-LOVE MODEL

3.1. Classical finite element approximation

Let us introduce now the finite element discretization of thevariational formulation (3). In order to
have a conformal method, the finite element spaceV h has to satisfyV h ⊂ H2

0 (ω). This leads to
the use ofC1 finite elements. Among the available elements having this regularity, the reduced HCT
triangles (see [20], p. 356-357) and FVS quadrangles (see [20], p. 359-360) are of particular interest.
For both elements, the triangle (resp. quadrangle) is divided into three (resp. four) sub-triangles (see
Fig. 4). The basis functions areP3 polynomials on each sub-triangle and matchedC1 across each
internal edge. In addition, to decrease the number of dof (degrees of freedom), the normal derivative
is assumed to vary linearly along the external edges of the elements (this assumption does not hold
on the internal edges). At the end, there are only three dof oneach node for both elements: the value
of the function and its first derivatives. So, these elementshave the two following advantages:

1. The computational cost is limited to three dof for each node of the mesh, like a classical
Mindlin-Reissner element (the deflection and the two section rotations).

2. The theoretical error is inO(h) andO(h2) for theH2 andL2 norm (respectively), on regular
problems (h stands for the mesh parameter). The minimum regularity assumption for this
error estimate to hold is that the exact solution belongs toH3(ω) (see [26]).

So, the reduced HCT or FVS elements and standard Mindlin elements have the same features as
far as numerical cost and accuracy are concerned.

3.2. XFEM enrichment

To define our XFEM enrichment strategy, we follow ideas presented in previous papers [4, 5]. As
usual, the discontinuity of the displacement across the crack is represented using Heaviside-like
function, which is multiplied by the finite element shape functions. For the nonsmooth enrichment
close to the crack tip, an enrichment area of fixed size is defined and the nonsmooth functions are
added inside all this area. The strategy, which is used in this paper, is inspired by the so called
”XFEM dof gathering with pointwise matching”, introduced in [4] and developed for plates in [22].

As noticed in [9], such functions enrichment scheme does not satisfy a localpartition of unity
since enriched basis functions do not vanish at the edges of enriched elements. To solve this problem,
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Figure 4. HCT triangle and FVS quadrangle. Location of degrees of freedom and sub-triangles.

the authors introduced the so-called ”shifted” Heaviside function, which is of particular interest
when the so-called branch functions, which reads

√
r cos(θ/2) in their case, is not used for the

enrichment, as they did in their paper. However, here, we usethe branch functions. So we do
not use the ”shifted” Heaviside function because, first, optimal convergence results for our finite
element scheme were already obtained numerically (see [22]), and, second, Nicaise & al [27] have
theoretically proved that an approach such as [4] is optimal.

Let us now describe more precisely the enrichment. So, letΓ be the boundary of the enrichment
area (see Fig.5). It cutsω into two sub-domains: the enrichment area, sayω1, and the rest of the
domain, sayω2. Then, the support of the singular added functions is the whole enrichment area but
they are not multiplied by the finite element basis functions. So, instead of 6 additional dof per node
inside the enrichment area, there are only 2 singular dof forthe whole system. Consequently, if the
unknowns defined on each sub-domainωi are denoted byuh

i , their expressions read






uh
1 =

∑

i∈N1

ai ϕi +
∑

i∈J1

bi H ϕi +

2∑

i=1

ci Fi ,

uh
2 =

∑

i∈N2

ai ϕi +
∑

i∈J2

bi H ϕi ,

(7)

whereϕi are the basis functions of the reduced HCT/FVS elements. Thejump of H function is
located on the crack; the setJ denotes the dof whose shape function support is completely crossed
by the crack (see Fig.6). Furthemore,N1 andN2 are the set of dof that are located inω1 andω2

(N1 ∩ N2 is not empty and corresponds to the set of nodes that are on theboundaryΓ). In a same
way,Ji are the set of dof ofJ that are located inωi andJ1 ∩ J2 is not empty for the same reason.
Finally, the singular enrichment functions, derived from (5), are







F1 = r3/2

(
ν + 7

3(ν − 1)
cos

3

2
θ + cos

θ

2

)

,

F2 = r3/2

(
3ν + 5

3(ν − 1)
sin

3

2
θ + sin

θ

2

)

.

