CONVERGENCE OF MASS REDISTRIBUTION METHOD FOR THE WAVE
EQUATION WITH A UNILATERAL CONSTRAINT AT THE BOUNDARY
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Abstract. This paper focuses on a one-dimensional wave equation being subjected to a unilateral boundary condition.
Under appropriate regularity assumptions on the initial data, a new proof of existence and uniqueness results is proposed.
The mass redistribution method, which is based on a redistribution of the body mass such that there is no inertia at the
contact node, is introduced and its convergence is proved. Finally, some numerical experiments are reported.
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1. Introduction. We consider an elastic bar of length L vibrating vertically. More precisely, one
end of the bar is free to move, as long as it does not hit a material obstacle, while the other end is
clamped (see Fig. 1.1). The obstacle constrains the displacement of the extremity to be greater than or
equal to 0.

x=0

Fic. 1.1. An elastic bar vibrating on tmpacting obstacle.

We describe now the mathematical situation. We assume that the material of the bar is homogeneous
and satisfies the theory of small deformations. Let x be the spatial coordinate along the bar, with the
origin at the material obstacle, let u(x,t) be the displacement at time ¢ € [0,T], T > 0, of the material
point of spatial coordinate € [0, L]. Then the mathematical problem can be formulated as follows:

i(x,t) —u"(z,t) =0, (x,t) € (0,L) % (0,T), (L.1)
with Cauchy initial data
u(z,0) =u’(z) and a(z,0) =1%2), =€ (0,L), (1.2)
and Signorini and Dirichlet boundary conditions at z = 0 and x = L, respectively,
0<u(0,t) Lu'(0,¢t) <0 and wu(L,t)=0, tel0,T], (1.3)

*Université de Lyon, CNRS, INSA-Lyon, Institut Camille Jordan UMR 5208, 20 Avenue A. Einstein, F-69621
Villeurbanne, France (farshid.dabaghi@insa-lyon.fr, apetrov@math.univ-lyonl.fr, jerome.pousin@insa-lyon.fr,
Yves.Renard@insa-lyon.fr)



2 F. Dabaghi, A. Petrov, J. Pousin, Y. Renard
where o %7; and o' & g—g. The orthogonality has the natural meaning; namely if we have enough
regularity, it means that the product (0, )u'(0,-) vanishes almost everywhere at the boundary. If it
is not the case, the above inequality is integrated on an appropriate set of test functions, leading to a
weak formulation for the unilateral condition. Observe that from mathematical viewpoint, the Signorini
conditions mean that when the bar touches the obstacle in z = 0, its reaction can be only upwards, so
that 4/(0,-) < 0 on the set {¢: u(0,-) = 0}. While in the case where the bar does not touch the obstacle,
its end is free to move. More precisely, we have «'(0,-) = 0 on the set {t : u(0,-) > 0}.
We suppose that the initial displacement u° belongs to the Sobolev space H'(0, L) and satisfies the
compatibility conditions, i.e. u®(L) =0 and u°(0) > 0 and the initial velocity v° belongs to L2(0, L).
We describe now the weak formulation of the problem. To this aim, we denote by K the following
convex set:

K % {u e Hy : u(-,t) € K for almost every t},

where Hy = {u € L2(0,T;V) : 4 € L2(0,T;L2(0,L))} and K = {u € V : u(0) > 0} with V = {u €
HY(0,L) : u(L) = 0}.

Then the weak formulation associated to (1.1)—(1.3) is obtained by multiplying (1.1) by v —u, v € K
and by integrating formally this result over Qp def (0,L) x (0,7):

find v € K such that

L
— 2 (v(-, 0)—u’)dx — w(v—1u)dx o' (v —u)dx .
/O (w(-,0)—u)d /QT (9—a)d dt+/T (W) dzdt > 0 (1.4)

for all v € K for which there exists ( > 0 with v =u for t > T — (.

Existence and uniqueness results are obtained for a vibrating string with concave obstacle in one dimen-
sional space in [29] and for a wave equations with unilateral constraint at the boundary in a half space
of RY in [21]. An existence result for a wave equation in a C? regular bounded domain constrained by
an obstacle at the boundary in RY for N > 2 is proven in [18].

The paper is organized as follows. In Section 2, the problem (1.1)—(1.3) is reformulated as a differential
inclusion problem by using characteristic method, which is a crucial ingredient to prove the uniqueness
result. Then, the rest of this section is devoted to the proof of existence and uniqueness results as
well as to the energy balance. In Section 3, the equivalence between the weak formulation associated

o (1.1)=(1.3) and the differential inclusion obtained in Section 2 is established. Then, in Section 4,
a mass redistribution method is introduced and its convergence is proved. This method is based on a
redistribution of the body mass such that there is no inertia at the contact node (see [15, 12]). Finally,
some numerical examples are reported and analyzed in Section 5. More precisely, the energy with and
without the mass redistribution method are compared as well as the approximated solution associated to
the mass redistribution method and an exact solution.

2. Existence and uniqueness results by using the characteristic method. This section is
devoted to the proof of existence and uniqueness results for the problem (1.1)—(1.3). The first step consists
in rewriting (1.1)—(1.3) as a differential inclusion problem by using the characteristic method. To this
aim, we introduce the following notations:

fdzdx—i—t and r]d:da:—t.

Therefore the chain rule gives

@ B @ i 0%y 9%u 0%y O%u 9 0%u 0%y
02 02

ogon T ar ™ o= =~ oe  Zogon T o



Convergence of mass redistribution method 3

which by using (1.1) implies that % vanishes. Thus we may conclude that

u(&,n) = p(€) +q(n),

where p and ¢ are two differentiable functions such that

u(x,t) = p(e+t) + g(x—1). (2.1)
In particular, taking ¢t = 0, we get
p(2) +4(@) = w(z) and p(2) - ¢'(2) = (@), (2.2)
which gives
Y 13 w0 n
p(€) = 2(5) v /0 D@ dz and ) = 2(”) -3 /0 () dz. (2.3)

for all £ and n belonging to [0, L]. According to (2.1), the boundary conditions (1.3) can be rewritten as
follows:

0<p(t)+q(—t) Lp'(t)+¢(—t) <0 and p(L+t)+q(L—t)=0 (2.4)

for all ¢ belonging to [0,7]. Thanks to the above identity, we may extend p(t) for all ¢ € [L,2L], i.e. we
have

p(L+t) = —q(L—t)

for all ¢ belonging to [L,2L]. If we choose ' = L + t, we get p(t') = —q(2L—t'). We already have the
solution for ¢(t) with 0 < ¢ < L and if L <’ < 2L, we can obtain p(t') by observing that 0 < 2L —¢' < L
and by using g¢(—t) with —t = 2L — ¢, it comes that

_ 2L—t
p(t) = —w - %/O v0(7)dz (2.5)

for all ¢ belonging to [L,2L]. Let us introduce the multivalued function Jy : R — P(R)\(} defined by

{0} it =<0,
JIn(x) ef [0,400) if z=0,
) if x>0,

where P(R) is the set of all subsets of R. More precisely, Jy () is the subdifferential of the indicator
function 01— 0)(z) defined by

def ] 0 if ze€(—o0,0],
I o Lo
(-o00)() {+oo if z¢ (—o00,0].

