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Abstract

This paper presents a new approximation of elastodynamic frictionless contact problems based
both on the finite element method and on an adaptation of Nitsche’s method which was ini-
tially designed for Dirichlet’s condition. A main interesting characteristic is that this approx-
imation produces well-posed space semi-discretizations contrary to standard finite element
discretizations. This paper is then mainly devoted to present an analysis of the semi-discrete
problem in terms of consistency, well-posedness and energy conservation, and also to study
the well-posedness of some time-marching schemes (#-scheme, Newmark and a new hybrid
scheme). The stability properties of the schemes and the corresponding numerical experi-
ments can be found in a second paper [13].
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1 Introduction and problem setting

The numerical implementation of contact and impact problems in solid mechanics generally uses
the Finite Element Method (FEM) (see [31, 20, 26, 22, 33, 42, 41]). In this paper we propose an
extension to the elastodynamics framework of the Nitsche-based method introduced previously
in [11, 12] in the case of unilateral contact in elastostatics. Although we restrict ourselves to the
unilateral contact without friction in this study, it should be noted that Nitsche’s method can be
extended without much difficulty to the case of frictional unilateral contact (see [10, 38]).

Nitsche’s method [35] aims at treating the boundary or interface conditions in a weak sense,
thanks to a consistent penalty term. So it differs from standard penalization techniques which are
typically non-consistent [31]. Moreover, unlike mixed methods (see, e.g., [26, 41]), no additional
unknown (Lagrange multiplier) is needed. Nitsche’s method has been widely applied during these
last years to problems involving linear conditions on the boundary of a domain or in the interface
between sub-domains: see, e.g., [39, 40] for the Dirichlet problem, [5] for domain decomposition
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with non-matching meshes and [24] for a global review. More recently, in [23, 29] it has been
adapted for bilateral (persistent) contact, which still involves linear boundary conditions on the
contact zone. An extension to large strain bilateral contact has been performed in [43].
Concerning time-evolution equations we can make the same observation that only the case of
linear boundary/interface conditions has been dealt with. Some works treat in particular the
problem of Dirichlet boundary conditions for parabolic equations [9, 40, 28]. Some other works
are focused on interface conditions, in the context of transient fluid-structure interaction [25, 8, 4]
or transient Stokes-Darcy coupling [16].
The paper is outlined as follows: in Section 2, we first adapt Nitsche’s concept to the space semi-
discretized problem which is shown to be consistent contrary to the penalty approach. We also
show that, when applied to contact-impact in elastodynamics, Nitsche’s method has the good
property of leading to a well-posed semi-discrete problem (system of Lipschitz differential equa-
tions), which is not the case of standard FEM discretization which leads to an ill-posed measure
differential inclusion (by “standard FEM” we mean a mixed method with a Lagrange multiplier
that stands for the contact stress, see, e.g., [30]). Note that this well-posedness characteristic is
also shared by the penalty method and modified mass methods (see [30, 37]). We then prove that
the symmetric variant of Nitsche’s space semi-discretization also conserves an augmented energy,
as the penalty method. In section 3, we define some classical schemes (6-scheme, Newmark) in
the Nitsche context as well as a new hybrid scheme which satisfies among others some interesting
stability properties (see [13]). For any scheme, we then obtain the corresponding CFL conditions
ensuring well-posedness.
Let us introduce some useful notations. In what follows, bold letters like u, v, indicate vector or
tensor valued quantities, while the capital ones (e.g., V,K...) represent functional sets involving
vector fields. As usual, we denote by (H*(.))%, s € R,d = 1,2,3 the Sobolev spaces in one, two
or three space dimensions (see [1]). The usual scalar product of (H*(D))¢ is denoted by (-, -)s.p,
1

and |- ||s,p = (+,-)? p denotes the corresponding norm. We keep the same notation when d = 1 or
d > 1. The letter C stands for a generic constant, independent of the discretization parameters.

We consider an elastic body Q in R? with d = 1,2,3. Small strain assumptions are made (as
well as plane strain when d = 2). The boundary 092 of Q is polygonal (d = 2) or polyhedral
(d = 3). The outward unit normal vector on 0f) is denoted n. We suppose that 9 consists
in three nonoverlapping parts I'p, 'y and the contact boundary I'c, with meas(I'p) > 0 and
meas(I'c) > 0. The contact boundary is supposed to be a straight line segment when d = 2 or
a polygon when d = 3 to simplify. In its initial stage, the body is in contact on I'c with a rigid
foundation and we suppose that the unknown contact zone during deformation is included into
I'c. The body is clamped on I'p for the sake of simplicity. It is subjected to volume forces f in
Q and to surface loads g on I'y.