Naturally, a matching condition is needed at the interface between the enrichment area and the
rest of the domain, in order to insure the continuity of the function and its derivatives. The following
relations were chosen at this aim







∫

Γ

uh
1 λ =

∫

Γ

uh
2 λ , ∀λ ∈ Λ ,

∫

Γ

∂nuh
1 µ =

∫

Γ

−∂nuh
2 µ , ∀µ ∈ M ,
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Figure 5. Set of elements which represents the support of thenonsmooth functions.

whereΛ andM are appropriate multiplier spaces. Here,Λ is the space of piecewise polynomials of
degree2 andM piecewise polynomials of degree1, and we have checked in [22] that this choice
keeps an optimal rate of convergence for the finite element scheme. Finally, let us observe the change
of sign in front of the normal derivative∂nui is due to the fact that the outside normal vector has an
opposite sign whether it is used in∂nuh

1 or ∂nuh
2 .

Figure 6. Set of nodes to be enriched along the crack.

4. COMPUTATION OF STRESS INTENSITY FACTORS

In industrial applications dealing with cracked structures, the plate displacement is not
straightforwardly meaningful in terms of crack propagation. The SIF are linked to the energy release
rateG, and they provide such an information (we haveK2

1 + K2
2 proportional toG). However, the

calculation of SIF usually needs the use of some specific post-treatments, such as computation of
J-integral for instance.

4.1. First method: direct estimate

An interesting feature of the previously described methodology is that it can lead to a direct estimate
of SIF. Comparing expressions of the asymptotic displacement (5) with the numerical displacement
(7), it appears that, if the method is convergent, the finite element coefficients(ci)i should be close
to (Ki)i , up to a multiplicative constant, we shall calculate now.

Actually, in the expression of the singular displacement ofKirchhoff-Love theory (5), it appears
two singular modes. However, in the above XFEM formulation,the singular enrichmentsF1 andF2
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are exactly these two singular fonctions. In particular, inthe sub-domainω1 containing the crack
tip, the numerical solution reads

uh
1 =

∑

i∈N1

ai ϕi +
∑

i∈J1

bi H ϕi +
2∑

i=1

ci Fi .

To show how coefficientsci can be good approximations of SIF, up to a multiplicative constant to
be determined, let us go back to the mathematical definitionsof the SIF, in Kirchhoff-Love theory,
which are

K1 = lim
r→0

√
2r σ22(r , θ = 0 , x3 = ε) ,

K2 = lim
r→0

3 + ν

1 + ν

√
2r σ12(r , θ = 0 , x3 = ε) .

(8)

The singular stresses are inO(1/
√

r) in the vicinity of the crack tip. However, if we calculate the
componentsσ12 andσ22 resulting from numerical displacementuh

1 , multiply the result by
√

r and
maker tends to0, all the regular terms are cancelled and only the coefficients ci remain, up to
a multiplicative constant. So these coefficients fit well with the SIF definitions. We only have to
evaluate the multiplicative constant.

Now, let us give the calculation in details forK1, the same procedure being convenient forK2.
Under the assumption of isotropic and homogeneous material, we recall the link betweenσ22 andu

σ22 = − x3
E

1 − ν2

[
ν∂2

11u + ∂2
22u

]
.

Replacingu by uh
1 in this expression and reporting it in (8) leads to

Kh
1 = − E ε

√
2

1 − ν2







ν lim
r→0

√
r ∂2

11u
h
1

︸ ︷︷ ︸

l1

+ lim
r→0

√
r ∂2

22u
h
1

︸ ︷︷ ︸

l2







.

These two limitsl1 and l2 exist. Since the most singular part ofuh
1 is in O(r3/2), we have

∂2
αβu = O(r−1/2). Apart from the crack, the element edges and the internal boundaries of the

HCT/FVS elements, the basis functions ofuh
1 areC2, so∂2

αβuh
1 exists, and we have

lim
r→0

√
r ∂2

αβuh
1 = lim

r→0

∑

i

ci

√
r ∂2

αβFi ,

as
lim
r→0

√
r ∂2

αβϕi = 0 ; lim
r→0

√
r ∂2

αβϕi H = 0 .

The calculation of the second derivatives ofFi fonctions is not difficult and gives

lim
r→0

√
r ∂2

11F1(r, 0) =
ν + 1

ν − 1
, lim

r→0

√
r ∂2

22F1(r, 0) =
ν − 3

ν − 1
,

lim
r→0

√
r ∂2

11F2(r, 0) = 0 , lim
r→0

√
r ∂2

22F2(r, 0) = 0 .