Obviously, I(_ o] is a lower semi-continuous and convex function, for further details the reader is referred

to [5]. Then (2.4) can be rewrite as follows

P'(t)+d'(=t) € —JIn(=p(t)—a(-t))). (2.6)

We define now

f(t) = =p(t) —q(=1). (2.7)
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We insert (2.7) into (2.6) to get

f(t) € =In(f(t) —2'(1).
Finally, we find the following Cauchy problem

F'@t) e —Jn(f(t) —2p'(t) ae. te(0,L), (2.8a)
£(0) = —u®(0). (2.8b)

Observe that the Cauchy problem (2.8) formally is equivalent to (1.1)—(1.3). Note that the existence and
uniqueness results in half-space, with some appropriate conditions on u” and v°, were established in [21].
The proof of Theorem 2.1 is rather classical. However for the reader convenience, this proof is given in
the Appendix A.

THEOREM 2.1 (Existence and uniqueness results). Assume that p is bounded in W11(0, L). Then
the Cauchy problem (2.8) admits a unique absolutely continuous solution.

We introduce now some new notations: let X and X be the interior and boundary of the set X,
respectively, and let

IT={te0,L]: ft)=0} and J={te[0,L]: f(t) <0}

In the sequel, the notations for the constants introduced in the proofs are only valid in the proof. The
aim of the next lemma is to prove further regularity results for the solution f of Problem (2.8).

LEMMA 2.2 (Regularity result). Assume that p is bounded in H*(0,L). Then the solution f to
Problem (2.8) is bounded in H*(0, L).

Proof. Note that Theorem 2.1 implies that f is bounded in W1(0, L). It follows that

F®)=0onl and f/(t)=—2p'(t) onJ.

Clearly, we have

'Ot = | 4p'(t)*d d ")) dt = 0.
/Jlf(t)l ' /J|p<t>\ t<oo an /jlf(t)l =0

Observe that if ¢ is an accumulation point of 01, we may deduce that there exists a sequence t,, belonging
to OI such that ¢, — t so that f(t,) =0 and f(¢t) = 0. We recall the fundamental theorem of calculus for
Lebesgue integral states that if f is an absolutely continuous function on [a,b], f is of bounded variation
on [a,b]. Consequently, f'(x) exists for almost every x belonging to [a, b]. For further details the reader is
referred to [28]. Hence f’ vanishes for almost all accumulation points of 1. It follows that f/(t) vanishes
for almost every t belonging to dI. Therefore, we deduce that f’ is bounded in L?(0, L), which implies
that f belongs to H!(0, L). This concludes the proof. O
It is convenient to define the following spaces:

H=120,L) and V= {ueH'(0,L):u(L)=0}

endowed with the norms |||z and ||-||y-. Let (-, -) and a(-, ) the scalar products in H and V, respectively.
This allows to define

Hy < {u € L*(0,T;V) : 4 € L*(0,T; H)}

endowed with the norm

T
fulles = ([ (a0l a0l ar)
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and ((-,-)) the duality corresponding product between Hj and Hy. We observe that Hy — C°([0, T]; H)
(see [32]).

LEMMA 2.3. Assume that u belongs to Hy and i — v (defined in the sense of distributions on
Qr) is square integrable. Then for all ¢ > 0, u € C°([0,T);H' (e, L)) N CO([0, L]; H (¢, T—¢)), u €
CO([0,T);L2(¢, L)) and u' € C°([0, L]; L2 (e, T—¢)).

Proof. The proof is obtained by using the same techniques detailed in [30]. Since it is quite a routine
to adapt this proof to our case, we let the verification to the reader. 00

The aim of the next lemma is to obtain some further regularity results for the solution u to (1.4).

LEMMA 2.4. Let u be the solution to (1.4). Then for all € > 0, u € C°([0,L]; H*(0,T—¢)) and
u' € CO([0, L]; L2(0, T—¢)).

Proof. The proof of this result exploits the local energy identity inside )7, the reader can find a
detailed proof in the Appendix as well as in [30] where a succinct proof is given. O

We deal now with the energy balance. More precisely, we prove below that the energy associated to
(2.8) given by

L
et = [ (o) slitt.a)) do

is constant with respect to time t.

LeEMMA 2.5 (Energy balance). Assume that p is bounded in WH1(0,L). Then the solution u to
Problem (2.8) is energy conserving.

Proof. We observe first that (2.1) gives

L L L
&0 = 5 [ (0@ @0+ @)= @0 dr = [ )Pt [l a-nP e (29)

We evaluate now the two integrals on the right hand side of (2.9). We note first that (2.3), (2.5) and
(2.7) lead to

(uol(m—l—t)—i—vo(sc—i—t)), 0<z+4+t<L

Plett) = { (u 2L—(a+8)+0°2L—(a+1)), L<z+1< oL,

N N[

and

(z—t) = %(UOI(x_t)_UO(x—t)), 0<z—-t<IL,
! (P (@) +p (~(z—1)), —L<z—t<0.

