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Abstract

The aim of this paper is to make a review on the use of the singular dynamic
method to obtain space semi-discretization of the dynamic impact of thin structures.
The principle of these methods is the use of a singular mass matrix obtained by different
discretizations of the deflection and velocity. The obtained semi-discretized problem
is proved to be well-posed and energy conserving. The method is applied on some
membrane, beam and plate models and associated numerical experiments are discussed.

Keywords: thin structures, unilateral contact, finite element methods, variational in-
equalities.

Introduction

When the discretization of impact of elastic structures is addressed, it is generally noted
that the vast majority of traditional time integration schemes show spurious oscillations on
the contact displacement and stress (see for instance [11, 7, 8]). Moreover, these oscillations
do not disappear when the time step decreases. Conversely, they tend to increase which is
a characteristic of order two hyperbolic equations with unilateral constraints that makes it
very difficult to build stable numerical schemes. These difficulties have already led to many
researches under which a variety of solutions were proposed. Some of them consist in adding
damping terms (see [27] for instance), but with a loss of accuracy on the solution, or to
implicit the contact stress [5, 4] but with a loss of kinetic energy which could be independent
of the discretization parameters (see the numerical experiments). Some energy conserving
schemes have also been proposed in [10, 28, 16, 15, 7, 8]. Unfortunately, these schemes,
although more satisfactory than most of the other ones, lead to large oscillations on the
contact stress. Besides, most of them do not strictly respect the constraint.

This paper focuses on a class of methods introduced for impact problems in [25] whose
principle is to make different approximations of the solution and of its time derivative. Such
a principle was already studied for linear elastodynamics in [9]. Compared to the classical
space semi-discretization, this corresponds to a singular modification of the mass matrix. In
this sense, it is in the same class of methods than the mass redistribution method proposed
in [11, 12] for elastodynamic contact problems. The main feature is to provide a well-posed
space semi-discretization. The numerical tests show that it has a crucial influence on the
stability of standard schemes and on the quality of the approximation, especially for the
computation of Lagrange multipliers corresponding to the constraints.
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The aim of this paper is to gather the recent results obtained on the singular dynamic
method for different models of thin structures and to present an overview of the main
challenges still posed by the discretization of the impact problems of such structures. As
in [25], the method is first described on an abstract hyperbolic equation on which the well-
posedness of the semi-discretized problem by finite elements is proven. The method is then
described on several models of thin elastic structures, namely membrane, Euler-Bernouilli
beam and Kirchhoff-Love plate models. Some numerical tests for all these models are given
and discussed. Finally, we present some perspectives and open problems.

1 The method for an abstract hyperbolic equation

The method is introduced in [25] on the following abstract hyperbolic problem. Let Ω ⊂ R
d

be a Lipschitz domain and H = L2(Ω) the standard Hilbert space of square integrable
functions on Ω. Let W be a Hilbert space such that W ⊂ H ⊂ W ′, with dense compact
and continuous inclusions and let A : W → W ′ be a linear self-adjoint elliptic continuous
operator. We consider the following problem



















Find u : [0, T ] → K such that

∂2u

∂t2
(t) +Au(t) ∈ f −NK(u(t)) , for a.e. t ∈ (0, T ] ,

u(0) = u0 ,
∂u

∂t
(0) = v0 ,

(1)

where K is a closed convex nonempty subset of W , f ∈ W ′, u0 ∈ K, v0 ∈ H, T > 0 and
NK(u) is the normal cone to K defined by (see for instance [3] for more details)

NK(u) =

{

∅ , if u /∈ K ,
{f ∈W ′ : 〈f,w − u〉W ′, W ≤ 0 , ∀w ∈ K} , if u ∈ K .

This means that u(t) satisfies the second order hyperbolic equation and is constrained to
remain in the convex K. There is no general result of existence nor uniqueness for the
solution to this problem. Some existence results for a scalar Signorini problem can be
found in [17, 14]. Introducing now the linear and bilinear symmetric maps

l(v) = 〈f, v〉W ′, W , a(u, v) = 〈Au, v〉W ′, W ,

Problem (1) can be rewritten as the following variational inequality:



















Find u : [0, T ] → K such that for a.e. t ∈ (0, T ]

〈
∂2u

∂t2
(t), w − u(t)〉

W ′, W
+ a(u(t), w − u(t)) ≥ l(w − u(t)) , ∀w ∈ K ,

u(0) = u0 ,
∂u

∂t
(0) = v0 .