We consider the unilateral contact problem in linear elastodynamics during a time interval [0, T)
where T' > 0 is the final time. We denote by Q7 := (0,7 xQ the time-space domain, and similarly
Tpr:=(0,T) xT'p, U'nyy :=(0,T) x 'y and T'cp := (0,T) x 'c. The problem then consists in



finding the displacement field u : [0, 7)) x © — R% verifying the equations and conditions (1)-(2):

pu—dive(u)=f in Qp,
o(u) =Ae(u) in Qp,
u=20 on I'pr, (1)
oclun=g on I'nr,
u(0,-) =up in Q,
(0, ) = 1 in Q,

where the notation x is used for the time-derivative of a vector field x on Qp, so that u is the
velocity of the elastic body and 1 its acceleration; ug is the initial displacement which should
satisfy the compatibility condition ug, < 0 on I'c and 1y is the initial velocity. The density of
the elastic material is denoted by p, and is supposed to be a constant to simplify the notations
(this is not restrictive and the results can be extended straightforwardly for a variable density).
The notation o = (0y;), 1 < i,j < d, stands for the stress tensor field and div denotes the
divergence operator of tensor valued functions. The notation e(v) = (Vv + VVT) /2 represents
the linearized strain tensor field and A is the fourth order symmetric elasticity tensor having the
usual uniform ellipticity and boundedness property. For any displacement field v and for any
density of surface forces o(v)n defined on 92 we adopt the following notation:

v=uv,n+v and o(v)n=o,(v)n+ og(v),

where vy (resp. o¢(v)) are the tangential components of v (resp. o(v)n). The conditions
describing unilateral contact without friction on I'cr are:

up, < 0 (i)
op(u) < 0 (i) @)
on(@)u, = 0 (it9)
og(u)= 0 (iv)
We introduce the following Hilbert spaces:
VvV = {V € (HI(Q))d :v=0on FD},

w {v € L2(0,T; V) :v € L0, T; (L2(Q))d)} .
We define the convex cone IC of admissible displacements which satisfy the noninterpenetration
on the contact zone I'¢:

K:={veW :uv(t-)<0ae. onl¢forae te(0,7)}.

Suppose that ug € V, with ug, < 0 a.e. on I'c, and that 1y € (LZ(Q))d. Suppose also that

f € €°([0,T7; (LZ(Q))d) and g € €°([0, T); (LZ(FN))d), which imply that they belong respectively
d

to (L2(Q7))* and (L2(Tnr))".
Remark 1.1. The assumption of regularity €°([0,T]; L*(-)) is in fact superfluous for the con-
tinuous formulation and a regularity L(0,T; L*(-)) would have been sufficient. Nevertheless, this
assumption will make easier the formulation of Nitsche’s semi-discretization.



A weak formulation of Problem (1)-(2) reads as:
( Find u € K, u(0,-) = ug, such that :

—/ pug - (v(0,) —ug)dQ2 — / pu - (v —a)dQdt +/ o(u):e(v—u)dQdt
Q Qr Qr (3)
E/Tf‘(v—u) det—l—/FNTg'(v—u) drdt

for all v € IC such that v = u in a neighborhood of T.

To our knowledge, the well-posedness of Problem (3) is still an open issue. The few available
existence results concern simplified model problems involving the (scalar) wave equation with
Signorini’s conditions (see, e.g., [34, 32, 15]) or thin structures like membranes, beams (see [2]) or
plates (see [36]). Even in these simplified cases, obtention of uniqueness and energy conservation
still involves difficulties in 2D or 3D. For a review on some of these results, one can refer to the
book [18].

Let us define now the following forms:

a(u,v) = /Qa'(u) ce(v) dS, L(t)(v) :== /Qf(t) v dQ +/ g(t)-vdr,

'n
for any u and v in V|, for all t € [0,T).

Remark 1.2. Let u be a solution to (3). We note as follows the (total) mechanical energy
associated to u:

B(t) = gpla(t)Rg + yalu(t), u().

It can be formally shown that
d

SLB() = L(t)(0(1)) (4)

In particular, when L vanishes, we get energy conservation: E(t) = E(0). Note that this is only
formal, since energy conservation meeds in fact extra reqularity properties that are difficult to
prove in general for solutions of (3).

2 Semi-discretization in space with a Nitsche-based finite ele-
ment method

In this section we introduce our Nitsche-based FEM and carry out the well-posedness and stability
analysis of the resulting semi-discrete problem.

2.1 Definition and preliminary results

Let V* C V be a family of finite dimensional vector spaces (see [14]) indexed by h coming from
a family 7" of triangulations of the domain Q (h = maxycyn b where hy is the diameter of
the triangle K). The family of triangulations is supposed:

e regular, i.e., there exists o > 0 such that VK € T, hi/prx < o where pg denotes the radius
of the inscribed ball in K,



e conformal to the subdivision of the boundary into I'p, I'y and I'c, which means that a
face of an element K € T is not allowed to have simultaneous non-empty intersection with
more than one part of the subdivision,

e quasi-uniform, i.e., there exists ¢ > 0, such that, VA > 0, VK € T" hg > ch.

To fix ideas, we choose a standard Lagrange finite element method of degree k with £ = 1 or
k=2, ie.

thbﬁe%wmwnﬁKe@MmWNKeTszomub}

However, the analysis would be similar for any ¢°-conforming finite element method.
Let us introduce the notation [-]4 for the positive part of a scalar quantity a € R:

la], = a if a >0,
710

otherwise.
The positive part has the following properties:
a<las, alas=[a2, VaeR. (5)

Using (5), we recover a classical and useful property of the projection onto a closed convex set,
i.e., for all a,b € R:

(lal4+ = [bl+)(a — b) = ala]+ + b[b]+ — bla]+ — a[b]+
> [a)% + [0 — 2[a)+ [0)+ (6)
= ([a)+ — [b]+)* > 0.

The Heaviside function will be noted H(-). We recall it can be defined as follows, for a € R:

1 ifa>0,
H(a)={ % ifa=0,
0 ifa<0.

In fact it is a multivalued function for 0, but we adopt the convention H(0) = % to allow the
property:

H(a)+ H(—a)=1, VaeR. (7)
Note that conditions (5), (6) and (7) can be straightforwardly extended to real valued functions.