On the one hand, we may deduce that

L L—t L
1 1
/ P (z4t)>de = = / [0 (z+)+0° (z+t) |2 da + — / [u® (2L—z—t)—1°(2L—a—t)|*dz
0 4 0 4 L—t (2 10)

IR IR
= Z/ |u® (2)4+0° (x)|? dz + Z/ |u® (z)—2°(2)|? d.
¢ L

—t
On the other hand, by using the same kind of arguments as in the proof of Lemma 2.2, we may obtain

0+p' (—n)|? a.e. on I,

lg" ()= = [f'(=n)+p' (—n)|" = {—2;0/(—77)4'1)/(—77”2 on J.
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for all n belonging to [—L,0]. It follows that |¢'(n)|? = |p'(—n)|* almost everywhere on [—L,0]. Hence
we have

L ¢ L
/ |q’(x—t)|2dx:/ |p’(t—x)\2dx+i/ |u0/(x—t)—|—v0(x—t)|2dx
0 0 ¢
1 t / 1 L ’
= Z/ [u” (t—z)+0°(t—2)|* dz + Z/ [u” (z—t)+0°(z—1t)|* dz (2.11)
0 t

L[t et
= Z/ |u® (2)4+0°(x)|? dz + Z_/ [u® (z)—°(2)|? d.
0 0

Inserting (2.10) and (2.11) into (2.9), we get

L L
E(t) = i/o \uol(x)+v0(:c)\2dx+%/0 10 (2) 0 (2)|2 da,

and the conclusion is clear. O

3. The equivalence between the variational formulation and the differential inclusion.
The present section is dedicated to prove the equivalence between the weak formulation (1.4) and the
differential inclusion (2.8). Consequently together with the results obtained in the previous section, it is
possible to deduce that (1.4) possesses a unique solution. To this aim, we introduce

K= {ueV:u0,)>0}
LEMMA 3.1. Assume that u® and v° belong to K and H, respectively. Then the unique solution to
Problem (2.8) define a weak solution to (1.4) for T = L.
Proof. The idea of the proof consists to split the domain Qr into four regions according to Figure
3.1 and to use the expression of the solution on each region to show that u and % belong to L2(0,T;V)
and to L?(0,T; H), respectively (see Fig. 3.1).

t

(O,L) (L,L)
I

v

(L,0)

Fic. 3.1. Four regions allowing to determine the value of u.

Let us go into the details. On the one hand, we observe that  +¢ € [0, L] and  —t € [-L,0] in the
region I while z +¢ € [L,2L] and © —t € [—L,0] in the region II and we have

u(z,t) = p(a+t) — p(t—z) — f(t—2), (3.1a)
u'(z,t) = p'(a+t) + p'(t—2) + f'(t—2), (3.1b)
w(z,t) =p' (x+t) — p'(t—x) — f'(t—2x). (3.1c)
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Since u® € K, v* € H and (2.3)—(2.5) hold, we may infer that p belongs to H(0, L) in the regions I and
I1. Besides, Lemma 2.2 implies that f belongs to H(0, L). According to (3.1), we conclude that

L L
/0 / (uarst) Pl (z, 6) P+, ) ddar < 4o (3.2)

On the other hand, we note that  +¢ € [L,2L] and  — ¢t € [0, L] in the region IIT while z +¢ € [0, L]
and z —t € [0, L] in the region IV and we have

u(z,t) = p(x+t) + q(x—t), (3.3a)
o (z,t) = p'(z+t) + ¢ (z—1), (3.3b)
w(x,t) = p'(x+t) — ¢ (z—t). (3.3¢)

Still using the fact that u® € K, v* € H and (2.3)-(2.5) hold, we may infer that p and ¢ belong to
H'(0, L) in the regions III and IV. Thanks to (3.3), we may infer that

/0 /Ow(|U($7L‘)I2+|U'(x7t)|2+|u(m,t)|2)dtdx < +oo0. (3.4)

Therefore, it follows from (3.2) and (3.4) that v and @ are bounded in L?(0,T;V) and L2(0,T; H),
respectively. We deduce from Lemma 2.3 that u(0,-) and «'(0, -) belong to L2(0,T) and to L?(e, T—¢) for
all € > 0, respectively, and u(-,0) and u(-,0) belong to L?(0, L) and to L2(e, L) for all € > 0, respectively.
It remains to verify that (1.4) holds. To this aim, we observe by using the notations introduced above
that

L
— v (v(z, 0)—u(x T — w(z, ) (0—10)(x T u (2, t) (v —u)(x T
/0 (0(cx, 0)~u(x, 0))d / (0, 8)(—12)(z, 1) d dt+/ (0, 1) (0~ ), 1) dr

T

L
= —/O UO(U(%O)—U(LO))dIE—/ (V' (z+t) = (1)) (o(z, t) = (p' (a+t)—¢ (x—1)))dzdt  (3.5)

T

+ / (' (z+t)+¢ (z =) (v (z, )= (p (z+1) +¢' (v —1))) d dt

T

for all v belonging to K such that there exists ( > 0 with v = u for ¢t > L — (. We evaluate each integral
on the right hand side of (3.5). Thanks to (2.2), we have

L L
|0 -ute.0)ds = [ #/@)~d (@) (.0~ (pla) () (3:0)
0 0
The second integral on the right hand side of (3.5) is integrated by parts with respect to ¢, we get
| 0 @t)=q ) (00,0 (' (040)~ (o)) dadl
Qr

L
= —/0 (P'(2)=d (2))(v(,0)—(p(x)+q(x))) dz (3.7)

- / (" (z+t)+¢" (x=1)) (v(@, 1) = (p(z+t)+q(x—t))) dzdt,

T
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while the third one is integrated by parts with respect to z, we find

/ (' (z+t)+¢ (2 =) (v (2, )= (p' (z+1) +¢' (v —1))) d dt

T

T
= 7/0 (®'(t)+4' (=) (v(0,1)— (p(t)+q(—1))) dt (3.8)

- / (P (z+1)+q" (z=1)) (v(z, t) = (p(z-+1) +q(z—1))) dw dt.

T

We substitute (3.6)-(3.8) into (3.5) and according to (2.4), we find

- [ 6O+ 000,000 a0t 20

which implies that (1.4) holds. O
LEMMA 3.2. The weak solution (1.4) for T = L define a solution to Cauchy problem (2.8).