These expressions show thatF2 is not involved in the estimation ofKh
1 . We deduce that

l1 = c1
ν + 1

ν − 1
andl2 = c1

ν − 3

ν − 1
, and finally

Kh
1 = −

√
2 E ε (3 + ν)

1 − ν2
c1 .

The calculation forK2 can be carried out the same way. The definition (8) involvesσ12, which is
proportional to∂2

12u. So, here, we have to calculate the cross derivatives of functionsFi and obtain

lim
r→0

√
r ∂2

12F1(r, 0) = 0 , lim
r→0

√
r ∂2

12F2(r, 0) =
ν + 1

ν − 1
,

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2010)
Prepared usingnmeauth.cls DOI: 10.1002/nme
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which gives

Kh
2 = −

√
2 E ε (3 + ν)

1 − ν2
c2 .

As the numerical values of coefficientsci result directly from the solving of the linear system
associated to the calculation ofuh

1 , no post-treatment is necessary to obtain approximationsKh
1

andKh
2 of the SIF.

To conclude this section, let us remark that a similar idea has already been described and tested
in [23]. In this paper, a numerical method, close to the one we propose here, is applied on a
two-dimensional elasticity problem. This method uses the XFEM formulation named ”geometrical
enrichment” in [5] and ”XFEM with fixed enrichment area” in [4], except that an enrichment zone of
fixed area is not defined. The authors prefer to select from oneto three layers of nodes surrounding
the crack tip. Three meshes are used, the mesh parameter being divided by two at each refinement.
With a single layer of enriched nodes, the error on the SIF is around 15% and the mesh refinement
does not improve significantly the accuracy. Adding a secondlayer of enriched nodes makes the
error fall to globally 1% and, with the third layer, under 1%.However, this paper shows clearly
that the mesh refinement does not lead to a strict decrease of the error. Finally, let us mention a
recent work of Nicaise & al [27], which shows a rather slow theoretical convergence of order

√
h

for bi-dimensional elasticity with XFEM.

4.2. Second method: J-integral computation

4.2.1. Method description and formulationFor Kirchhoff-Love theory, the expression of the J-
integral has already been established in [17]. Its expression is

J = − 1

2

∫

Γ

mαβ ∂αβu b1 dl +

∫

Γ

mαβ bβ ∂1αu dl −
∫

Γ

∂α mαβ bβ ∂1u dl ,

wheremαβ stands for the bending moment andbα for the outward unit vector normal to the contour
of integrationΓ. However, this expression is not the one used in numerical computations, since it
does not allow to separate the contributions of each SIF in the energy release rate. In addition, it
needs to carry out integrations on contours, which is not well suited for finite element computations.
The usual technique allowing to do accurate SIF calculations via J-integrale is described in [1]. It is
based upon works of Destuynder, described in details for instance in [19].

Now, the formulation adapted to the case of Kirchhoff-Love plate theory is presented. It follows
quite closely the one described in [1], which deals with the case of two-dimensional elasticity.So,
J-integral can be rewritten

J =

∫

Γ

mαβ

(

∂1αu bβ − 1

2
∂αβu b1

)

dl −
∫

Γ

∂α mαβ bβ ∂1u dl .

Following [1], we introduce two states. State (1)(m
(1)
αβ , u(1)) matches the numerical solution which

SIF we want to evaluate. State (2)(m
(2)
αβ , u(2)) is an auxiliary state corresponding to the asymptotic

displacement of mode I or II, depending on the SIF we want to calculate. The J-integral for the sum
of these two states reads

J (1+2) =

∫

Γ

(

m
(1)
αβ + m

(2)
αβ

) [(

∂1αu(1) + ∂1αu(2)
)

bβ − 1

2

(

∂αβu(1) + ∂αβu(2)
)

b1

]

dl

−
∫

Γ

(

∂αm
(1)
αβ + ∂αm

(2)
αβ

) (

∂1u
(1) + ∂1u

(2)
)

bβ dl .

