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RÉSUMÉ. On s’interresse dans ce papier à l’analyse mathématique et numérique de la conver-
gence et de la stabilité de la formulation mixte d’un problème d’élasticité incompressible dans
un domaine fissuré. L’objectif est d’étendre l’étude faite sur la variante X-FEM cut-off, dans le
cas de l’élasticité compressible, au comportement incompressible. Une preuve mathématique
de la condition inf-sup de la formulation mixte discrète avec X-FEM est établie pour certains
champs enrichis. Nous donnons également un résultat mathématique de la quasi-optimalité de
l’estimation d’erreur. Enfin, nous validons ces résultats avec des tests numériques.

ABSTRACT. In this paper we are concerned with the mathematical and numerical analysis of
convergence and stability of the mixed formulation for incompressible elasticity in cracked do-
mains. The objective is to extend the X-FEM cut-off analysis done in the case of compressible
elasticity to the incompressible one. A mathematical proof of the inf-sup condition of the dis-
crete mixed formulation with X-FEM is established for some enriched fields. We also give a
mathematical result of quasi-optimal error estimate. Finally, we validate these results with
numerical tests.
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1. Introduction

The presence of a crack in a structure reveals two types of discontinuities : a strong
discontinuity that requires an adapted mesh to the shape of the crack, hence the do-
main is meshed at each time step ; and a weak discontinuity that requires refinement
at the crack tip. These two operations lead to a huge computational cost. In order to
overcome these difficulties we use the eXtended Finite Element Method (X-FEM).
This method allows to model cracks, material inclusions and holes on nonconforming
meshes. It was introduced by Moës et al. (Moës et al., 1999). It consists in enriching
the basis of the classical finite element method by a step function along the crack line
and by some non-smooth functions representing the asymptotic displacement around
the crack tip. To obtain an optimal accuracy, Chahine et al. introduced a new enrich-
ment strategy (Chahine et al., 2008) : the so called X-FEM cut-off. This enrichment
strategy uses a cut-off function to locate the crack tip surface. In their work, Chahine
et al. have shown that the X-FEM cut-off has an optimal convergence rate of order h
and that the conditioning of the stiffness matrix does not deteriorate. In this work, we
extend the numerical results given by Chahine et al. (Chahine et al., 2008) to an incom-
pressible isotropic linear plane elasticity problem in fracture mechanics. In particular,
this formulation must satisfy the so-called inf-sup or “Ladyzhenskaya-Brezzi-Babuška
condition” (LBB) condition.

2. Model problem and discretization

Figure 1. Cracked do-
main

Let Ω be a two-dimensional cracked domain, Γc de-
notes the crack and Γ the boundary of Ω. We assume that
Γ\Γc is partitioned into two parts : ΓN where a Neumann
surface force t is applied and ΓD where a Dirichlet con-
dition u = 0 is prescribed (see Fig. 1). We assume that
we have a traction-free condition on Γc. Let f be the body
force applied on Ω. The equilibrium equation, constitutive
law and boundary conditions are given by

−div σ(u) = f , in Ω, [1]

σ(u) = λ tr ε(u) I + 2µ ε(u), in Ω, [2]

u = 0, on ΓD, [3]

σ(u) · n = t, on ΓN , [4]

σ(u) · n = 0, on Γc. [5]

with ε(u) =
1

2
(∇u+∇uT ) and n is the outside normal to the domain Ω.