Proof. Let u be a solution to (1.4), it follows from Lemma 2.3 that u has traces in L{ (0, L) on

{t =0} x (¢, L) and it comes that u® = u(-,0) makes sense. We choose 1) = v — u such that v belongs to
the space of infinitely differentiable functions on Q7 with a compact support D(Q7). Then it comes that

T T
0 0

for all ¢ belonging to D(Qr) where a(u,v) = fOL u'y’ dz:dt. This gives
<U,’(/)> - <U”,’(/)> =0

for all ¢ belonging to D(Qr). Here the duality product between D' (Qr) and D(Qr) is denoted by (-, ).
Therefore, we may deduce that i — u” vanishes in the sense of distributions in Q7. Thus we have

/ (i’ ) dzdt = 0 (3.9)

T

def

for all ¢ belonging to D(Qr). We introduce the following notations: iy =4t pu_ =z —tand A
denotes the region bounded by the lines py = —p—, py =2L —p_, p— = p4 and p— = p4 — 27 in the
plane (i, py). Hence we have

. Oou  Ou  , Ou  Ou . O W Y TR
V= 7——75—, U=—-—+-—, =-—— - and =—+ —. 3.10
Opy  Op— Opt Op— v opy Op— v Opy  Op— (3.10)

Carrying (3.10) into (3.9), we find
/A<8u 8u>(8w 8w)d,u_du++/A<au+au)<aw+aw)du_d,u+—0

Opy  Op—/ \Opy O Oy Ou—/\opy O
for all ¢ belonging to D(A). We observe that
ou oY ou oY
— ——dp_duy + — ——dp_duy =0 3.11
R e S N e (3.11)

for all ¢ belonging to D(A). The first term in (3.11) is integrated by parts with respect to p— while the
second one is integrated by parts with respect to py to get

2 0?
o)~ Gagar ) =
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for all ¥ belonging to D(A). Since we have

2 0?2 2
(i) = () = (G )

it follows that

for all ¢ belonging to D(A). Then we conclude that aﬁ;“ﬂf vanishes which holds if and only if v =
pl+) +q(p-).

We observe that Lemma 2.3 and Lemma 2.4 imply that 1(-,0) = v and «/(0, ) belong to H and to
L2(0, T—¢), respectively. According to Theorem B.1 (given in Appendix B), it comes that the following
Green’s formulas make sense

T L T _ T T
i—u")pdrdt = — 1, 1) — d "(L L,t)dt — ! d
| [ amparar=— [ (d-a)ar+ [ v e [Cvoosone
+ (“(xaT)7¢(x7T)) - (/0071/](‘7;’0))
for all ¢ belonging to Hy. We insert (3.12) into (1.4) and we choose v = u + 9, we obtain
T
—/ W (0,8)(0(0, £)—u(0, £))dt > 0 (3.13)
0
for all v belonging to K. Thanks to (2.1), we may deduce that (3.13) is equivalent to
T
—/O (P'(t)+4'(=1)) (v(0,£) = (p(t)+q(1)))dt = 0 (3.14)

for all v belonging to K. Since p(t) + ¢(—t) > 0, it follows that
v(0,) = p(t) + q(—t) + a(t)

for all a(t) > 0. Therefore we may infer from (3.14) that

- /0 (0 (8)+q' (—t))a(t)dt > 0

for all a(t) > 0, which implies that p’(t) + ¢’(—t) < 0 for almost every ¢ € (0,7"). Finally we choose
v(0,t) = 0 and v(0,t) = 2(p(t)+q(—t)) in (3.14), we get

T
/O (' (64 (—0) (p(t) +a(~1)) dt = 0,

which allows us to infer that (p/(t)+¢'(—t))(p(¢t) + ¢(—t)) vanishes for almost every ¢t € (0,7"). This
concludes the proof. O

4. Convergence of mass redistribution method. The semi-discretized problem by using finite
elements is not well-posed which emphasizes some instabilities of time integration schemes (see [22, 23,
25, 26, 15]). In the literature many different approaches were elaborated to overcome this difficulty. For
instance the uniqueness for an impact law of rigid bodies can be recovered by introducing a restitution
coefficient (see [24]). However, this approach is not totally satisfactory for deformable bodies. Indeed the
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presence of oscillations due to displacement and to normal stress on the contact boundary induces some
difficulties in the construction of energy conserving schemes (see [19, 24, 20]). Another approach consists
in using the penalty method which introduces some oscillations as well but which can be reduced with a
damping technique (see [31]). One of the key point to avoid oscillations is to use the mass redistribution
method, the reader is referred to [15] and the references therein.

We first approximate (1.1)—(1.3) by using the Lagrange affine finite element method. To this aim,
we define h = % where n is an integer and

Vi " e CO[0, L)) : v"|jus 000 € Prii=0,...,n—1,0"(L) = 0}.

Here, a; = ih, i = 0,1,...,n, and P, is the space of polynomials of degree less than or equal to 1. A
classical basis of V" is given by the sequence of shape functions ¢; € V* for i = 0,1,...,n — 1, defined
by

or() 2 1- @ if 2 € [Gmax(i-1,0), Gi+1]s
! 0 otherwise.

Note that ¢;(a;) = 6;5, 7 =0,1,...,n—1,i.e. §;; = 1if i = j and J vanishes otherwise (9 is the Kronecker
symbol). We approximate the solution u belonging to V' to the weak formulation (1.4) by

n—1
uP (@, 1) = ui(t)e; ().
§=0
Consequently, we have u; = u"(a;), i = 0,1,...,n — 1. The weak formulation (1.4) is approximated as

follows

find u" : [0, 7] — V" and X : [0, 7] — R such that for all v" € V"
L
/ i de + a(ul, o) = = X" (0)  ae.  te]0,T),
0
0<u0,) LA<0 ae tel0,T],

u(-,0) =u" and al(-,0) =",

where %" and v°" belong to V" such that

1i 0h_, 0 Oh_,0 —0 41
T ([~ -+ [0 2 11) =0, (41)
where ) is the Lagrange multiplier. We introduce now the following notations: U & (ug, .-+ up_1)" and
eo = (1,0,...,0)T. The corresponding algebraic formulation is given by

find U : [0,7] — R™ and A : [0,7] — R such that
MU+ 8SU = —Xey  ae. tel0,T),

0<ug LA<0 ae te][0,7],

U0)=U° and U(0)=V",

(Pua)
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where M and S denote the mass and stiffness matrices, respectively;

L :

€ e 1 0 71 2 .
M;; dZf/ pipjdr  and Sy = a(p, @) = - )
0 : P

for all i,j € [0,n — 1].
We define now the modified mass matrix as follows: M{;‘Od S th pipjdx. Clearly, we may observe
that My; = M;p =0 for all i =0,...,n — 1. Therefore, the modified mass matrix reads

mod def 0 Q
M <O M).

Note that ]\Zfij = M;q1,j41 for all 4,5 = 1,...,n — 2. We introduce now the following notations: U<

(u1,...,u,_1)" and Sij & i+1,j41 with C £ fQ @ip1pp dz, i = 0,...,n — 2. Observe that C' =
10,0,...,0)". us by using the above notations, we have

S10,0 0)". Thus by using the ab tati h

_ Soo CT _ U
S—(C S) and U—(U>.