The derivation of a Nitsche-based method comes from a classical reformulation (see for instance
[3]) of the contact conditions (2) (i)-(iii):

on(u) = —i[un —oa(W)s, (8)

for any positive function v defined on I'¢.
We consider in what follows that v =, is a positive piecewise constant function on the contact
interface I'c which satisfies

Yl knre = Yohk,

for every K that has a non-empty intersection of dimension d — 1 with I'c, and where ~q is a
positive given constant. Note that the value of v, on element intersections has no influence.



Let us introduce the discrete linear operator

v — L*(T¢)

P, :
b s oy (V)

and also the bilinear form:

Aoy, (uha Vh) = a(uhv Vh) — [Om Un(uh)an(vh) dr,
Lo

with © € R a fixed parameter.
Our space semi-discretized Nitsche-based method for unilateral contact problems in elastodynam-
ics then reads:

Find u” : [0,7] — V" such that for t € 0,77 :

" hepy oh 1 o o _ o
(pu (t)vv >+A97h(u (t)vv )+/I‘07h [P’Yh( (t))]-l-P@Vh( )dr L(t)( )’ )

Vvl e vh,

uh(O, )= ug, ilh((), )= 1‘13,

\

with Po., (vi) = v — Oy, 0, (v") and where ul} (resp. ul) is an approximation of the initial

displacement ug (resp. the initial velocity 119), for instance the Lagrange interpolant or the L?(2)
projection of ug (resp. ). The notation (-, -) stands for the L?(2) inner product.

We recall that the standard (mixed) finite element semi-discretization for elastodynamics with
unilateral contact leads to ill-posed problems (see, e.g., [30, 17]), which is not the case of Nitsche’s
formulation that leads to a well-posed (Lipschitz) system of differential equations, as it will be
shown below. This feature is shared with the standard penalty method, the difference being
that Nitsche’s method remains consistent. Note that the standard (mixed) finite element semi-
discretization is consistent as well as the singular dynamic method introduced in [37]. The mass
redistribution method introduced in [30] is asymptotically consistent when h vanishes.

In the rest of this section, we carry out the mathematical analysis of the method (9). First
are defined some extra notations and introduced some preliminary results. We then show the
consistency of the method in §2.2. The proof of well-posedness of Problem (9) is carried out in
§2.3. The energy conservation properties are studied in §2.4.

As usual for Nitsche’s method (see e.g., [39, 5]), we introduce the following mesh- and parameter-
dependent scalar product in V"

_1 _1
(Vhawh)'yh = (Vh7wh)1,Q + (7h 2”7};’771 2wZ)O,FC‘

1
We denote by || - ||, := (-, )3, the associated norm.
We need first the following classical property:

Lemma 2.1. There exists C' > 0, independent of the parameter vo and of the mesh size h, such
that:

1
20 (V)50 < Crollv" 17 o (10)

or all vi € V.
J



Proof: It follows from the definition of o, (v") and the boundedness of A that:

1 h h h
200 (vM)5re < 0PIon (V) Ere < CrhIVV*E 1,

Then estimation (10) is obtained using a scaling argument: see [40, Lemma 2.1, p.24] for a
detailed proof in the general case (for an arbitrary degree k and dimension d). O
The following inverse inequality will be of constant use, and for the proof, we refer for instance
to [19, Corollary 1.141, Remark 1.143]:

Lemma 2.2. Suppose that the mesh T" is quasi-uniform, then for all vh € V" it holds:

V"l < Ch7YIV"lo.0- (11)

2.2 Consistency

We show here the consistency of our Nitsche-based formulation (9) in the sense that, provided
sufficient regularity conditions on the continuous solution u it is also solution to a space-time
reformulation of (9). The space-time formulation is needed to avoid assumptions on the regularity
of u that would be too restrictive.

Proposition 2.3. The Nitsche-based method for contact is consistent in the following sense:

d
suppose that the solution u of (3) is in (H%+”(QT)) (with 0 < v < 3), then u is also solution
of
—/ pug - v(0,-)dQ —/ pu - v'dQdt +/ o(u) : e(v)dQdt
9) Qr

Qp
1
- @’Yho'n(u)o'n(vh)drdt + — [Py, (w)]+ Poy, (Vh) drdi
Teor Ter
= [ f.v" det+/ g-vidldt  Vv"eD(0,T)) ® V"
Qr Iyt

where D([0,T)) ® VI = Z{w: Qr > R : w(t,z) = f(t)g(z), f € D([0,T)),g € V"}, the nota-
tion LFE standing for all the finite linear combinations of elements in E, and D(I) being the
vectorial space of C* real functions with compact support in I.

Remark 2.4. Note the difference between Nitsche’s formulation (9), which involves integration
on ) at each time t, and the equation of the Proposition 2.3, which is a space-time formulation
on the whole cylinder Q. The reqularity assumptions on u are too weak so that we can substitute

d
to this latter a space formulation at almost every timet. When u € (H%+”(QT)) it tmplies only
d dxd
u(t) € (H*(@)?, a e (H%+V(QT)) cat) € (HY(Q) and o(u) € (H%+V(QT)) . It has

to be compatible with the impact phenomenon, in which 0 is expected to be discontinuous in time
and (t) ¢ L*().