It is developed as

J (1+2) = J (1) + J (2) + I(1,2) , (9)
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whereI(1,2) is the so-called interaction integral

I(1,2) =

∫

Γ

(

m
(1)
αβ∂1αu(2) + m

(2)
αβ∂1αu(1)

)

bβ − 1

2

(

m
(1)
αβ∂αβu(2) + m

(2)
αβ∂αβu(1)

)

b1dl

−
∫

Γ

(

∂αm
(1)
αβ∂1u

(2) + ∂αm
(2)
αβ∂1u

(1)
)

bβ dl . (10)

Introducing now the formula, established in [17], which links J-integral to SIF

J =
2επ(1 + ν)

3E(3 + ν)

(
K2

1 + K2
2

)
,

we rewrite it in the case of the sum of the 2 states and find

J (1+2) = J (1) + J (2) + 2
2επ(1 + ν)

3E(3 + ν)

(

K
(1)
1 K

(2)
1 + K

(1)
2 K

(2)
2

)

. (11)

Since the right hand sides of(9) and(11) are equal, we deduce

I(1,2) =
4επ(1 + ν)

3E(3 + ν)

(

K
(1)
1 K

(2)
1 + K

(1)
2 K

(2)
2

)

.

So if, in this relation, state (2) is mode I (withK(2)
1 = 1 et K(2)

2 = 0 ), the value of the SIFK1 is
obtained with the value of the interaction integral, since previous equation becomes

I(1,2) =
4επ(1 + ν)

3E(3 + ν)
K

(1)
1 . (12)

K2 can be calculated in the same way.

4.2.2. Transformation of the interaction integral into a domain integral The previous section shows
that calculating interaction integral (10) with singular crack fields enables to deduce the values of
the SIF with (12). However, for numerical purpose, the interaction integral is transformed into a
domain integral. Here again, we follow [1].

First, let us rewrite the interaction integral (10) in a more compact form

I(1,2) =

∫

Γ

(Aβ bβ + B b1) dl ,

with

Aβ =
(

m
(1)
αβ∂1αu(2) + m

(2)
αβ∂1αu(1)

)

−
(

∂αm
(1)
αβ∂1u

(2) + ∂αm
(2)
αβ∂1u

(1)
)

,

B = −1

2

(

m
(1)
αβ∂αβu(2) + m

(2)
αβ∂αβu(1)

)

.

The value ofI(1,2) remains unchanged if the integrand is multiplied by a regular function, sayq,
whose value is1 on the area defined byΓ, et 0 on another contourC0 that enclosesΓ. So, if we
assume there is no surface force applied on discA defined by contourC0 , I(1,2) reads also

I(1,2) =

∫

Γ

(Aβ Bβ + B B1) q dl ,

whereC is defined byC = Γ ∪ C+ ∪ C− ∪ C0 , while B denotes the outward normal toC
(see Fig.7). Then, using divergence theorem and taking the limit of contourΓ, whenΓ tends to the
point (0, 0), the contour integral becomes a surface one and domainA becomes the complete disc
that contains the crack tip and which is bounded byC0 . Thus, we have

I(1,2) =

∫

A

[ ∂β (Aβ q) + ∂1 (B q) ] dA

=

∫

A

[ (∂βAβ + ∂1B) q + Aβ ∂βq + B ∂1q ] dA
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Γ

C

C

0

+ 

C−

Figure 7. Integration contours forI(1,2) calculation.

A direct calculation shows easily that∂βAβ + ∂1B = 0. Hence, we obtain

I(1,2) =

∫

A

[(

m
(1)
αβ ∂1αu(2) + m

(2)
αβ ∂1αu(1)

)

−
(

∂αm
(1)
αβ ∂1u

(2) + ∂αm
(2)
αβ ∂1u

(1)
)]

∂βq dA

− 1

2

∫

A

(

m
(1)
αβ ∂αβu(2) + m

(2)
αβ ∂αβu(1)

)

∂1q dA .

Finally, settingD =
2Eε3

3(1 − ν2)
, let us observe that

m
(1)
αβ ∂αβu(2) = −D

[

(1 − ν)∂2
αβu(1) + ν ∆u(1) δαβ

]

∂2
αβu(2)

= −D
[

(1 − ν)∂2
αβu(1) ∂2

αβu(2) + ν ∆u(1) ∆u(2)
]

= m
(2)
αβ ∂αβu(1) .

Hence, the final expression of interaction integral reads

I(1,2) =

∫

A

[(

m
(1)
αβ ∂1αu(2) + m

(2)
αβ ∂1αu(1)

)

−
(

∂αm
(1)
αβ ∂1u

(2) + ∂αm
(2)
αβ ∂1u

(1)
)]

∂βq dA

−
∫

A

m
(1)
αβ ∂αβu(2) ∂1q dA . (13)

4.2.3. Numerical calculation of the interaction integralNow, our purpose is to calculate the
interaction integralI(1,2) given by (13), in the the case of Kirchhoff-Love model, treated with
reduced HCT/FVS elements. Expression (13) contains three terms. There is no difficulty for the
two ones which contain the bending momentsm

(i)
αβ without derivatives. But the third term, which

includes∂αm
(i)
αβ is harder to handle, as it involves third order derivatives of the displacements.