This leads to an algebraic formulation of the semi-discrete approximation with mass redistribution method
given by

find U : [0,7] — R™ and A : [0,7] — R such that
MU+ SU = —Cug  ae. te [0, 7],

(P Sooup +CTU = -\ ae. tel0,T],
0<ugLA<0 ae te]l0,7],

U(0)=U, and U(0)=V".

It follows that

o — (*)\*CTU) . (7)\7510’11,1)
0 Soo Soo '
If Sjpu; > 0 then the compatibility condition gives ug = 0, so A = (CTU)~ otherwise we have A = 0.

+
This implies that ug = (%0‘;“1) , and then we may conclude that (P?}id) is equivalent to the following
second order Lipschitz continuous ordinary differential equation:

find U : [0,T] — R™™! such that

—S1ou1
Soo

U(0)=U, and U(0)=V".

= —_ = +
(P%wd) MU + SU = —C( ) a.e. t e [O,T],



12 F. Dabaghi, A. Petrov, J. Pousin, Y. Renard

LEMMA 4.1 (Existence and uniqueness results for (PH$4)). Problem (PH$Y) admits an unique solution
(U, \) which is Lipschitz continuous.

Proof. We use the fact that M is not a singular matrix as well as the same techniques detailed in [6]
to establish that (PIUPOd) possesses a unique Lipschitz continuous solution. On the other hand, we may
deduce from (P1SY) that ug = (%{ﬁ)’“)* and A\ = (CTU)~. This allows us to conclude that ug and A
are also Lipschitz continuous and then the conclusion is clear. [

We deal with the energy balance and we establish the energy conservation of the solution to problem
(P}}‘gd) . More precisely, the discrete energy associated to problem (Pg‘?\d) is given by

E(t) = 3UTM™T+UTSU)(¢). (4.2)

LEMMA 4.2. The solution (U, \) to problem (P¥SY) is energy conserving.
Proof. We observe first that

UTM™40 + UTSU = —UT ey

Therefore, we integrate this expression over (0,t) to get

Ve [0,T]: E(t) — £(0) = — /Ot o ()A(s) ds.

def

Let us define w = {¢t € [0,T] : up(t) > 0}. On the one hand, the contact conditions imply that A = 0
on w. On the other hand, the continuity of A on [0,77] gives that A = 0 on @ where @ is the closure to
w. Furthermore, 1 vanishes in the interior of the set [0, T]\w. Hence oA = 0 on [0,7] and we conclude
that £(t) = £(0) for all t € [0,77]. O

We observe that (P1$4) is equivalent to
find u" : [0, T] — V" such that for all v* € K"
T, L
(Ped) / (/ i (v —u) dw + a(uh,vh—uh)) dt >0,
0o “Mh
u(-,0) =u" and  a"(-,0) ="
We establish below the convergence of the solution u" of (P™°?) to the solution of (1.4) by using some
ideas developed in [30].
THEOREM 4.3. Assume that (4.1) holds. Then, the solution u" of (P™°Y) converges strongly in Hy

to the unique solution of (1.4) as h tends to 0.
Proof. We observe that

L h L
/ Iu”(x,t>l2da:=/ |ibh(m,t)\2dx+/ i (z, t)] da. (4.3)
0 0 h

We evaluate now the right hand side of (4.3). To this aim, we note that ug(t) = —g—;z(ul (t))+ implies
that
[ao(t)] < [ (t)], (4.4)

since —21 = 1. Therefore, by using (4.4) and Cauchy Schwarz’s inequality, we may deduce that there
So
exists Cy > 0 such that

/0 i, )2 d = / iy (£) () it (£) o () < Cohli (1) 2.
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Furthermore, the energy conservation of Lemma 4.2 implies that there exists C7 > 0 such that

L
/ |a" (z,t)*dz < Cy.
h

Consequently, we deduce that
(i+1)h (i+1)h
/ it (2, 1) d = / i1 () 011 (2) (D)) 2z < Cy
ih 1h

fori=1,...,n— 1. We conclude that for sufficiently small h, we get

6C
s (O + () < 22

fori =1,...,n—1. Therefore |01 (¢)|*> < & which implies that ||a" (-, ¢)||12(0,n) is bounded independently

of h and then |[u"(-,t)||z is also bounded independently of h. By using Lemma 4.2, we can prove that
|u"||v is bounded. It follows that there exists C' > 0 independent of ¢ such that

sup ([|u"(,0)[v+lla" (-, t)) ) < C.
t€[0,T)

Then, it is possible to extract a subsequence, still denoted by u”, such that
uh ~u in L0, T;V)  weak  x, (4.5a)
—4 in L%(0,T;H) weak . (4.5b)
Let us define
Heo = {u € L®0,T;V) : e L>®0,T;H)}
endowed with the following norm

ef .
lullr. = esssup ([luC &)l + [lal )la).
t€[0,T]

We may infer from (4.5) that

u ~wu in H, weak x.

1

Since for all a < % the following injections Hoo < C%2(Qr) <+ C%*(Qr) hold (see [30]), where < is
continuous embedding and << is compact embedding, we get

u - u in CYY(Qr)

for all a < 3. We observe that both u”(¢) and u(t) belong to K.

In order to prove that the limit w satisfies (1.4), it is necessary to choose convenient test functions.
We approximate the elements of K before projecting them onto V". Indeed, the L? projection does not
conserve the constraint at x = 0, and therefore, the elements of K need another approximation in order
to satisfy the constraint strictly. To this aim, let v be an element of K which is equal to w for t > T — €
and let

1 [P .
VB (2, 1) & u(z,t) + B~/t (v(z, s)—u(z, s))ds + k(B)(L—x)g(t) if ¢t<T—p,
u(@,?) if t>T-8,
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g(z)

Fia. 4.1. Smooth and positive function g(x).

for all g < §. Here g(t) is smooth, positive function (see Figure 4.1) and satisfying

g(t) d:ef ]. lf t 6 [O,T_g]
0 if te[T-5,T]

The next step consists to choose adequately k(3). Since u belongs to C%2(Qr), we may deduce that
there exists C' > 0, such that

t+8
u(0,t) — B~ / u(0, s ds’ < g~ / |u(0,t)—u(0, s)| ds
t
o 2
< Cllulla 57" [ Vds = 3Clluli V.
0

Furthermore, we have the following inequality

8(0,4) > B / Osds—fC’HuHH VB + k(B)Lg(t)
for all t <T — §. Choosing k(8) = 3 C|lullz. /B, we get

v?(0,) > Cllullu, /B
for all t <T — £. On the other hand, we have
0P (z,t) = u(z,t) + k(B)(L—x)g(t)

for all ¢ belonging to [T'—§,T—f]. Hence v# belongs to K and in the other hand v® belongs to L>°(0,T; V)
because