Proof: Let u be the solution of (3). Due to the assumed regularity and Green’s formula it is
equivalently solution of:

_ / pitg - v(0,-)dS — / pit - vdQt + / () : e(v)dQudt — / o (W) ol
Q Qr Qr Per

:/ f.vddt+ | g-vdrdt (12)
Qr Inr
for all v € W such that v = 0 in a neighborhood of T,

7



with contact conditions (2) (i), (i) and (iii) verified a.e. on I'cp. The regularity assumption
d
u € (H%J”’(QT)) (v > 0) yields o,(u) € H"(Tcr) C L?*(Ter) so that in formula (12), the

integral term on I'cr is correctly defined, and the contact conditions hold in L?(Tcr).
Take now v € D([0,T)) ® V", in particular v/ € W and v" = 0 in a neighborhood of T. The
inner product o,(u)o,(v") in L?(T'cr) is meaningful, so we can rewrite (12) as follows:

— / pig - v*(0,)dQ — / pu - v dQdt + / o(u):e(v"dQdt — | Oyuon(u)o,(vh)dldt
Q Qr

Qr Ter
— / on(0) (v — Oypon(vh))dldt = / f.v" dQdt + g - v dldt
FCT QT Inr
for all v* € D([0,T)) ® V",
With the reformulation of contact conditions (8), which makes sense in L?(I'cr), and the definition

of P, , the proof is finished. O

d
Remark 2.5. The reqularity u € (H%J”’(QT)) in the consistency result could probably be weak-

ened to o,(u) € L*(Tcr) since the condition f € €°([0,T); (LQ(Q))d) is sufficient to give a sense
to a Green-like formula on Qrp.

2.3 Well-posedness

In order to prove well-posedness we reformulate (9) as a system of (non-linear) second-order
differential equations. To this purpose, using Riesz’s representation theorem in (V" (-, V) We
first introduce the mass operator M" : V# — V" which is defined for all v, w" € V" by

(M W), = (v, wh)

Still using Riesz’s representation theorem, we define the (non-linear) operator B : V* — V* by
means of the formula

1
(Bhvh7 Wh)’Yh = A@’Yh (th Wh) T /

— [P'Yh (Vh)}-FP@’Yh (Wh) ar,
e h

for all v, wh € V", Finally, we denote by L"(t) the vector in V" such that, for all ¢ € [0,7] and
for every w” in V"
(L"(8), w")s, = L(H)(w").

Remark that, due to the assumptions on f and g, L" is continuous from [0, 7] onto (Vp, || - [l,)-
With the above notation, Problem (9) reads:

Find u” : [0, 7] — V" such that for t € [0,T] :
M" i (t) + BMa"(t) = L"(t), (13)
u(0,)=ul, u"0,.)=ul

We then show that Problem (9) (or equivalently Problem (13)) is well-posed.

Theorem 2.6. The operator B" is Lipschitz-continuous in the following sense: there exists a
constant C > 0, independent of h, © and vy such that, for all v’f,vg e Vh:

IB v} — B"VA|,, < C(1+70)(1+0])IvE =V, (14)

As a consequence, for every value of © € R and vy > 0, Problem (9) admits one unique solution

u" € 2([0, 7], Vh).



Proof: Let us pick V?,Vg,wh € V", then:
(B"v} - B"vj, w"),,|
1
= |Ae,, (v = Vb wh) + /F o (1Pl = 1P (V)5 ) o, (o) df‘
C

< C(1+[8ho)llvi — vk

1
ol W+ [ [P )= [Py (D) 1P, ()] .
C

as the estimate (10) yields |[Ae~, | < C(1+ |©|y0).

With the inequality |[a]+ — [b]+| < |a — 0] , for all a,b € R, and using the linearity of P,,, we
remark that:

[ o [P = P o)) [Po () ar

T Vh
1 h h h
< [ = [P - Py )] 1Pony (W] ar
I'cVh
1 h h h
- /erl—vg)HPe%(w )| T
T'oYh
_1 h B -1 h
< e 2Py, (VY = v)llore e 2 Poy, (W) |lore
_ 1 1 _ 1 1
< (I 3k, = v )lore + Im¥onvh = vBlore ) (I~ 2wlllore + Ol (W lore )
1, h Lh h 1oy Lh
< (nvh 2<v1,n—v2,n>uo,rc+cwo2||v1—mm) <||vh bullore +ClONE [ Hm).

In the last lines, we used the Cauchy-Schwarz inequality, the triangular inequality and the estimate
(10). Taking this bound into account, we now combine the above estimations to obtain:

h h h  h h
|(B Vi -B Vo, W )’Yh|

< CUL+10h0)IVE = vElalw e
1 1
3 1<.h h 1. p h 5 h 1 p
i (cwg IVE = vAla + ol — vg,nwo,rc) <0|@|%2 I e + I 2wn||o,rc)
< OO+ 10! = vElal W ie

O7FC>

1
2

+0(1 49+ 101d) (IvE =Vl + Il — o) lore ) (W e + o~ 3ul
< C+0)+10]) (IvE = vEB o+ I F (o], véinw%,rc)% (w4183 0 + o~ 2wl 3 )
Finally:
(B} — B, wh),, | < C(1+70)(1+ [OIvE — v, (W,

It results that

Blwv! — Bivl wh
HBhVIlz _ BthH’Yh = sup ’( 1 25 )

> < O+ 0)(1+ [OVE = VE -
whevh [w th

This proves the first assertion of the theorem.