On the one hand, the functions we integrate are surely not inH3(Ω). On the other hand, it
cannot be expected that the third derivatives of a function may be correctly approximated by
reduced HCT/FVS elements: for these elements, error estimates are only obtained up to the second
derivatives. So we will transform (13) in order to avoid these third derivatives.

The expression, we want to modify, reads

X = −
∫

A

(

∂αm
(1)
αβ ∂1u

(2) + ∂αm
(2)
αβ ∂1u

(1)
)

∂βq dA .

It is split in two terms

X = −
∫

A

∂αm
(1)
αβ ∂1u

(2) ∂βq dA

︸ ︷︷ ︸

X1

−
∫

A

∂αm
(2)
αβ ∂1u

(1) ∂βq dA

︸ ︷︷ ︸

X2

.
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12 J. LASRY ET AL

X2 can be computed without any particular difficulty, as it depends only on the crack tip singular
functions. It only needs computation of third derivatives of these singularities.X1 is integrated by
parts

X1 =

∫

A

m
(1)
αβ ∂α(∂1u

(2) ∂βq) dA

︸ ︷︷ ︸

X11

−
∫

∂A

m
(1)
αβ ∂1u

(2) ∂βq bα dl

︸ ︷︷ ︸

X12

.

There is no problem concerningX11. As far asX12 is concerned, in the case whereu(2) is the exact
mode I, it can be checked that∂1u

(2) cancels along the crack (this term cancels whenθ = π), and
thenX12 = 0. But in the case of mode II,X12 calculation is more difficult: this term differs from
0, but only along the crack where∂βq is not 0. It is along the intersection between the crack and the
boundary of the ring of integration. Nevertheless, in our numerical tests, for the mode II, we shall
neglect this term. Despite this simplification, computations ofK2 were not less precise than those
of K1.

To conclude this section, let us present briefly some features of numerical implementation. The
calculation of interaction integralI(1,2) needs to define explicitly functionq. Let us recall this
function is identically equal to 1 inside an area containingthe crack tip, 0 outside a zone enclosing
the first one, andq matches regularly from one zone to the other. Since only derivatives ofq are
needed in (13), those functions differ from 0 on a ring between the two zones. In practice, we define
a ring of elements around the crack tip on which the J-integral is evaluated (see Fig.8). In our
numerical tests, this ring is made of elements located at a certain distanceRJ from the crack tip.
Furthemore, the functionq is represented on the reduced HCT/FVS basis. The nodal values are set
to 1 on the internal boundary of the ring, to 0 on the external boundary while the degrees of freedom
associated to the derivatives are set to 0 on both boundaries.

��������������������������������

Figure 8. Ring of elements enclosing the crack tip.

5. NUMERICAL RESULTS

5.1. Description of the numerical study

The numerical experiments presented in this section were performed with the open-source finite
element library Getfem++ [28].

5.1.1. Test casesTwo test-cases with a straight through crack are consideredin this paper. The
solution of the first one is the sum of the two singular modes

uex = F1 + F2 .

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2010)
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SIF COMPUTATION FOR BENDING PLATES WITH XFEM 13

The sides of the crack follow a free edge condition. On the rest of the domain boundary, a non-
homogeneous Dirichlet condition is given, whose value corresponds touex. Consequently, the exact
values ofK1 andK2 are1/AKL, whereAKL is defined by (6). Finally, the plate we took is the
square[−0.5, 0.5] × [−0.5, 0.5], with the crack tip at the origin.

The second test case is more classical and comes from [29]. It consists in a square plate with
a central straight through crack of length2a, and a constant momentM0 is applied on the edges
parallel to the crack. The dimensions of the plate are said tobe “infinite”, which means that reference
SIF values are correct only if the crack is small compared to the dimensions of the plate. These
reference values are

K1 =
3 M0

√
a

2 ε2
; K2 = 0 .

For the numerical tests, we took a plate of edge1, with a crack of size2a = 0.2. This remains
significant compared to [30], where calculations are carried out with2a = 0.18. Since the problem
is symmetric, only half of the domain is considered.