(2)

Note that the terminology “variational inequality” is used here in the sense that Problem
(1) derives from the conservation of the energy functional

J(t) =
1

2

∫

Ω

(
∂u

∂t
(t))2dx+

1

2
a(u(t), u(t)) − l(u(t)) + IK(u(t)) ,

where IK(u(t)) is the convex indicator function of K. However, it is generally not possible
to prove that each solution to Problem (2) is energy conserving, due to the weak regularity
involved.
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2 Approximation and well-posedness result

The aim of this section is to present well-posed space semi-discretizations of Problem (2).
The adopted strategy is to use a Galerkin method with different approximations of u and

of v =
∂u

∂t
. Let W h and Hh be two finite dimensional vector subspaces of W and H

respectively. Let Kh ⊂ W h be a closed convex nonempty approximation of K. The
proposed approximation of Problem (2) is the following mixed approximation:



































Find uh : [0, T ] → Kh and vh : [0, T ] → Hh such that
∫

Ω

∂vh

∂t
(wh − uh)dx+ a(uh, wh − uh) ≥ l(wh − uh) , ∀wh ∈ Kh , ∀t ∈ (0, T ] ,

∫

Ω

(vh −
∂uh

∂t
)qhdx = 0 , ∀qh ∈ Hh , ∀t ∈ (0, T ] ,

uh(0) = uh0 , vh(0) = vh0 ,

(3)

where uh0 ∈ Kh and vh0 ∈ Hh are some approximations of u0 and v0 respectively. Of course,
when Hh =W h , this corresponds to a standard Galerkin approximation of Problem (2).

Let ϕi , 1 ≤ i ≤ NW , and ψi , 1 ≤ i ≤ NH , be some basis of W h and Hh respectively,
and let the matrices A,B and C, of sizes NW ×NW , NH ×NW and NH ×NH respectively,
and the vectors L, U and V , of size NW , NW and NH respectively, be defined by

Ai,j = a(ϕi, ϕj) , Bi,j =

∫

Ω

ψiϕjdx , Ci,j =

∫

Ω

ψiψjdx ,

Li = l(ϕi) , uh =

NW
∑

i=1

Uiϕi , vh =

NH
∑

i=1

Viψi .

Then, U and V are linked by the equation CV (t) = BU̇(t). So V can be eliminated since C
is always invertible, which leads to the relation V (t) = C

−1

BU̇(t). Consequently, Problem
(3) can be rewritten as















Find U : [0, T ] → K
h
such that

(W − U(t))
T
(MÜ(t) +AU(t)) ≥ (W − U(t))

T
L , ∀W ∈ K

h
, ∀t ∈ (0, T ] ,

U(0) = U0 , BU̇(0) = CV0 .

(4)

In comparison with the standard approximation where Hh = W h , the only difference

introduced by the presented method is to replace the standard mass matrix

(
∫

Ω

ϕiϕjdx

)

i,j

by M = B
T

C
−1

B. In the interesting cases where dim(Hh) < dim(W h), it corresponds to
replace the standard invertible mass matrix by a singular one.

Although the analysis could probably be extended to more complex situations, we as-
sume that Kh is defined by a finite number of linear constraints as

Kh = {wh ∈W h : gi(wh) ≤ αi , 1 ≤ i ≤ Ng} ,

where αi ∈ R and gi : W h → R, 1 ≤ i ≤ Ng , are some linearly independent linear maps.
Of course, this restricts the possibilities concerning the convex K since Kh is supposed to
be an approximation of K. With vector notations, this leads to

K
h
= {W ∈ R

NW : (Gi)
T

W ≤ αi , 1 ≤ i ≤ Ng} ,
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where Gi ∈ R
NW are such that gi(wh) = (Gi)

T

W , 1 ≤ i ≤ Ng . We will also denote by G
the NW ×Ng matrix whose components are

Gij = (Gi)j .