Let V =
{
v ∈ H1(Ω) with u = 0 on ΓD

}
, Q = L2(Ω) , σd the deviatoric part of σ

and p the hydrostatic pressure. By a classical way we find the weak mixed formulation
(Brezzi et al., New York, 1991)
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
Find (u, p) ∈ (V,Q) such that :
a(u,v)− b(v, p) = L(v), ∀v ∈ V,

b(u, q) = 0, ∀q ∈ Q,

[6]

with a(u,v) =
∫
Ω
σd(u) : ε(v) dΩ, b(v, p) =

∫
Ω
p divv dΩ, L(v) =

∫
Ω
f ·v dΩ+∫

ΓN
t · v dΓ. Discretization of the elasticity problem follows the usual steps. Let τh

an affine mesh of the non cracked domain Ω. We approximate (u, p) by (uh, ph) ∈
Vh ×Qh. The subspaces Vh and Qh are finite dimensional spaces that will be defined
later. The discretized problem is then :

Find (uh, ph) ∈ (Vh, Qh) such that
a(uh, vh)− b(vh, ph) = L(vh), ∀vh ∈ Vh,

b(uh, qh) = 0, ∀qh ∈ Qh.

[7]

The existence of a stable finite element approximate solution (uh, ph) depends on
choosing a pair of spaces Vh and Qh such that the following LBB condition holds :

inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)

‖ qh ‖0,Ω ‖ vh ‖1,Ω
≥ β0,

where β0 > 0 is independent of h (Brezzi et al., New York, 1991). The satisfaction
of this condition for a couple (Vh, Qh) is very difficult to prove in practical situations.
Therefore, the numerical evaluation of the inf-sup has been widely used (Chapelle et
al., 1993). It gives an indication of the verification of the LBB condition for a given
finite element discretization.

3. X-FEM cut off approximation spaces

The idea of X-FEM is to use a classical finite element space enriched by some
additional functions. These functions result from the product of global enrichment
functions and some classical finite element functions. we consider the variant of X-
FEM which uses a cut-off function to define the singular enrichment surface. The
classical enrichment strategy for this problem is to use the asymptotic expansion of
the displacement and pressure fields at the crack tip area. Indeed, the displacement is
enriched by the Westergaard functions :

Fu =
{
Fu
j (x), 1 ≤ j ≤ 4

}
=

{√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ

}
,

where (r, θ) are polar coordinates around the crack’s tip. These functions allow to
generate the asymptotic non-smooth function at the crack’s tip (Laborde et al., 2005).
For the pressure, the asymptotic expansion at the crack tip is given by p(r, θ) =
2KI

3
√
2πr

cos θ
2 + 2KII

3
√
2πr

sin θ
2 where KI and KII are the stress intensity factors. This

expression is used to obtain the basis of enrichment of the pressure in the area of the
crack’s tip (Legrain et al., 2008) :

F p =
{
F p
j (x), 1 ≤ j ≤ 2

}
=

{
1√
r
cos

θ

2
;
1√
r
sin

θ

2

}
.
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The displacement and pressure are also enriched with a Heaviside-type function at
the nodes for which the support of their shape functions is totally cut by the crack.
Using this enrichment strategy, the discretisation spaces Vh and Qh take the following
forms :

Vh =

vh =
∑
i∈I

αkψu,k +
∑
i∈IH

βkHψu,k +

4∑
j=1

γjF
u
j χ; αk, βk, γj ∈ R

 ,

Qh =

ph =
∑
i∈I

pi ϕp,i +
∑
i∈IH

bpiHϕp,i +

2∑
j=1

cpjF
p
j χ; pi, b

p
i , c

p
j ∈ R

 ,

with I the set of node indices of τh, IH the set of node indices of τh for which the
supports of their shape functions are totally cut by the crack, ϕu,i (resp. ϕp,i) are
the scalar schape functions for displacement (resp. for pressure), ψu,k are the vector

shape functions defined by ψu,k =



(
ϕu,i

0

)
if i =

k + 1

2(
0
ϕu,i

)
if i =

k

2

and χ is a C 1-

piecewise function which is polynomial of degree 3 in the annular region r0 ≤ r ≤ r1,
and satisfies χ(r) = 1 if r < r0 and χ(r) = 0 if r > r1. In our case we take

χ(r) =
2r3 − 3(r0 + r1)r

2 + 6r1r0r + (r0 − 3r1)r
2
0

(r0 − r1)3
if r0 ≤ r ≤ r1 with r0 = 0.01

and r1 = 0.49.