Then we recast (13) in the canonical form of a first-order system:

Gy = P13 (1), x(0) = b,

dt

where:

- h - h

u u

co-[$]o 4-[$).
hip <h (M")~H (L (t) — Bhu'(1))
It holds for arbitrary ¢ € [0,7] and x?,xk € (V)2
IE (8, x7) — B (8, x5)13, .y, = |(M") 7 (B uf — B*u})[5, + [[af — 313,

where || - ||, x~, denotes the product norm on (V")2.

From the estimates (29) (see Appendix 1), (14) and re-arranging the terms we get:
I(v*) 7 (B uy — B ui),, <[(M") 7., [B"ul — B ufll,,
<Cp~ (1475 Hh~?(B"u} — Btuf,,
<Cp 'L+ Hh 2 (1 +70) (1 +[O])[uf - ufl,,
<Cp~'h (1 +18])(1 +0 + 75 ) ub — ],
The second assertion of the theorem is a consequence of the Lipschitz-continuity of F* and of the
Cauchy-Lipschitz (Picard-Lindelof) theorem. O

Remark 2.7. Note that, conversely to the static case (see [11, 12, 10]) and the fully-discrete
case (see section 3.2), there is no condition on vy for the semi-discrete problem, which remains
well-posed even if g is large.

2.4 Energy estimates and stability

This section is devoted to energy estimates which are counterparts of the equation (4), in the
semi-discretized case. Let us define the discrete energy as follows:

(1) = ol ()]0 + galul (), u' (1),

which is associated to the solution u”(¢) to Problem (9). Note that this is the direct transposition
of the mechanical energy E(t) for the continuous system. Set also

18(1) 2= B0~ 5 [ don( )R — I3 P (0 ()] [, ] = B"(0) — OR*()

which corresponds to a modified energy in which a consistent term is added. This term denoted
R" (t) represents, roughly speaking, the nonfulfillment of the contact condition (8) by u”.

Theorem 2.8. Suppose that the system associated to (3) is conservative, i.e., that L(t) =0 for

all t € [0,T). The solution u of (9) then satisfies the following identity:
d 1 .
GEb®O=© -1 [ [P, (a(0)]i(e) .
t re Yh

In particular, when © =1, we get for any t € [0,T]: Elt) = E}NO0).

10



Corollary 2.9. With the same assumptions as in the previous theorem, the variation of the
discrete elastic energy E™(t) only comes from the non fulfillment of the exact contact conditions
at the discrete level. More precisely:

h _ ph h h _ s ahs S.
EM(t) = E"(0) + O(R"(t) — R'(0) 1//rth . (u ()]l (s) dd

Proof: Let us suppose that L(t) = 0 for all ¢t € [0,7]. We take v = u"(¢ ) € V" as a test
function in (9). So we obtain (to lighten the notations we write u” instead of u”(t)):

- . . 1 )
p(i",0") +a(u” ") — [ Oyp0(u")oy (0")dl + / — [Py, (u")]1 Poy, (0") dT" = 0.
I'c L'cVh
For the first two terms: 4
pli’, ") +a(u”, 0") = - B"(t).

By using the definition of Pg,, and re-arranging the terms, we get:

d

ﬁEh(t)
=0 [ (), ()0~ [ (P, ()] Py (@) T (1= ) [ (P ()i T
T'c Irc Th T'e Yh
= il = 3 i P e — (1= 0) [P il
In the last line, we made use of the following formula, for ¢ : R — R:
1d 9 d d d

5 OO = (60 3 6] = (6] H6(1) 2 6(t) = [6(0)]+ 7:0(0)

with the property [a]+ H(a) = [a]4+ (a € R). That concludes the proof of the theorem. The proof
of the corollary is straightforward. O

Remark 2.10. The mechanical energy E"(t) can fluctuate whenever the discrete persistency con-
dition [P, (u"(t))]+4l(t) = 0 or the discrete contact condition oy (u(t)) +7, "L [Py, (u(2))]+ = 0
are not satisfied.

3 Fully discrete formulations

In this section we fully discretize the dynamic contact problem by combining Nitsche’s method
with some classical schemes (6-scheme, Newmark) as well as a new hybrid scheme. We study the
well-posedness of the schemes.

Let 7 > 0 be the time-step, and consider a uniform discretization of the time interval [0,7:
(... tN), with t" =n7, n=0,...,N. Let 6 € [0,1], we use the notation:

Xh,n+9 _ (1 o H)Xh’n + exh,n—i-l

for arbitrary quantities x*" x""*1 € V* Hereafter we denote by u" (resp. u" and iih’”) the
resulting discretized displacement (resp. velocity and acceleration) at time-step ¢".

11



3.1 Proposed time-marching schemes
3.1.1 A f#-scheme

We semi-discretize in time Problem (9) using a 6-scheme, which parameter is 6 € [0, 1]. For n > 0,
the fully discretized problem reads:

Find u»" 1 ahntl @fn+l e V7 such that:

uh,n+l _ uh,n + Tl'lh,n—i-e,

l:lh,n+1 — l'lh,n 4 Tﬁh,n+9’

(15)
.. 1
<puh’"+1,vh> _'_Ae’m(uh,n-i-l’vh) +/F % [P'yh(uh’n+1)]+P67h(Vh) dl’ = Ln—i—l(vh)’
C
[ vvieVvh
with initial conditions u?? = ué‘, uhl = 1'1’5, a0 = ﬁg (see Remark 3.2 below), and where

Ln+1(-) — L(tn+1)(-).