Let us consider the subspace F h of W h defined by

F h =

{

wh ∈W h :

∫

Ω

whqh = 0 , ∀qh ∈ Hh

}

.

Then, the corresponding set F =

{

W ∈ R
NW :

NW
∑

i=1

Wiϕi ∈ F h

}

is such that F = Ker(B).

In this framework, we consider the following condition:

inf
Q∈R

Ng

Q6=0

sup
W∈F
W 6=0

Q
T

GW

||Q|| ||W ||
> 0 , (5)

where ||Q|| and||W || stand for the Euclidean norm of Q in R
Ng andW in R

NW respectively.
This condition is equivalent to the fact that the linear maps gi are independent on F h

and also to the fact that G is surjective on F . A direct consequence is that it implies
dim(F h) ≥ Ng and consequently

dim(Hh) ≤ dim(W h) − Ng .

This again prescribes some conditions on the approximations which link W h, Hh and also
Kh. We will see in Section 3 that this condition can be satisfied for interesting practical
situations. We can now prove the following result:

Theorem 1 If W h, Hh and Kh satisfy condition (5), then Problem (4) admits a unique
solution. Moreover, this solution is Lipschitz-continuous with respect to t.

Proof of this theorem can be found in [25]. In particular, it is based on the following
result allowing a decomposition of the solution:

Lemma 1 If W h, Hh and Kh satisfy condition (5), then there exists a sub-space of RNW ,
say F c, such that F c ⊂ Ker(G) and such that F and F c are complementary sub-spaces.

Moreover, the following energy conservation is proved:

Theorem 2 If W h, Hh and Kh satisfy condition (5), then the solution U(t) to Problem
(4) is energy conserving in the sense that the discrete energy

Jh(t) =
1

2
U̇

T

(t)MU̇ (t) +
1

2
U

T

(t)AU(t) − U
T

(t)L ,

is constant with respect to t.
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3 Application to a membrane model

This section provides a simple but interesting situation for which some consistent approxi-
mations satisfy the condition (5). When W = H1(Ω) and K = {w ∈W : w ≥ 0 a.e. on Ω},
we consider the following problem















































Find u : [0, T ] → K such that

∂2u

∂t2
(t)−∆u(t) ∈ f −NK(u(t)) in Ω , for a.e. t ∈ (0, T ] ,

∂u

∂n
= 0 on Γ

N
,

u = 0 on Γ
D

,

u(0) = u0 ,
∂u

∂t
(0) = v0 ,

where Γ
N

and Γ
D

is a partition of ∂Ω, Γ
D

being of non zero measure in ∂Ω. This models
for instance the contact between an antiplane elastic structure with a rigid foundation
or a stretched drum membrane under an obstacle condition. In this situation, the mass
redistribution method presented in [12] is not usable since the area subjected to potential
contact is the whole domain. Consequently, this method would lead to suppress the mass
on the whole domain which is a non consistent drastic change of the problem.

We build now the approximation spaces thanks to finite element method. Let T h a
regular triangular mesh of Ω (in the sense of Ciarlet [2], h being the diameter of the largest
element) and W h be the following P1+ finite element space

W h =







wh ∈ C
0(Ω) : wh =

∑

ai∈A

wiϕi +
∑

T∈T h

wTϕT







,

where A is the set of the vertices of the mesh which do not lie on Γ
D

. Then, ϕi, ai ∈ A ,
are the piecewise linear functions satisfying ϕi(aj) = δij , where δij is Kronecker symbol,
i.e. the shape functions of a P1 Lagrange finite element method on T h. Each function ϕT ,
T ∈ T h, is the cubic bubble function whose support is T . Let Hh be the P0 finite element
space

Hh =







vh ∈ L2(Ω) : vh =
∑

T∈T h

vT 1IT







,

and, finally, let Kh be defined as

Kh =
{

wh ∈W h : wh(ai) ≥ 0 , for all ai ∈ A

}

, (6)

which means that the constraints are only prescribed at the vertices of the mesh. Then, it
is proved in [25] that this choice of W h, Hh and Kh satisfies condition (5).