4. Proof of inf-sup condition and error analysis

In this section we prove that the LBB condition holds for the P2/P0 element with-
out the singular enrichment of the pressure. In order to simplify the presentation we
assume that the crack cuts the mesh far enough from the vertices. We use a general
technique introduced by Brezzi and Fortin in their book (Brezzi et al., New York,
1991).
4.1. Construction of a H1-stable interpolation operator

Figure 2. Domain decompo-
sition

The proof of the LBB condition requires the defi-
nition of an interpolation operator adapted to the pro-
posed method. Since the displacement field is discon-
tinuous across the crack on Ω, we divide Ω into Ω1

and Ω2 according to the crack and a straight exten-
sion of it (Fig. 2). Let uk be the restriction of u to
Ωk, k ∈ {1, 2}. As u ∈ H1(Ω) then there exists an
extension ũk in H1(Ω) of uk across the crack on Ω
such that :

‖ ũk ‖1,Ω≤ Ck ‖ uk ‖1,Ωk
, [8]
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where Ck is independent of u (Adams, 1975).

Definition 1. Given a displacement field u ∈ H1
0(Ω) and two extensions ũ1 and ũ2

of u1 and u2 in H1
0(Ω), respectively, we define Π1u as the element of Vh such that :

Π1u =
∑

j∈I\IH

αjϕj +
∑
j∈IH

[
βjϕjH1 + γiϕjH2

]
, [9]

with

H1(x) =

{
1 if x ∈ Ω1,

0 if x ∈ Ω2,
H2(x) = 1−H1(x),

αi =
1

| ∆i |

∫
∆i

ũkdx if xi ∈ Ωk, βi =
1

| ∆i |

∫
∆i

ũ1dx,

γi =
1

| ∆i |

∫
∆i

ũ2dx, Sj :=
⋃

{S ∈ τh : supp(ϕj) ∩ S 6= ∅},

where ∆j is the maximal ball centered at xj such that ∆j ⊂ Sj and {xj}Jj=1 are the
interior nodes of mesh τh.

This definition is inspired by the work of Chen and Nochetto (Chen et al., 2000).

Lemma 1. The interpolation operator defined by [9] satisfies ∀u ∈ H1
0(Ω)

‖ Π1u ‖1,Ω 6 C ‖ u ‖1,Ω, [10]

‖ u−Π1u ‖r,Ω 6 Ch1−r ‖ u ‖1,Ω, r = {0, 1}. [11]

Proof : In the proof we take i ∈ {1, 2}, k = 3− i and s̃ the union of all elements
surrounding the elment s of τh.

In order to prove this Lemma, we calculate the above estimates locally on ev-
ery different type of triangles : non-enriched triangles, triangles cut by the straight
extension of the crack, triangles partially enriched by the discontinuous func-
tions, triangles containing the crack tip and triangles totally enriched by the dis-
continuous functions. Before, let us establish the following intermediary result :

Γc Γ̃c

δ
+

δ
−

Figure 3. Centered domain on the
crack tip

Lemma 2. Let δ be a square of size h centered
at the crack tip (see Fig. 3) and f ∈ H1

0 (δ\Γc)
with f(x) = 0, ∀x ∈ Γ̃c

⋂
δ (where Γ̃c is the

extension of the crack Γc). Then, there exists c >
0, independent of h such that :

‖ f ‖0,δ≤ ch ‖ ∇f ‖0,δ\Γc
. [12]
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(a) A triangle partially enriched
by the discontinuous functions

(b) A triangle totally enriched
by the discontinuous functions

Ω1

Ω2

H(x) = +1

H(x) = −1

x1

x2

x3

(c) A triangle containing the
crack tip

Figure 4. Triangles partially and totally enriched by the discontinuous functions