Remark 3.1. This scheme is first order consistent in T if  # % and second order if 6 = %
For linear elastodynamics (without unilateral contact), it is also known to be unconditionally stable
for 0 > % and conditionally stable when 6 < % It is fully explicit when 6 = 0. It is dissipative
when 6 > % and conserves the energy when 0 = %

Remark 3.2. The initial condition W is determined in fact through:
1
<p1"18,vh> =LO(vh) — A@Wh(ug,vh) - / — [P%(ug)]JrP@%(vh) dl. Vvl e vh
ek

Thus 1"18 1s obtained from ug by inversion of the mass matriz M".

3.1.2 A Newmark scheme

We semi-discretize in time Problem (9) using a Newmark scheme, which parameters are 5 €
[0,1/2], v € [0,1]. For n > 0, the fully discretized problem reads:

Find u"t1 ahntt ghntl ¢ V7 guch that:

2
. T ..
uh,n+1 — uh,n + Tuh,n + 7uh,n+2ﬁ’

uh,n—‘rl _ uh,n + Tﬁh,n-l—'y’ (16)
.. 1
() 4 A, (V) 4 [ [P (P, () T = (),
C
[ VvieVvh

h,0 R +h0

with initial conditions u? = u2, "0 = u}, "0 = i} (see Remark 3.2).

Remark 3.3. This scheme is first order consistent in T when ~y # %, second order when vy = 3

2
and B # 1—12, and fourth order when v = % and = % When applied to linear elastodynamics

(without unilateral contact), it is not stable when v < %, unconditionally stable when ~ > % and

2<B< %, and conditionally stable when v > % and 0 < 6 < 3.

12



3.1.3 A new Hybrid scheme

We introduce a new time-marching scheme for Problem (9). Inspired by the works of Gonzalez
[21] and Hauret & Le Tallec [27], the idea is to propose an hybrid discretization of the Nitsche-
based contact term: the linear part of Problem (9) is treated with a conservative Crank-Nicolson
scheme, whereas the non-linear part arising from contact is discretized with a linear combination
of Crank-Nicolson and Midpoint schemes. This strategy is of interest since the resulting scheme
is unconditionally stable in the symmetric case and still second order consistent in time, as it will
be shown in a forthcoming work (see [13]).

For n > 0, the fully discretized problem reads:

Find u"*! a1 @hntl e VP such that:

ahntl = ghn g Tuh,n+%7

R . .. 1
uh,n+1 — uh,n 4T h,n+2’

" (17)
1
<pﬁh’n+%,vh> _‘_A@’Yh(uh,n%—%’vh) +/ - (I)(uh’n,uh’n+1)P@7h(Vh) dl = Ln—&—%(vh)’
I'cVh
Vvl e v,
with the initial conditions u*? = ul, 0*? = u}, @W*° = @} (see Remark 3.2) and with the

following expression for ®(u®", uhn+h)

1 41
O(u"", u ) = H(Py, (0"7) [Py, (0" 2)] 4 4 H (= Py, (0"))[Py, (u")]y 2.
1
Remark that [P, (uh)]iJr2 = L([Py, (0"™)] 4 +[Py, (0" 1] ) represents the Crank-Nicolson part,

whereas [P%(uh’"Jr%)]Jr = [3(Py, (u™™) + P, (u"1))], stands for the Midpoint part. So, when
P,, (u"") > 0, the Midpoint scheme is applied, and when P, (u") < 0, the Crank-Nicolson
scheme is applied instead. When P, (u®™) = 0 both schemes coincide.

3.2 Well-posedness of the fully discrete formulations

Except for their explicit variants, that are obtained for § = 0 (f-scheme) and 5 = 0 (Newmark),
all the fully discrete formulations involve solving a non-linear problem at each time-step n. We
study here conditions on numerical parameters upon which this non-linear problem admits a
unique solution. We can apply each time an analogous argument as in [12]. One interesting
consequence, as it will be shown, is that reducing the time-step 7 weakens the condition vy small
whenever © # —1.

3.2.1 Well-posedness of the f-scheme

The well-posedness of the -scheme (15) is stated below:

Proposition 3.4. 1. If 6 = 0, existence and uniqueness of (15) always holds since the scheme
1s fully explicit.
2. Let 0 > 0. If

h2
(1+60)29 §C<1+Tp292)

where C' is a positive constant, then at each time-step n, Problem (15) admits one unique solution.
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sh,n+1 hn+1

Proof: When 0 > 0, expressing i as a function of u ;" A un) the f-scheme (15)

can be written as follows: for n > 0 :

Find uh’”Jrl 'h’"H it e VP such that:

uh,n+1 — + Tllh n+9
ﬁh,n—‘rl _ noy Tuh n+9
1
(™) 4 Ao, (V) / — [Py, (0" )] Poy, (V") dT
T rcVh
ntly h p(1=0).pn P P hn h h h
k:L (v)—l—(Tu +7_92 ‘f‘TOQu >, Vv e V"

Using the Riesz representation theorem, we define a non-linear operator Bg : V" = V" by means
of the formula:

p 1
(Bivh, wh) q = <th,wh) + Agq, (v, W) + /P o [P, (v™)] 4 Pe, (W") dr,
C
for all v?,wh € V" and where (-,-); o stands for the scalar product in (H'(2))¢. Note that
Problem (9) is well-posed if and only if B} is a one-to-one operator. Let v/, w" € V. We have:

(Bivh — Bhw" vl — w1
= (P W) W) alvh — wh VW) = 0o (v W)
" /Fc’ylh ([P, (v™)]4 = [Py, (W] 1) (vfy — wyt — O340, (v — w')) dT
= V' =W a +alv! = wh vt = W) =B (v - wh) . "

1 h h h h
+f oy (P P = [Py (WP (01— )

(-0 / jh (P ()]s = [Py (W) )9 (v — wh) dT

Using the inequality (6) in (18), Cauchy-Schwarz inequality and the inverse inequality (11), we
get

(Biv" — Bhw" v — Wh)LQ

Cph?