4 Extension to the vibro-impact of structures on rigid ob-

stacles

4.1 Case of a beam

In [23], the method is applied to the fourth order problem of the dynamical evolution of
an Euler-Bernouilli beam evolving between two rigid obstacles. The considered unknown
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is the vertical deflection, which is constrained to belong to

K = {w ∈ H2(0, L) : g1(x) ≤ w(x) ≤ g2(x) , for all x ∈ [0, L]} ,

where g1 and g2 are two maps from [0, L] to R̄ := R ∪ {−∞,+∞} such that

g1(x) < 0 < g2(x) , ∀x ∈ [0, L] .

These maps denote the position of the obstacles. If u(x, t) is the vertical deflection, the
strong formulation of the problem, in the case of a clamped-free beam, reads as











































Find u : [0, T ] → K such that

ρS
∂2u

∂t2
(t) + EI

∂4u

∂x4
(x, t) ∈ f −NK(u(t)) , ∀(x, t) ∈ [0, L] × (0, T ] ,

u(x, 0) = u0(x) ,
∂u

∂t
(x, 0) = v0(x) , ∀x ∈ [0, L] ,

u(0, t) =
∂u

∂x
(0, t) =

∂2u

∂x2
(L, t) =

∂3u

∂x3
(L, t) = 0 , ∀t ∈ (0, T ] ,

where ρ > 0 is the mass density, E is the Young modulus, while S and I are the surface
and the inertial momentum of the beam section, respectively.

The weak form of this problem can be written as







































Find u : [0, T ] → K0 and v : [0, T ] → L2(0, L) such that for a.e. t ∈ (0, T ]
∫ L

0

[

ρS
∂v

∂t
(w − u) + EI

∂2u

∂x2
∂2(w − u)

∂x2

]

dx ≥

∫ L

0

f (w − u) dx , ∀w ∈ K0 ,

∫ L

0

(v −
∂u

∂t
) q dx = 0 , ∀q ∈ L2(0, L) ,

u(x, 0) = u0(x) ∈ K0 , v(x, 0) = v0(x) ∈ L
2(0, L) , ∀x ∈ [0, L] ,

where K0 = {w ∈ K : w(0) = w′(0) = 0}.
To build the finite element method, it is introduced a partition of [0, L] into N subin-

tervals of length h = L/N , built on nodes xi = ih, for 0 ≤ i ≤ N . As node x0 = 0
is clamped, we will omit it from now on and consider that index i varies between 1 and
N . Otherwise, it would introduce small modifications in the following. So, at each node
xi are associated two Hermite piecewise cubic functions, say φ2i−1 and φ2i , defined for
1 ≤ i ≤ N by

φ2i−1(xj) = δij and φ′2i−1(xj) = 0 , φ2i(xj) = 0 and φ′2i(xj) = δij .

Moreover, functions φj are chosen of class C1 on [0, L], which insures that each φj belongs
to the continuous spaceW = {H2(0, L) : w(0) = w′(0) = 0}. Hence, displacement wh reads

wh(x) =

N
∑

i=1

wh
2i−1φ2i−1(x) +

N
∑

i=1

wh
2iφ2i(x) ,

and coefficient wh
2i−1 gives the value of wh at node xi while wh

2i gives the value of its
derivative at the same node. The approximation space for displacements is then

W h = span{φj , 1 ≤ j ≤ 2N} .
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Let us now explain how the approximation Kh of K0 is obtained. Following the idea of
the previous section, unilateral constraints are only considered at the nodes of the mesh.
It means convex Kh is

Kh = {wh ∈W h / g1(xi) ≤ wh(xi) ≤ g2(xi) , ∀i ∈ [0, N ]} .

With vector notations, setting α−

i ≡ g1(xi) and α
+
i ≡ g2(xi) for all i, this space may be

written (we keep the same notation for simplicity)

Kh = {W ∈ R
NW / α−

i ≤ (Gi)T W ≤ α+
i , ∀i ∈ [0, N ]} ,

where Gi is the vector of RNW such that (Gi)T W = wh(xi), for all node xi .
It is proved in [23] that such a nodal contact condition together with the use of the cubic

Hermite element for the deflection and either a piecewise constant finite element method,
or a continuous linear one, for the velocity satisfy the inf-sup condition (5).