102 () —u(- &)y < K(B)Lg(t) + %HU*UHHQ-

We denote by Q" the orthogonal projection onto V" with respect to the scalar product in H such that
|Q"z—z|ly — 0 when h — 0 for all z € V (see [11]). The Sobolev injections imply that there exists a
sequence «, converging to zero as h tends to zero such that

Q" 2=zl co < anllzllv,
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for all z belonging to V' with limj,_,g a, = 0. The test function is defined as follows:
Uh('at) = uh('7t) +Qh(vﬁiu)(vt) (46)

for all ¢ belonging to [0,T]. By using a continuity argument, v"(0,-) > 0 for i small enough. Carrying
(4.6) into (P™°?) and using the integration by parts, we find

L h T L
— al( hwf —u)(- x al (- hwf —u)(- xr — al (- hoB —0)(- T
/0 (- 0)Q"(v*—u) (-, 0)d +/0 (- 0)Q"(v*—u) (-, 0)d / / (- )Q" (i) (- 1) dzdt

T h T
al (- hpP —3)(- T alu(- h(wB —w)(- .
+// (A )Q (P i) (- 1)d dt+/0 (W (1), Q" (v —u)(, 1) dt > 0

Since (v —u)(-,t) is bounded in H,, the above integration makes sense. Thus we may pass to the limit
when h tends to zero. Since we have

Q"(P—u) —» (0P—0) inL20,T;H) and Q"(v’—u) —» (WP—u) in L2(0,T;V).

Then, we conclude that

L L T T
- 20 (0P —u)(- x — (- 0P —0)(- €T alu(- P —u)(- .
/0 (v¥—u)(-,0)d / / (-, £)(F —i)(-, 1) did +/0 (ule ), (0 —u) (1)) dt > 0

We pass now to the limit with respect to S so we obtain variational formulation (1.4).
On the one hand, we observe that Lemma 2.5 leads to

L L ,
| 0P+ 0 o = [P ) e (@)
0 0

On the other hand, Lemma 4.2 implies that

L L
/ i (D2 da + a(u (-, 1), ul (-, 1)) = / [ (- 02 dz + a(u”(-,0), u(-,0)),
h h

which by using (4.1) and (4.5) gives
L

L
im [ (8P (- 6)2) da = / (02 +[u[?) de (48)
h—0 h h

Therefore from (4.7) and (4.8), it comes that
L

, L
tim [ (i 0P R = [P R o

Since u" converges weakly to u in H., and ||u”||g, converges to ||ullg. and since H,, < Hy then we

conclude that u” converges strongly to u in Hy.
|

5. Numerical examples. We perform a finite element discretization in space and we use a classical
Newmark time stepping method. This leads to consider the following problem:

Untt = Um + AtU™ + (5-B) ALPU™ + BALPU Y,

Urtl = U™ + (1—7)AtU™ + v AU

MU 4 SUntt = —\ntley (5.1)
0<ug™ LAt <o,

U)=U° and U(0)=V",
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where 8 €]0,1/2[ and v €]1/2,1] are the classical parameters of the Newmark scheme. Note that if
B = 0.25 and v = 0.5, the scheme (5.1) is the so-called Crank-Nicholson scheme which is an implicit,
unconditionally stable and second-order accurate scheme for elastodynamic problems without contact
conditions and moreover it is energy conserving (see [15]). On the other hand, it is well known that
the space-semi discretization of contact problems in elastodynamics present some numerical instabilities
(see [14]) which can be avoided by using a modified mass method (see [15] and the references therein).
We make below some comparisons between two different approaches; the one using a standard mass
matrix and the one using a modified mass matrix. The parameters used in the numerical simulations
are the space step Az = 0.1, the time step At = 0.01, the initial displacement u°(x) = 0.5z — 0.5, the
initial velocity v°(z) = 0 and the Dirichlet value u(L,t) = 0.45 with L = 1 and T = 5. The numerical
experiments are performed by employing the finite element library Getfem++ (see [27]). The numerical
results show that when the constraint is active, small oscillations occur in the case where M is a standard
mass matrix (see Figures 5.1 and 5.2 (left)) while these oscillations do not exist in the case where M is a
modified matrix (see Figures 5.1 and 5.2 (right)). Furthermore, we can observe in Figure 5.3 (left), the

energy is increasing with the standard mass matrix while with modified mass matrix (right), it is almost
conservative.

displacement
displacement

0.5 4

space 00

time space 0o time

F1G. 5.1. Numerical experiments with standard mass matriz (left) and with modified mass matriz (right).

~

[
e e
£ @ -

o
2
displacement n x = 0

displacement in x =

o
N

3

N

o
o

F1G. 5.2. Numerical experiments with standard mass matriz (left) and with modified mass matriz (right) in the contact
point x = 0.
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time time

F1G. 5.3. Energy evolution for standard mass matriz (left) and for modified mass matriz (right).

We present now some numerical results obtained for an undeformed elastic bar which is dropped
with some initial velocity on a rigid obstacle and we compare the exact solution to the approximated one
obtained by using the mass redistribution method. More precisely, we assume that this bar fall from a
height «°, with an initial velocity —v° and under the gravity g > 0. Furthermore the both ends of the
bar are free to move, as long as the bar does not hit a rigid obstacle. The length and the Young modulus
of the bar are denoted by L and E, respectively. Let u(x,t) be the displacement at time ¢ of the material
point of spatial coordinate = € [0, L] and the contact pressure equal to the normal stress —Ev'(0, ). Then
the mathematical problem can be formulated as follows:

i(z,t) — Eu"(z,t) = —(9+FEu'(0,t)), (z,t) € (0,L) x (0,7), (5.2)
with Cauchy initial data
u(-,0) =’ and u(-,0) = —°, (5.3)
and Signorini and Neumann boundary conditions at = 0 and « = L, respectively, for ¢ > 0
0<u(0,-) L Ev'(0,-) <0 and /(L,-)=0. (5.4)