= 202
_1
+ 1l 72 ([P, (V)] = [Py, (W06 e
_1 1
—[1=0] 2 ([P, )]+ = [Py, W) ) lore 7m0 (v = w")|o,re-

1
V" = wh} o+ a(v" = wh v — wh) = Olynzon (v — w3 r,

(19)

If © = 1, we use the coercivity of a(-,-) and the property (10) in the previous expression (19).
Therefore there exists positive constants C, C’ such that:

Cph?
202

(Bv" - Biwh, v Wh)19_<0+ —0'70) V"~ wh2 . (20)
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We now suppose that © # 1. Let 8 > 0. Applying Young’s inequality in (19) yields:

(Bgvh — ngh, vh — wh)179

Cph? 1
> OO v W a(v" — W v = w) — Ol bo (v — WA,
_1
B (P M) — [P (W)l
1—-© _1 1-0|5, 1
P 2 7~ 12 e — P b (v - W, (2D
Cph? 1-0|8), .
= IV =W g+ = whovt = wh) = (04 BB o, 00 - wh
I1— 0| _1
# (1 5520 e b R - 1P L B
Choosing f = |1 — ©]/2 in (21), we get:
(Bjv" — Biw",v" —w') g
Cph? 1 1
> SO W20+ alvh =W W) - L (0 e W B o)
Cph?
> <C + gy — O (14 @)270> V" = w"[I% o,

where C, C’ are positive constants.
Next, let us show that Bg is also hemicontinuous. Since V" is a vector space, it is sufficient to
show that

0,1] 3¢+ p(t) := (BE (V" — twh), w")1 0 € R

is a continuous real function, for all v, w" € V", Let s,t € [0, 1], we have:

p(t) —p(s) = [(BE(V" —tw") = Bg(v" — sw"), w")1 0

)

p
= | = 1) (g Iw" I 0 + Aoy, (", w")

[ o (1P = s = [P (v = WL ) Po, () dF]

IN

p h h oh
s = t] (s Iw" o + [Aes, (w", wh)|)

" /F ,Ylh [Py, (v = W) = [Py, (V" = sw™)] | [P, (")) dT.

With help of the bound |[a]+ — [b]+]| < |a—b| , for all a,b € R, and using the linearity of P,,, we
deduce that:

[ o [P = o (2 6 = 5w [Po ()
ek

IN

1
/ . ‘P%(Vh —twh) — P’Yh(vh - Swh)‘ | Pory, (w")] dr
I'cVh

= [ 15— Py (]| P ()]
I'cVh
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It results that:

p 1
p(t) = )| <ls— ¢ <292Hw" bt Ao, (] + [ 2 \Pwh<wh>|rpewh<wh>\dr),
T rc7h

which means that ¢ is Lipschitz, so that Bg is hemicontinuous. Since properties (20), (22) also
hold, we finally apply the Corollary 15 (p.126) of [7] to conclude that ng is a one-to-one operator.
This ends the proof when 6 > 0.

When 6 = 0, we simply carry out the following sequence of computations to go from time-step n
to time-step n + 1:

uh,nJrl — uh,n + Tﬂh’n,
l'lh,n-i-l — l'lh,n + Tﬁh’n,
1

<pﬁh’n+1,vh> _ Ln-i-l(vh) o AG’Yh (uh,n+17vh) _/F % [P’Yh (uh’n+l)]+P®vh (Vh) dr,
c

Vvl e vh,
and we note that the last step needs only the computation of (Mh)*l, or is explicit if a mass-
lumping technique is used. O
3.2.2 Well-posedness of the Newmark scheme

A similar result holds for the Newmark scheme (16). More precisely, we have:

Proposition 3.5. 1. If § = 0, existence and uniqueness of (16) always holds since the scheme
1s fully explicit.
2. Let B> 0. If

h2
1 2 <of1+ 22
(1+0) 70_C<+7_26>

where C' is a positive constant, then at each time-step n, Problem (16) admits one unique solution.

Proof: The proof is the same than for the 6-scheme. O

3.2.3 Well-posedness of the Hybrid scheme

The well-posedness of the fully discrete scheme (17) is stated below.

Proposition 3.6. If the condition below is satisfied

2 ph?
(1+0) 70§C<1+7_2>

where C' is a positive constant, then at each time-step n, Problem (17) admits one unique solution.