Remark 1 Since we deal with a fourth order problem with respect to the space derivative, it
is not possible to consider a linear space approximation. In fact, for this beam model, we use
the classical Hermite third degree polynomials to approximate the numerical displacement.
In the above approximation of K, as we consider only constraints on node displacements,
the effect of the derivatives, namely the curvature, is not taken into account. Then, in this
framework, the beam could cross the obstacle between two nodes, but we shall neglect this
aspect in the following.

4.2 Case of a plate

Let us consider a thin elastic plate. For this kind of structures, starting from a priori hy-
potheses on the expression of the displacement fields, a two-dimensional problem is usually
derived from the three-dimensional elasticity formulation by means of integration along the
thickness, say 2 ε. For the Kirchhoff-Love plate model, the only variable is the normal de-
flection, say u(x, t), and is set down on the mid-plane of the plate Ω. So the Kirchhoff-Love
elastodynamical model reads as















Find u = u(x, t) with (x, t) ∈ Ω × (0, T ] such that for any w ∈W

∫

Ω

2ρε
∂2u

∂t2
w dx + a(u,w) =

∫

Ω

f w dx ,

where

a(u,w) =

∫

Ω

2 E ε3

3 (1− ν2)

[

(1− ν)
∂2u

∂xα ∂xβ
+ ν ∆u δαβ

]

∂2w

∂xα ∂xβ
dx ,

where the mechanical constants, for a plate made of a homogeneous and isotropic material,
are its Young modulus E, its Poisson ratio ν and its mass density ρ. Moreover, δαβ is the
Kronecker symbol and the summation convention over repeated indices is adopted, Greek
indices varying in {1, 2}. If the plate is assumed to be clamped on a non-zero measure part
of the boundary ∂Ω denoted Γc and free on Γf , such as ∂Ω = Γc ∪ Γf , the space of
admissible displacements is

W = { w ∈ H2(Ω) / w(x) = 0 = ∂nw(x) , ∀x ∈ Γc } ,

where ∂nw is the normal derivative along Γc . Finally, the associated initial conditions are

u(x, 0) = u0(x) ,
∂u

∂t
(x, 0) = v0(x) , ∀x ∈ Ω .
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Let us now introduce the dynamic frictionless Kirchhoff-Love equation with Signorini
contact conditions along the plate. We assume that the plate motion is also limited by rigid
obstacles located above and below the plate. So, the displacement is constrained to belong
to the convex set

K = {w ∈W : g1(x) ≤ w(x) ≤ g2(x) , ∀x ∈ Ω} ,

where g1 and g2 are two maps which still satisfy g1(x) < 0 < g2(x), for all x ∈ Ω. Then,
the mechanical frictionless elastodynamic problem for a plate between two rigid obstacles
can be written as the following variational inequality











































Find u : [0, T ] → K and v : [0, T ] → L2(Ω) such for a.e. t ∈ (0, T ]
∫

Ω

2ρε
∂v

∂t
(w − u) dx + a(u,w − u) ≥

∫

Ω

f (w − u) dx , ∀w ∈ K ,
∫

Ω

(v −
∂u

∂t
) q dx = 0 , ∀q ∈ L2(Ω) ,

u(x, 0) = u0(x) ∈ K ,
∂u

∂t
(x, 0) = v0(x) , ∀x ∈ Ω .

Let us now introduce the space discretization of the displacement. As the Kirchhoff-Love
model corresponds to a fourth order partial differential equation, a conformal finite element
approximation needs the use of continuously differentiable elements. Among such ones
(see [2]), the reduced HCT (Hsieh-Clough-Tocher) triangles and FVS (Fraeijs de Veubeke-
Sanders) quadrangles are of particular interest. For the HCT (resp. FVS) element, the
triangle (resp. quadrangle) is divided into three (resp. four) sub-triangles. The basis
functions of these elements are P3 polynomials on each sub-triangle and matched C 1 across
each internal edge. In addition, to decrease the number of degrees of freedom, the normal
derivative is assumed to vary linearly along the external edges of the elements. Finally,
both for triangles and quadrangles, there are only three degrees of freedom on each node:
The value of the function and its first derivatives.