The existence and uniqueness results for (5.2)—(5.4) is obtained by rewriting this problem as a differential
inclusion problem and then by using the same techniques detailed in the proof of Theorem 2.1. Since it
is quite a routine to adapt this proof to the case considered here, we let the verification to the reader.
In order to calculate the analytical solution to problem (5.2)—(5.4), we distinguish three phases, namely
before the contact, during the contact and after the contact. To this aim, we choose v° = 0 and g > 0

so that the bar can make several impact. The bar reaches the rigid obstacle at time t; = ./% with the

velocity equal to y/2u%g. After the impact, the bar stays in contact with the rigid body as soon as a shock
wave travels from bottom of the bar to the top and vice versa then the bar takes off. The wave takes a
time T to travel along the bar. The impacts occur at time t4541 = Bf + 16k t4k+2 = tak+1 +2-L NGk

tak+3 = tak+1 + 8\F takta = tag+1 + 1O\F We introduce also the following HOtatIOHb.

hi(z,t) = — 2—uomin(i L ’t——D iEQg (cos(VEvnt)—1) sin(vpx),

1 210\ 2 2gL
—,0_ = _ . [2= «/
ho(x,t) = u 2g(t ) E E)\2 cos(V EA,t) cos(A,z),
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with v, = (n—1%)

jus

and A\, = nT. Then, the explicit solution reads as

3
u® — gt if <t
hy(z,t—tagy1) i tapyr <t <tapto,
u(z,t) = { ha(@, t—tapy2) if tagyo <t < laps, (5.5)
hi(z,tagya —t) , it tapgs <t <tagya,
u® — %g(t_t4k+4 - \/T%O> if tapra <t < tyegn)41-

Here, some details are omitted, the reader is referred to [33, 10] for a detailed explanations. We choose
L=10,T = 6.5, E =900, g = 10, the initial data u°(z) = 5, v°(x) = 0 and Neumann value u/(L,t) = 0.
The Newmark time stepping method with § = 0.25 and v = 0.5 is used to evaluate the approximated
solution. Let us emphasize that if the space step Az and time step At tend to 0, the approximated
solution obtained by using the mass redistribution method (P{$?) converges to the solution of (5.2)-
(5.4) explicitly given by (5.5) (see Figure 5.4 (left)). On the other hand, we can write at least formally
an energy relation for (5.2): we multiply this equation by 1, we integrate by parts over Q,, 7 € [0,T], we
get

1 [F 1 [F
5/0 |u(~,7)|2dx+§/0 |\/Eu/(',7')|2dx:f/ gidzdt

-

for all 7 belonging to [0,7]. Observe that the energy tends to be conserved when the space step Az and
the time step At tend to 0 and the energy decreases otherwise (see Figure 5.4 (right)).

— Exact solution 530

7 == 4%=0.005 and At=0.0005 . E""’;‘ 5°'“"‘;" .
S 520 Ax=0.005 and At=0.0005

e Ax=0.5 and At=0.05 '~ Ax=0.05 and At=0.005
" Ax=0.5 and At=0.05

)

o

w

displacement in the contact point
~ a

Fic. 5.4. Numerical convergence of the solution associated to problem with mass redistribution method to the exact
solution in the contact point x = 0 (left). Numerical convergence of the energy evolution associated to mass redistribution
method to the exact energy (right).

Appendix A.

The aim of this section is to give the proofs of Theorem 2.1 and Lemma 2.4. Furthermore, a regularity
result is also presented. Notice that Theorem 2.1 is a straightforward application of [8, p.59 Cor. 5.4].

Proof of Theorem 2.1. We verify the assumptions of [8, p.59 Cor. 5.4]. We define F(t, f(z)) =
—Jn(f(x)) —2p'(t). Hence we choose f(t) = x which gives that

F(t,z) = —Jn(x) — 2p'(¢).

The multivalued map F : [0, L] x (—00,0] — P(R)\() has closed convex values and F is measurable
with respect to its second variable. We prove now that F is upper semi-continuous with respect to its
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second variable which is equivalent to establish that Jy is upper semi-continuous. Note that if A C R,
It (A) = [0, +00) or Jy'(A) = {0} or Jy'(A) = () which are closed sets. According to Definition [8,
p.-4, Def. 1.1], Jy is upper semi-continuous.

We verify that there is a function r(¢,z) = c(t)(14|z|) with ¢ € L'(0, L) such that

F(t,z)Nr(t,x)B1(0) NT(_ooo)(x) #0 on [0,L] X (—00,0],

where B1(0) is the ball of radius 1 at the origin and T{_ () is the tangent cone on z. Indeed, we
distinguish two cases, on the one hand, if z belongs to the interior of (—00,0], T{_(z) = R and
F(t,x) = —2p'(t), we choose c(t) = 1+ [2p'(t)| and on the other hand, if z = 0, T(_s,0)(0) = (—00,0]
and F(t,z) = (—oo0, —2p(t)], we choose ¢(t) = 1+ |2p/(t)|. Therefore the existence of solution to (2.8)
follows.

The uniqueness result comes from the monotony argument. More precisely, we observe that

(F(t,x1)=F(t, x2))(x1—22) = (=JIn(21)=2p(t)) — (=In(22)—2p(t)) (1 —22)
= (In(22)=Jn(21))(21—22).

We note that in the case where x; # x2, we have
(i) if 21 <0 and z2 < 0, Jy(x2) — JN(sr:l) =0,

(ii) if 21 =0 and @2 < 0, Jn(22) — In(21) = (—00,0] and 1 — z2 > 0,
(iil) if 21 < 0 and z2 =0, Jy(22) — Iy (1) = [0, +00) and 1 — 23 < 0.
By using (i)—(iii), we get (F(-,z1)—F (-, z2))(z1—x2) < 0 which concludes the proof. O

Proof of Lemma 2.4. We note that
12 | - 2\/ 0 /. : . . .
(u“+4%)" — 2§(u %) = 0 in the sense of distributions. (A1)

Hence we integrate (A.1) over [zg,x1] X [to,t1], with 0 < 29 < x1 < L and 0 <ty < t; < T, to get

x1

/ (W2442) (1, £)— (u402) (20, 1))t = / (2u'0) (z, 1) — (2u'0) (2, o)) . (A.2)

to o

According to Lemma 2.3, the right hand side of (A.2) is bounded independently of xq,x1,t,t; as long
as 0 < Zp < g < 1 < L. We integrate now (A.2) with respect to zg over [Zo, L], we may deduce that
there exists C' > 0 independent of z1,Zy such that

t1 t1

(L—a‘co)/ (u?+42) (zy, t)dt < / / (u+?) (zo,t) dt dzg + C(L—7p),
to tD

which implies that z — ftfol (u?+402)(x1,t)dt is bounded on [Zg, L] independently of ¢y and ¢y, it follows

that z — fOT(u’Q—i—iLQ)(:zc7 t)dt is bounded on [Zg, L]. Let v be the solution of the following problem

v—v"=0 on (0,z9) % (0,T),
v(xo,t) = u(xo,t) and v'(xg,t) =u'(xg,t) for all ¢e]0,7], (A.3)
v(z,0) =u’(x) and wv(x,T)=u(z,T) for all z € [0,