Proof : Dividing the square into two parts δ+ (above the crack) and δ− (below the
crack). Let f̂+ = f ◦ Tk defined on the reference rectangle δ̂+ (assumed of size 1)
obtained by an affine transformation TK of the rectangle δ+. Then, by construction,
f̂+(x) = 0 ∀x ∈

{
x1 ≥ 0

}
×

{
x2 = 0

}
which implies the following Poincaré

inequality :

‖ f̂+ ‖
0,δ̂+

≤ c ‖ ∇f̂+ ‖
0,δ̂+

. [13]

Using inequality [13] and the fact that the mesh is affine we obtain :

‖ f ‖0,δ+ ≤ c | det(JK) |1/2‖ f̂+ ‖
0,δ̂+

≤ c | det(JK) |1/2 ‖ ∇f̂+ ‖
0,δ̂+

≤ c | det(JK) |−1/2 ‖ JK ‖2 | det(JK) |1/2 | f |1,δ+≤ c h | f |1,δ+

where | · |1,δ+ the H1 semi-norm on δ+. Thus

‖ f ‖0,δ+≤ c h | f |1,δ+ , [14]

Similarly we prove the same result for δ− which finish the proof of Lemma 2.
Non-enriched triangles :
Let s be a non-enriched triangle in Ωi. In this case we have Π1u = Π1ũ

i on Ωi.
Because ũi is continuous over Ω this operator is equivalent to the classical operator of
Chen and Nochetto (Chen et al., 2000). Then we have

‖ Π1u ‖1,s=‖ Π1ũ
i ‖1,s6 c ‖ ũi ‖1,s̃ [15]

and
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‖ u−Π1u ‖r,s=‖ ui −Π1ũ
i ‖r,s=‖ ũi −Π1ũ

i ‖r,s6 ch1−r ‖ ũi ‖1,s̃,
[16]

Triangles cut by the straight extension of the crack or containing the crack tip :
Let s be a triangle cut by the straight extension of the crack or containing the
crack tip (see Fig. 4(c)). Then Π1u = α1ϕ1 + α2ϕ2 + α3ϕ3 on s, with :

α1 =
1

| ∆1 |
∫
∆1

ũ1 dx , α2 =
1

| ∆2 |
∫
∆2

ũ2 dx and α3 =
1

| ∆3 |
∫
∆3

ũ2 dx.

We remark that :

Π1u = α̃1ϕ1 +α2ϕ2 +α3ϕ3 + (α1 − α̃1)ϕ1 = Π1ũ
2 + (α1 − α̃1)ϕ1,

with α̃1 =
1

| ∆1 |
∫
∆1

ũ2 dx. By the triangle inequality, we may write

‖ Π1u ‖1,s 6‖ Π1ũ
2 ‖1,s + | α1 − α̃1 | ‖ ϕ1 ‖1,s,

‖ u−Π1u ‖r,s 6 ‖ u−Π1ũ
2 ‖r,s + | α1 − α̃1 | ‖ ϕ1 ‖r,s

6‖ u− ũ2 ‖r,s + ‖ ũ2 −Π1ũ
2 ‖r,s + | α1 − α̃1 | ‖ ϕ1 ‖r,s,

where ‖ ϕ1 ‖r,s 6 ch1−r because ϕ1 is the piecewise P1 basis function,

‖ Π1ũ
2 ‖r,s 6 ch1−r ‖ ũ2 ‖1,s̃ Because ũk is continuous over Ω ,

‖ u− ũ2 ‖0,s 6 c h ‖ u− ũ2 ‖1,δ,

and if we use Cauchy-Schwartz inequality and Lemma 2 we obtain

| α1 − α̃1 | 6 h

| ∆1 |
‖ ũ1 − ũ2 ‖0,∆16 c

h2

| ∆1 |
‖ ∇(ũ1 − ũ2) ‖0,δ .