In [24], such elements for the deflection, piecewise constant velocity and still a nodal
contact condition (as for beams) on each vertex of the mesh are numerically shown to satisfy
the inf-sup condition (5).

5 Numerical discussion

5.1 Midpoint schemes

As far as numerical results are concerned, in this paper, we mainly use a midpoint scheme
for the time discretization of the problem. It is an interesting scheme since it is energy
conserving on the linear part (equation without constraint) but, of course, any other stable
scheme can be applied. For exemple, in [23] and [24], Newmark schemes are also used. So,
if ∆t stands for the time step, the midpoint scheme, applied on all the previous problems,
consists in finding Un+1/2 in Kh such that































(W − Un+1/2)T (MZn+1/2 +AUn+1/2) ≥ (W − Un+1/2)T Fn , ∀W ∈ Kh ,

Un+1/2 =
Un + Un+1

2
, V n+1/2 =

V n + V n+1

2
,

BUn+1 = BUn +∆tCV n+1/2 , CV n+1 = CV n +∆tBZn+1/2 ,

(7)
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where M and A are the mass and the stiffness matrices corresponding to each discretized
problem, while Zn+1/2 is the acceleration at ”middle time step” n+1/2 and V k an approx-
imation of the velocity at time k∆t. As matrix C is invertible, we have

V n+1 = 2V n+1/2 − V n = 2C−1 B
Un+1 − Un

∆t
− V n = 4C−1 B

Un+1/2 − Un

∆t
− V n .

Moreover, Zn+1/2 can be eliminated in the following way

M Zn+1/2 = BT C−1 B Zn+1/2 = BT C−1 CV
n+1 − CV n

∆t
= BT V n+1 − V n

∆t
,

or more explicitly

M Zn+1/2 = 4BT C−1 B
Un+1/2 − Un

∆t2
−2BT V n

∆t
=

4

∆t2
M Un+1/2−

4

∆t2
M Un−

2

∆t
BT V nS.

Then, a new formulation of (7) is



























































Un and V n being given, find Un+1/2 ∈ Kh such that

(W − Un+1/2)T (
4

△t2
MUn+1/2 +AUn+1/2) ≥ (W − Un+1/2)T F̄n , ∀W ∈ Kh ,

where F̄n = Fn +
4

∆t2
M Un +

2

∆t
BT V n

Un+1 = 2Un+1/2 − Un , V n+1 = 2C−1 B
Un+1 − Un

∆t
− V n .

Let us note that this variational inequality has always a unique solution even if M is
singular.

5.2 Case of the membrane model

We present now some numerical experiments on the membrane problem, with

Ω = (0, 1) × (0, 1) , ΓD = ∂Ω , ΓN = ∅ , f = −0.6 .

The initial condition is u(x, 0) = 0.02,
∂u

∂t
(x, 0) = 0, for all x ∈ Ω, and we consider a

non-homogeneous Dirichlet condition u(x, t) = 0.02, for all x ∈ ∂Ω.

Figure 1: A mesh with h = 0.05.
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Figure 2: Energy evolution (left), Displacement at the center point (0.5, 0.5) (center) and
Contact stress at the center point (right) - P1+/P0 method with a midpoint scheme and
h = 0.1.

The mesh, we used, is structured and can be viewed on Figure 1, where the solution
is represented during the first impact on the obstacle. The numerical experiments are
performed with our finite element library Getfem++ [26]. A semi-smooth Newton method
is used to solve the discrete problem (see [1, 13]). All the numerical experiments use the
same definition of convex Kh, given by (6).

The first numerical test is made with the midpoint scheme and the approximation
presented in Section 3, that is a P1+/P0 method (P1+ for displacement and P0 for velocity).

In good accordance with the theoretical results, the curves on Figure 2 show that the
energy tends to be conserved when the time step decreases (an experiment with ∆t = 10−4

has been performed but the difference with the one for ∆t = 10−3 is not visible). Moreover,
both the displacement and the contact stress, taken at the point (0.5, 0.5), are smooth and
converge satisfactorily when the time step decreases.
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Figure 3: Energy evolution (left), Displacement at the center point (0.5, 0.5) (center) and
Contact stress at the center point (right) - P1/P0 method with a midpoint scheme and
h = 0.1.