2a

M

M 0

0

Figure 9. Second test case. Plate with central crack subjected to moments applied on two edges.

5.1.2. Goals of the studyThe aim of the numerical experiments is to study the error made by our
SIF calculation methods, with respect to the following parameters:

• mesh parameterh,
• enrichment radiusR which corresponds to the ”size” ofω1 (see Figure5),
• integration ring radiusRJ ,for J-integral method only,
• structured or non-structured meshes.

In addition, for J-integral, results are compared with non-enriched Finite Element Method.
Another goal of these numerical experiments is to bring elements of answer to the question of

the influence of parametersR andRJ and to propose eventually some practical rules for the choice
of these parameters, depending on the mesh sizeh. Indeed, in [5] and [4], the enrichment area
is a disc, of radii0.05 and 0.1, respectively. In [22], we tookR = 0.15. However, in a more
general manner, we think the choice ofR depends on the result we try to set. For example, to
show the convergence of an enriched finite element method inL2 or H2 norm, taking a fixed value
independant ofh is convenient. Nevertheless, on the most refined meshes, thechoice of fixedR
leads to enrich numerous layers of elements, which may be notnecessary if we use only one mesh.
So, in our study, we introduce two strategies for the choice of the sizeR of enriched domainω1.
First, we consider several fixed values ofR. Second,R depends onh, in such a way the enrichment

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2010)
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14 J. LASRY ET AL

area covers several layers of elements around the crack tip.It meansR is equal tok h, wherek
is an integer we have taken between 1 and 5. Let us remark also that takingR = h is very close
to the first XFEM formulation [1, 15], where only the element contening the crack tip is enriched
by singular functions. Finally, as the results with the fixedvalue ofR were not more accurate than
those withR depending onh, we only present results withR = k h in this paper. For more details,
the reader is referred to [31].

5.2. Direct Estimate

This first method was tested on the two above mentioned test-cases, with triangular and
quadrangular, structured and non-structured meshes, for several values of the mesh parameterh.
Moreover, we have testedR = k h, wherek goes from 1 to 5.

The results for the first test case, are given Fig.10 and Fig.11. They show the method provides
very good estimates of SIF. The relative error is always lower than 5% and often lower than 1%. Let
us remark that an error of 5% is precise enough for many industrial applications. Nevertheless, the
convergence can be very slow on non-structured meshes. Maybe it is due to high conditionning of
the method, which reaches1012 on such meshes.

For the second test case, the size of the crack isa = 0.11 on half domain, which is the rectangle
[0, 0.5] × [−0.5, 0.5]. So the crack is smaller than in the first test case. Moreover,the enrichment
area must not touch the boundary0 × [−0.5, 0.5], since it corresponds to a symmetry condition.
Indeed, singular enrichment does not satisfy this condition. Here, we use meshes which the level
of refinement is equivalent to those of the first test case. It leads to a more drastic constraint
on the choice ofR. We also tested the same values ofk, but a high value ofk needs an initial
level of refinement more important. For example, fork = 5, the less refined mesh, in structured
quadrangular meshes, needs around 60 elements on the longest edge of the domain. This explains
why some curves are not complete. However, when this level ofrefinement is reached, the error is
lower than 5%. The results are presented Fig.12.

Despite its slow convergence, the ”direct estimate” methodis simple, efficient, and provides SIF
values close to the exact ones. According to the tests, increasingR improves the results. So, due
to the slow convergence, it may be more interesting to increaseR than to refine the mesh. We
observe also thatR = 5 h enables to reach always a satisfactory accuracy. It leads usto propose
the following practical rule. Given a crack of lengtha, the domain has to be meshed with a minimum
h arounda/5 and the radius of the enrichment area is taken equal to5 h. Let us remark this rule
indicates that the smaller is the crack, the more the mesh hasto be refined in ordre to take care of
the crack. This is in accordance with intuition: the more a crack is small compared to elements size,
the less it has influence on global solution. A very refined mesh is then necessary in order to ”catch”
its effect.

5.3. J-integral

The same numerical experiments than in the previous sectionwere carried out. But, here, the radius
of the ring of integrationRJ has also been investigated.

5.3.1. First test caseWe have observed that, even if the results are accurate, fromone mesh to
another, the error is not strictly decreasing, as the value provided by J-integral oscillates around the
exact value. Hence, a mesh can give an error slightly greaterthan a coarser one. That’s why we give
convergence curves only on the first test case, and on structured meshes, for which less oscillatory
results are obtained.