Therefore ‖ Π1u ‖1,s 6 c
(
‖ ũ2 ‖1,s̃ + ‖ ũ1 − ũ2 ‖1,δ

)
[17]

‖ u−Π1u ‖r,s 6 ch1−r
(
‖ u− ũ2 ‖1,s + ‖ ũ2 ‖1,s̃ + ‖ ũ1 − ũ2 ‖1,δ

)
,

[18]

Triangles partially enriched by the discontinuous functions : Let s be a triangle
partially enriched by the discontinuous functions (see Fig. 4(a)). In this case we have
Π1u = Π1ũ1+(α2−α̃2)ϕ2 on s∩Ω1 and Π1u = Π1ũ2+(α1−α̃1)ϕ1 on s∩Ω2

with α̃1 =
1

| ∆1 |
∫
∆1

ũ2 dx and α̃2 =
1

| ∆2 |
∫
∆2

ũ1 dx.

In the same manner we prove that

‖ Π1u ‖1,s∩Ωi 6 c
(
‖ ũi ‖1,s̃ + ‖ ũk − ũi ‖1,δ

)
, [19]

‖ u−Π1u ‖r,s∩Ωi 6 ch1−r
(
‖ ũi ‖1,s̃ + ‖ ũk − ũi ‖1,δ

)
. [20]

Triangles totally enriched by the discontinuous functions
Let s be the triangle totally enriched by the discontinuous functions (see Fig. 4(b)). In
this case we have : Π1u = Π1ũ

i on s ∩ Ωi. Then we have

‖ Π1u ‖1,s∩Ωi 6‖ Π1ũ
i ‖1,s, [21]

‖ u−Π1u ‖r,s∩Ωi 6‖ ũi −Πũi ‖1,s6 c h1−r ‖ ũi ‖r,s̃ [22]
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Inequalities [15], [17], [19], [21] imply the first inequality of Lemma 1. Inequalities
[16], [18], [20], [22], imply the second and third inequalities of Lemma 1.

4.2. Construction of a local interpolation operator

In this subsection we prove the discrete inf-sup condition for the P2/P0 element
with the additional assumption, that the crack cuts the mesh far enough from the nodes.

Definition 2. Let u ∈ H1(Ω). We define Π2u as the element of Vh such that

Π2u =
∑

k∈τh/τH

3∑
i=1

αiϕi +
∑
k∈τH

3∑
i=1

(
βiϕiH1 + γiϕiH2

)
, [23]

where τH is the set of triangle totally cut by the crack, ϕi is the classical finite element
shape function of order 2 associated to node i being the center of the edge ei of the
element K and with

αi =

∫
ei
u∫

ei
ϕi

, βi =

∫
ei∩Ω1

u∫
ei∩Ω1

ϕi
, γi =

∫
ei∩Ω2

u∫
ei∩Ω2

ϕi
.

Lemma 3. Suppose that the crack cuts the mesh far enough from the nodes then the
interpolation operator defined by [23] satisfies ∀u ∈ Vh∫

s\Γc

div(u−Π2u) = 0 ∀s ∈ τh

‖ Π2u ‖1,s∩Ωi ≤ c
(
h−1 ‖ ũi ‖0,s + | ũi |1,s

)
∀s ∈ τh.

Therefore, the discrete inf-sup condition for the P2/P0 element holds.
Proof : The first equation is obvious. Now let s be a triangle totaly cut by the crack.