Conversely, the curves on Figure 3, obtained for a P1/P0 method, are unstable. The
energy is growing very fast after the first impact. The displacement and the contact stress
are very oscillating and do not converge. Moreover, the instabilities are more important for
the smallest time step. This method does not satisfy the condition (5) since dim(Hh) ≥
dim(W h).

An interesting situation is also presented in Figures 4, 5 and 6, where a backward
Euler scheme is used. This time integration scheme is unconditionally stable because it is
possible to prove that the discrete energy decreases from an iteration to another (see [11]
for instance). This is the case for any choice of W h and Hh. Consequently, this method
presents some smooth results for the displacement and the contact stress. However, the
energy decreases rapidly for large time steps. Figure 4 shows that for a well-posed method,
the energy tends to be conserved for small time steps, but Figures 5 and 6 show that, with
an ill-posed method (such as classical discretizations), there is an energy loss at the impact
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which does not vanish when the time step and the mesh size decrease. This means that with
an ill-posed method, we do not approximate a physical solution of the problem whenever
one expects energy conservation to be satisfied at the limit.
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Figure 4: Energy evolution (left), Displacement at the center point (0.5, 0.5) (center) and
Contact stress at the center point (right) - P1+/P0 method with a backward Euler scheme
and h = 0.1.
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Figure 5: Energy evolution (left), Displacement at the center point (0.5, 0.5) (center) and
Contact stress at the center point (right) - P1/P0 method with a backward Euler scheme
and h = 0.1.
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Figure 6: Energy evolution for a P1/P0 method, a backward Euler scheme and ∆t = 0.001,
for different values of the mesh size.

5.3 Case of a beam

As in Dumont-Paoli [22], it is considered the case of a steel pipe, which length is L = 1.501m,
external diameter is equal to 1 cm and thickness is 0.5 mm. The material properties are
characterized by its Young modulus E = 2.1011 Pa and its density ρ = 8.103 kg/m3.
Thus, in this case, we have EI

ρS = 282.84 m4.s−2, where I is the quadratic momentum
of inertia of the beam and S its section. Moreover, in the following, we will consider flat
obstacles all along the beam

g2(x) = −g1(x) = 0.1 , ∀ x ∈ [0, L] .
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The midpoint scheme is used here, associated with the use of the cubic Hermite element
for the deflection and either a piecewise constant finite element method (Figure 7), or a
continuous linear one (Figure 8), for the velocity. Here again, the curves show that the
energy tends to be conserved when the time step decreases in each case.

Figure 7: Energy for different time steps - P3/P0 singular mass matrix for Midpoint scheme.
∆t = 10−4 , 5.10−5 , 10−5 , 30/60/90 elements.

Figure 8: Energy for different time steps - P3/P1 singular mass matrix for Midpoint scheme.
∆t = 10−4 , 5.10−5 , 10−5 , 30 elements.
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5.4 Case of a plate

A steel rectangular panel is considered, of length L = 120 cm, width l = 40 cm and
thickness ε = 0.5 cm. It means domain Ω is ]0, L[ × ]0, l[ . The flexural rigidity is
D = 1.923 104, corresponding to E = 210 GPa and ν = 0.3, while ρ = 7.77 103kg/m3.
This plate is clamped along one edge and free along the three others. Moreover, only the
following kind of obstacle will be considered here. It is a flat obstacle under the whole plate,
which reads

g2(x1, x2) = +∞ , g1(x1, x2) = −0.1 , ∀ (x1, x2) ∈ Ω .

Finally, as we are mainly interested to study conservation of energy, we consider the case
where there is no loading f(x, t) ≡ 0 for all x and t. All energy is contained in an initial
displacement u0 , obtained as the static equilibrium of the plate under a constant load
f0 = 14600 N and an initial velocity v0 = 0.

In the following figures are given the energy evolutions for different time steps, for
midpoint scheme with singular mass matrix. We notice that energy is weakly increasing
and can be stabilized when the time step decreases. And the numericaly observed stability
condition seems to be more restrictive for triangles than for quadrilaterals.