These conditions are illustrated in Figure A.1. Since u'(x, -) and (xo, -) belong to L2(0,T), we may
infer that there exists a unique solution to (A.3). More precisely, w = u — v satisfies (A.3) with homo-
geneous boundary initial conditions and the existence and uniqueness theorem in [3] holds. Furthermore



20 F. Dabaghi, A. Petrov, J. Pousin, Y. Renard

20 v(xo, t) = u(xo, ) v'(x0,t) = u' (o, t)
v(z,0) = u’(x)
v(z,T) =u(z,T)
0(z,0) = v°(x)
0 T

Fic. A.1. Initial and boundary conditions for v on the rectangle (0,z¢) X (0,T).

v = u on (0,z0) x (0,T) and in particular we have ¥(x,0) = v°(z). We solve (A.3) by employing a
classical characteristic method. To this aim, it is convenient to introduce the following notations:

B E—z+t and [ = —z—t

We may deduce that % vanishes which implies that v(z,t) = f(81) + g(82). Notice that the general
solution for all of points in the rectangle (0, z¢) x (0,T) does not exist. Then we split the rectangle into
three regions by using characteristic lines as it is shown on Figure A.2. We looking for the solution in
each region. More precisely, in region I and according to the initial condition of problem (A.3) in x = z
for x < xq, we get

1 1 t+(zo—1x)
v(x,t) = §(u(z0,t+(xof:z:))+u(xo,tf(xofz))) — 5/ u'(z0,¢)dC. (A.4)
t—(zo—x)

Observe that Figure A.2 gives a better interpretation of this phenomenon. Indeed, the interval used will
be the intersection of the line © = xy with the forward wave cone at (z,t) which is the region between the
two straight lines having a slope of +1 but directed upwards from an origin (z,t). The forward wave cone
at the point (z,t) will enclose all those points (xg, ) which motion will be influenced by what occurred
at the point z at the time t.

20 v(xo, t) = u(xg, t) V' (zg, t) = u/(x0, 1)
1
v(z,0) = u’(x) I
v(x, T) =u(z,T)
. (z,t)
0(z,0) = v°(z) s
0 T

F1a. A.2. On characteristics in the region I.

Concerning the region II, we use the characteristics illustrated by Figure A.3.

Let A = (z4,t4) is a point in the region II. It follows that
U/(.%A, tA) — i}(xA, tA) = u6($A+tA) — UO(Z‘A-HfA), (A.5a)
V'(za,ta) +0(xa,ta) =u'(xo, tat+(xo—24)) + U(T0, ta+(T0—T4)). (A.5Db)
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20 v(xo, t) = u(xo, ) v'(x0,t) = u' (o, t)
I
v(z,0) = u’(x) I
v(z,T) =u(z,T)
0(x,0) = v°(x) N 11
0 T

F1a. A.3. Characteristics in the region II.

Therefore (A.5) leads to

1 .
V'(za,ta) = 5(uol(mA—i-tA)—vo(xA+tA)+u'(x0,tA—i—(xo—xA))—i—u(xo,tA+(x0—xA)))7 (A.6)
and
. 1 .
O(Ta,ta) = 5(—uol(acA—l—tA)—i—vo(x,q—&—tA) +u' (2o, ta+(To—24))+0(T0, ta+(T0—T4))).

We have the solution for all the points located in the regions I and II. Concerning the solution in region
ITI, we need some further regularity result to conclude. We obtained some regularity results for u(zo,t),
u'(z9,t) and @(zg,t) in Lemma 2.3. Besides by using (A.6) and (A.4), it is possible to deduce that v’
belongs to CY([0, zo]; L?(0, T—x¢)) which implies that v belongs to C°([0,zo]; H'(0,T—x¢)). As zq is
arbitrary small, the conclusion is clear. O

Appendix B. We establish below a Green’s formula that is crucial in the proof of Lemma 3.2.
To this aim, let us introduce a linear topological space D and Hilbert spaces V,H,Z and S with their
topological duals denoted by D', V', H’, Z’ and S'.

Suppose that D is contained in V and it is dense in ‘H. Here H is identified with its dual, namely we
have H = H’. Furthermore, Suppose that V is contained in H with finer topology and we denote by Vy,
the closure of D in V such that

D—=Vy—sH=H <=V

with dense embedding. More precisely, D is an abstraction of the usual space D(Qr) of test function.
In our case the spaces V, § and Z denote the admissible displacement, stresses and boundary values
containing traces of element of V, respectively. We also introduce a linear operator A € L(V,S) and its
restriction to Vy denoted by Ay € L(Vy,S) such that

Yv € Vg : Av = Agw.
Let A* € L(S',V’) be the adjoint of the operator A, defined by
(1, Av)srs = (A*T, v)pr xp.
Then
VreS , YweVy: (1,Av)sxs = (AT, v)vrxy-

def

Let us define 8'(Ay) = {r € &' : Ay € H}, then we have the following trace theorem.
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THEOREM B.1. Suppose that Vy is the kernel of a surjective map v € L(V, Z) from V onto Z. Then
there exists a unique linear operator m € L(S'(A}), Z') such that the following Green’s formula holds:

Vr e S'(Af),Yv eV : (1, Av)sixs — (A§T, v)vixy = (TT, V) 2% 2.

The detailed proof of (B.1) is given in [2]. In particular, we are interested in this work to the case
where § = & = {(u1,u2) € L2(Qr)}, D = D(Qr), V = HYQr), Vo = Hj(Qr), Vy = HH(Qr),
H = L2Qr), S'(AY) = {(ur,u2) € S+ Zus — Zuy € L3(Qr) in the sense of distributions}, A : u
(%w —%u) Z = HY2(0Q7) and 2’ = H-'/2(8Qr), where (dQr) is the boundary of Q7 and the trace
operator 7y : V — Z. Then there exists a unique 7 € L(S'(A}), Z’) such that

9 o 0 0
/QT (ngpe+mgyv)dede - /Q (5071 — g7 vdtde = (rr ) 21z

for all v € V and (11, 72) € §'(A4f). Then by density argument, we have

(T, Y0z xz = / (t.n)vds,
0Qr

where n is the outward unit normal to Qr, when 7 and v are regular enough.
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