Then by using triangle inequality, the hypothesis “crack far enough from nodes” and
Cauchy-Schwarz inequality we have :

| Π2u |
1,ŝ∩Ωi

≤ c | Π̂2u |
1,ŝ∩Ωi

≤ c
3∑

j=1

|
∫
êj∩Ωi

û |
| ϕ̂j |1,ŝ∩Ωi

|
∫
êj∩Ωi

ϕ̂j |

≤ c
3∑

j=1

∫
êj∩Ωi

| û |≤ c
3∑

j=1

∫
êj

| ˆ̃ui |≤ c ‖ ˆ̃ui ‖1,ŝ

and by a scaling argument we have :

‖ Π2u ‖1,s∩Ωi≤ c (h−1 ‖ ũi ‖0,s + | ũi |1,s). [24]

Now for non-enriched triangle we use the same argument to prove :

‖ Π2u ‖1,s≤ c (h−1 ‖ u ‖0,s + | u |1,s), [25]

which finishes the proof of Lemma 3.
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4.3. Error analysis

We suppose in this section that the non-cracked domain Ω̄ has a regular boundary,
and that f , t are smooth enough, for the solution (u, p) of the mixed elasticity problem
to be written as a sum of a singular part (us, ps) and a regular part (u− us , p− ps)
in Ω satisfying u− us ∈ H2 and p− ps ∈ H1.

Proposition 1. Under the assumption of existence and uniqueness of solutions (u, p)
and (uh, ph) of the continuous [6] and discrete [7] mixed elasticity problems, and if
the LBB condition is satisfied, then :

‖ u− uh ‖1,Ω + ‖ p− ph ‖0,Ω≤ c h
[
‖ u− χus ‖2,Ω + ‖ p− χps ‖1,Ω

]
,

where χ is the cut-off function.
Proof By using the equivalent Céa lemma (see (Brezzi et al., New York, 1991))

we have ∀vh ∈ V h and qh ∈ Qh :

‖ u− uh ‖1,Ω + ‖ p− ph ‖0,Ω≤ c
[
‖ u− vh ‖1,Ω + ‖ p− qh ‖0,Ω

]
. [26]

Now let Πhu be the classical interpolation operator introduced by (Nicaise et al.,
2011) then we have :

‖ u−Πhu ‖1,Ω ≤ c h ‖ u− χus ‖2,Ω . [27]

Let Πhp = Π1p+
∑2

i=1 ciFip χ = Π1p+χps, where Π1 is the interpolation operator
defined in Section 4.1. Then :

‖ p−Πhp ‖0,Ω=‖ pr −Π1pr ‖0,Ω≤ c h ‖ pr ‖1,Ω . [28]

Finally, the result of Proposition 1 can be obtained by choosing vh = Πhu and qh =
Πhp in [26] and by using equations [27] and [28].

5. Numerical study

The numerical tests are made on a non-cracked domain defined by Ω̄ =] −
0.5, 0.5[×] − 0.5, 0.5[, and the considered crack is the line segment Γc =] −
0.5; 0[×{0} (see Fig. 5(a)). To remove rigid body motions, we eliminate three de-
grees of freedom (see Fig. 5(a)). In this numerical test, we impose only a boundary
condition of Neumann type (see Fig. 5(a)), in order to avoid possibility of singular
stress for mixed Dirichlet-Neumann condition at transition points. The finite element
method is defined on a structured triangulation of Ω̄. The von Mises stress for this
test is presented in Fig. 6(b). As expected the von Mises stress is concentrated at the
crack tip. The notation Pi (resp. P+

i ) means that we use an extended finite-element
method of order i (resp. with an additional cubic buble function) and Pj disc means
that we use a discontinuous extended finite-element method. The reference solution is
obtained with a structured P2/P1 method and h = 1/160.
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Γc

Ω

(a) Cracked specimen

−0.5 0 0.5
−0.5

0

0.5

h
δ

(b) Position of the crack.