Figure 9: Energy for different time steps. Reduced HCT , 80 triangles. Midpoint scheme.
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Figure 10: Energy for different time steps. Reduced FVS , 40 quadrilaterals. Midpoint
scheme.

6 Open problems and perspectives

The semi-discretization, proposed here, leads to a problem which is equivalent to a regular
Lipschitz ordinary differential equation (see also [29] for a slightly different approach).
This method generalizes in a sense the ones presented in [12, 6] with the advantage that no
artificial modification of the mass matrix is necessary.

This is compared to the classical semi-discretizations, for example with finite element
methods, which give a problem in time which is a measure differential inclusion (see [18,
19, 20, 21]). Such a differential inclusion is systematically ill-posed, unless an additional
impact law is considered.

Concerning thin structures, as it is illustrated by Figures 4, 5 and 6, numerical schemes
do not necessarily converge toward the same solution. The limit solution may have differ-
ent characteristics of impact energy loss. This suggests that in the case of thin structures,
modeling of the restitution of the impact energy should be added to the impact law. The
proposed semi-discretization being conservative in energy, it corresponds to a total restitu-
tion of the impact energy. A classical semi-discretization by finite elements with an implicit
Euler scheme, as in Figure 6 corresponds to a certain loss of impact energy. Note that
this energy loss is not necessarily maximal. Finally, the dissipation of the impact will cer-
tainly depend at the same time on the type of semi-discretization in space, the type of
time integration scheme, the ratio between the space step and the time step, the kind of
discretization of the contact conditions and finally of how the structure impacts the thin
rigid obstacle (more or less obliquely, for instance). For the moment, the accurate modeling
of the energy restitution at impact for the approximation of the dynamics of thin structures
seems a little studied area. An interesting perspective is to try to characterize the different
numerical schemes according to their characteristic in term of energy restitution.
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série II, 296, pp. 1473–1476, 1983.

[19] J.J. Moreau. Numerical aspects of the sweeping process. Comp. Meth. Appl. Mech.
Engrg., 177, pp. 329–349, 1999.

[20] L. Paoli. Time discretization of vibro-impact. Phil. Trans. R. Soc. Lond. A., 359, pp.
2405–2428, 2001.

[21] L. Paoli, M. Schatzman. Approximation et existence en vibro-impact. C. R. Acad.
Sci. Paris, Sér. I, 329, pp. 1103–1107, 1999.

[22] Y. Dumont, L. Paoli. Vibrations of a beam between obstacles: convergence of a fully
discretized approximation. M2AN, 40(4), pp. 705–734, 2006.

[23] C. Pozzolini, M. Salaun. Some Energy conservative schemes for vibro-impacts of a
beam on rigid obstacles. ESAIM: M2AN, 45, pp. 1163–1192, 2011.

[24] C. Pozzolini, Y. Renard, M. Salaun. Asymptotic energy preserving schemes
schemes for the vibro-impacts of a plates between rigid obstacles. Submitted.

[25] Y. Renard. The singular dynamic method for constrained second order hyperbolic
equations. Application to dynamic contact problems. J. Comput. Appl. Math., 234(3),
pp. 906–923, 2010.

[26] Y. Renard, J. Pommier. Getfem++. An Open Source generic C++ library for
finite element methods. http://home.gna.org/getfem.

[27] K. Schweizerhof, J.O. Hallquist, D. Stillman. Efficiency Refinements of Con-
tact Strategies and Algorithms in Explicit Finite Element Programming. In Computa-
tional Plasticity, eds. Owen, Onate, Hinton, Pineridge Press, pp. 457–482, 1992.

[28] R. L. Taylor, P. Papadopoulos. On a finite element method for dynamic contact-
impact problems. Int. J. for Num. Meth. Eng., 36, pp. 2123–2140, 1993.

[29] A.Tkachuk, B. I. Wohlmuth, M. Bischoff. Hybrid-mixed discretization of elasto-
dynamic contact problems using consistent singular mass matrices. to appear in Int. J.
for Num. Meth. Eng., DOI: 10.1002/nme, 2013.

16