So Fig 13 and Fig.14 present convergence curves for structured meshes, both triangular and
quadrangular. For this particular purpose, the radius of the enrichment areaR must be fixed, and
it is equal to 0.15 here. The comparison with a non-enriched Finite Element Method (FEM) shows
that XFEM improves the SIF values and that the rate of convergence may be slightly better.

Now, let us present a more global study, in which the numerical values of SIF are investigated,
with respect toh, R andRJ . Fig. 15 gives results forR = k h on non-structured triangular and
quadrangular meshes. Moreover, only results onK1 were shown, curves forK2 being very similar
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Figure 10. SIF calculations - Direct estimate - First test case - Triangular meshes.

[31]. For brevity, we do not present structured meshes results.In fact, they do not bring additionnal
informations, and they have already been presented in the case of direct estimate (see Fig.13 and
14).

So, our results show that the error often remains lower than 5%. On structured meshes, this error
is generally less than 1% [31]. On non-structured meshes, takingR = 3 h is enough to obtain an
error lower than 5% on all meshes. Such a value forR seems to be minimal. Besides, on coarser
meshes, withR = h, the error is often greater than 10%.

All in all, results are relatively stable with respect to ring radiusRJ . To conclude, it can be
observed that Fig.15 shows oscillations. Let us notice it is not the case for regular meshes [31].
That’s why we explain it by the fact that, in our calculations, the ring of integration is only
one element width, which may be too irregular on non-structured meshes to have stable results.
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Figure 11. SIF calculations - Direct estimate - First test case - Quadrangular meshes.

Naturally, this explanation should be numerically tested.However, the error level on SIF appears to
be good enough to avoid a more complex estimate.

5.3.2. Second test caseWe recall the crack is smaller here, which limits the choice of R andRJ .
Again, we takeR = 3 h for k = 1, ..., 5. In all cases, the radius of the ring of integrationRJ varies
from 0.05 to 0.11, so that this ring can touch the boundary. Our results tend to show the precision
depends mainly onRJ . WhenRJ increases, the approximate SIF is closer to the exact one andthe
best values are obtained for the greatest. Finally, except coarser meshes, the best value is always
lower than 5%, while the meshes with less than 2 elements on the crack induces significant errors.
Numerical results are brought together Fig.16, for non-structured meshes.
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Figure 12. SIF calculations - Direct estimate - Second test case.

To conclude on this second test case, we observe that an as great as possible ring of integration
must be chosen, in order to have the most accurate SIF. Then, the rule of construction, we propose,
is still to takeh = a/5 (for a crack of lengtha) andR = 5 h.

6. CONCLUDING REMARKS

This paper adresses the modelization of bending plates withthrough the thickness cracks in the
framework of linear elastic fracture mechanics. As very thin plates are considered, the Kirchhoff-
Love plate model is used. The main point, studied in this paper, is the numerical computation of
SIF. For that purpose, two strategies are described and evaluated on two test cases.
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Figure 13. SIF convergence curves - J-integral - First test case - Triangular meshes.
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Figure 14. SIF convergence curves - J-integral - First test case - Quadrangular meshes.

First, the ”direct estimate” method is simple, efficient, and provides SIF values close to the exact
ones. According to the tests, increasing the radiusR of the enrichment area improves the results.
Moreover, it seems more interesting to increaseR than to refine the mesh. Second, a ”J-integral”
approach is derived which gives also good results. Furthemore, the comparison with a classical
Finite Element Method shows that XFEM improves the SIF values.

Finally, a practical rule may be emphasised. In all our tests, a radiusR = 5 h enables to reach
always a satisfactory accuracy, for both SIF computation strategies. To make it possible, it leads to
the following mesh rule. Given a crack of lengtha, the domain has to be meshed with a minimumh
arounda/5 and the radius of the enrichment area will be taken equal to5 h.

Naturally, some developments and applications of this workhave to be done. The first one deals
with crack propagation as in [7, 12, 13]. The second one, which is more challenging, concerns
cohesive models and shells, for which ideas developped in [9, 12, 13], among others, are a good
starting point.
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Figure 15. NormalizedK1 versusRJ - J-integral - First test case.
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Figure 16. NormalizedK1 versusRJ - J-integral - Second test case.
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