Figure 5. Cracked specimen and position of the crack

0.01 0.1

h

0.1

1

L
B

B

P2+/P1 disc

P2+/P1

P2/P1

P2/P0

(a) Evaluation of the inf-sup condition (b) von Mises stress

Figure 6. Evolution of the inf-sup condition for mixed problem and von Mises stress
(δ = 0)

5.1. Numerical inf-sup test

In this section we numerically study the inf-sup condition and its dependence on
the position of the crack. First, the inf-sup condition is evaluated using gradually re-
fined structured triangulation meshes. The evolution of the numerical inf-sup value is
plotted in Fig. 6(a) with respect to the element size. From this figure we can conclude
that the numerical inf-sup value is stable for all studied formulations. Let δ be the
crack position as shown in Fig. 5(b). To test the influence of the position of the crack
on the inf-sup condition, we check the LBB condition by decreasing δ. The tests are
made, on a P+

1 /P1 formulation, with h = 1/100 (see Fig. 7(a)) and h = 1/10 (see
Fig. 7(b)). The results presented in Figs. 7(a) and 7(b) show that the inf-sup condition
remains bounded regardless of the position of the crack. Hence, one can conclude that
the formulation is stable independently of the position of the crack.

5.2. Convergence rate and the computational cost
Figures 8(a), 8(b) and 8(c) show a comparison between the convergence rates of the X-
FEM fixed area and X-FEM cut off for the L2-norm and H1-norm (P1+/P1 element
are used). These errors were obtained by running the test problem for some values of
the parameter ns, where ns is the number of subdivision (number of cells) in each

direction h =
1

ns
. Figure 8(b) confirms that the convergence rate for the energy norm

is of order h for both variants of the X-FEM : with fixed area and cut-off. Figure 8(a)
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Figure 7. Evolution of the inf-sup condition as a function of the position of the crack
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Figure 8. Errors for the mixed problem with enriched P+
1 /P1 elements.

shows that the convergence rates for the L2-norm in displacement is of order h2 for
both variants. Figure 8(c) shows that the convergence rates for the L2-norm in pressure
is h for both variants. Compared to the X-FEM method with a fixed enrichment area,
the convergence rate for X-FEM cut-off is very close but the error values are a bit
larger. In order to test the computational cost of X-FEM cut-off, Table (1) shows a
comparison between the number of degrees of freedom for different refinements of
the classical method X-FEM with fixed enrichment area and the cut-off method. This

Number of cells in each
direction

Number of degrees of freedom
X-FEM fixed enrichment area X-FEM Cut Off

40 13456 11516
60 30046 25666
80 53376 45416

Tableau 1. Number of degrees of freedom for enriched P2/P1 element
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Figure 9. Conditioning number of the stiffness matrix for the mixed problem

latter enrichment leads to a significant decrease in the number of degrees of freedom.
The condition number of the linear system associated to the cut-off enrichment is
much better than the one associated with the X-FEM with a fixed enrichment area
(see Fig. 9). We can conclude that, similarly to the X-FEM with fixed enrichment
area, the X-FEM cut-off leads to an optimal convergence rate and also reduces the
approximation errors but without significant additional costs.

The numerical tests of the higher order X-FEM method (P+
2 /P1 disc, P+

2 /P1,
P2/P1 and P2/P0) do not give an optimal order of convergence (see Figs. 10(a),
10(b), 10(c) and 10(d)). This means that the enrichment function does not capture
the behavior of the solution at the crack’s tip. This result was expected as the asymp-
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Figure 10. Convergence rate for the high-order elements (logarithmic scales)
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totic displacement at the crack tip belongs to H3/2−η(Ω) for all η > 0. Then, for the
X-FEM cut-off, the convergence rate remains limited to h3/2 with high order polyno-
mials. To have an optimal convergence rate, one must make an asymptotic expansion
of order 2 to find the correct expression of the enrichment basis for the displacement
and pressure.

6. Conclusion

From this study we can conclude that the X-FEM cut-off mixed formulation is sta-
ble, regardless of the position of the crack. Similarly to the X-FEM with fixed enrich-
ment area, the X-FEM cut-off gives an optimal convergence rate but without signifi-
cant additional costs. For shape functions of higher order, the convergence rate is lim-
ited to h3/2. This result was expected as the main singularity belongs to H5/2−η(Ω)
for all η > 0.
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