Proof: Using the expression "1 = u/" 4+ 7"z and then the relationship u*"t! = uhn +
g p p
. 1 .
ra""*2 | we obtain that:

. 1 1 . . 2 2 2
uh,n+2 — 7(uh,n+1 . uh,n) — ﬁuh,n—l-l . ﬁuh,n . 7uh,n‘
T T T T
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Then the scheme (17) can be written as follows, for n > 0:

Find uh’”Jrl uh’"“ 1"t ¢ VI such that:

uh,n+1 — + 7_uh n+2

. h,n+1 — + 7_uh n+2

4 2
< f; h n+1 h> + A@'yh (uh,n—i-l’ Vh) + / @(uh,n’ uh,n—i—l)P@'Yh (Vh) dTl’
T rc¢Vh

4 4
= 2L”+%(vh) — Agy, (0" v + (—pﬁh’” + fguh’",vh% vvh e vh
T T

Using the Riesz representation theorem, we define a non-linear operator B’}{ : Vi 5 VI by
means of the formula:

4 9
(Vi why + Ag,, (v, W) + / = g, v") Po., (W) dr,
72 re7h

(BHV Wh)l Q=

for all vh,wh € V" and where (-,-); o stands for the scalar product in (H'(£2))¢. Note that
Problem (9) is well-posed if and only if B}}{ is a one-to-one operator. Let v, w" € V" we have:

(B v — Bhwh, v —wh) g
4D h by oh ok
= (D W)V
1
L a(vh —wh v W) — O Eon(vh — w3,
2

4 / (B, V) — B, wh)) (o — wh — Oy (v — wh)) dT

I'cVh

(23)
4 1
= SIV" =W o+ a(v" = wh v = w!) = Ol 20 (v = w3,

+ / 2 (@(u"", v — e, wh) P, (vh — wh) dT
re7h

+(1- @)/ 2 (@ (", v — d(u"", wh)) o, (v — wh) dT.
rcVh

We detail the expression of:

2
/F % (@(uh’",vh) — @(uh’”,wh))PA,h (Vh — wh) drl
C

= [ HP )P G )= [P (G W)Ly, (v wh) dr

rc7h 2
o [ mepy ) (G L+ P (60))

- / L H(P, @ )([Py (V)] — [Py (0 W) Py (00 4 37) = (a4 wh)) T

(24)
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Then with help of the inequality (6) we bound:

2
/r (@) (W) Py (v W) dE
C

1 n -1 n n
> |[H2 (Py, (™)~ 2 ([P, (0" + ")) = [Py, (0" + W) p,.

1

1 _1
H[1H2 (= Py, ()2 ([P, (V)] = [Py, (W) 6 .-
With Cauchy-Schwarz and Young’s inequalities, we also bound:

(1-0) [ 2 (@ v") = @ w)) o (v - wh) T
ek

~(1-0) /F S H P () (1P (0 3] [P (0 )] (= wh) dr

+(1- @)/F ;h H (= Py, (0"™)([Py, (v")]+ — [Py, (W")] )00 (v" — w") dT

1

<rl—e\[ (113 (P, (a5 ([P (™ 4 V)] = [Py, (0 W) B
I HE (=P, ") ([P, (W) = [P (W) )
0 (B ) 00 = Wy HIH (P ()38 o = W) R, )]

with 8 > 0. With the property (7) we get:

(1-0) [ 2 (@@, vh) — o, wh)) o (v — wh) dr
I'cVh

<1101 g (7P ) ([ (0 43 = P (6 4 WLl

1

I (P (a8 ([P (] — [P (W) e ) + 5 It on (v = w)

(25)
Using (24) and (25) in (23) and the inverse inequality (11), we obtain:
(B v — Bhwh, v —wh) g
> S g + e — vt =)~ (01012 ) e (v — Wl
(26)

|1 - 0| 1 _1
(1= B2 (e oy (P 9 = [P 0 9L B,
1 _1
L (= Py, (0 ([P, (V)] = [P (W) )
If © = 1, we use the coercivity of a(-,-) and the property (10) in the previous expression (26).
Therefore there exists positive constants C, C’ such that:

4Cph

(BHV - BHW vh — Wh)LQ > (C’ + — C'%> ||vh — whHiQ. (27)
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We now suppose that © # 1. Choosing 8 = |1 — 0|/2 in (26), we get:

(B}}{vh — Bf}{wh, vh — Wh)ljg

4C ph? 1 1
> p2 th — WhHiQ + a(vh —wh vl — Wh) ~ 1 (1+ @)2 nyh2an(vh — Wh)

T
4Cph?
72

‘2
0,l'c (28)

> (0+ _c +@>2%) IV = wh2 g,

where C, C’ are positive constants.
Next, let us show that Bf{l is also hemicontinuous. Since V" is a vector space, it is sufficient to
show that

(0,1] 3t @(t) := (B (v — twh),wh)LQ eR

is a continuous real function, for all v, w € V*. Let s,t € [0, 1], we have:
lo(t) —¢(s)] = |(BE(E" —tw") = B (v" — sw"),w")1 0]

4p
= [t =0 (21w 1B + o wh )

2
+/ — (@(uh’”,vh —tw") — d(un v — swh)) Po-, (W") dF‘
I'cVh

IN

4p
=1 (251w o + |00, (vt )

2
+/ = |@um v —twh) — (v — swh)‘ | Py, (W")| dT.
rc7h

With help of the bound |[a]4 — [b]+| < |a —b|, for all a,b € R, using the linearity of P,, and (7)
we deduce that:

< / 2 H(Py, (u"™) ‘([th(uh’" + v —twh)] — [Py, (0" v — sw)]L)| | Pey, (w")] dT

+ / 2 H(=P,, (u"")) ]1<[P% (v =t — [Py (v — 5w )| | P, (w")] dT

T'e Th 2
1
S / % H(P’Yh (uhm)) ‘P'Yh (uhm + vh - twh) - P’Yh (uh’n + Vh - Swh)‘ ‘P@% (Wh)‘ dr’
Te

1 n
b HPy ) [Py (60— ) < P (v 5w o, ()] T
1
= / v P’Yh(vh - twh) - P’Yh(vh - SWh) |P@7h(wh)] dr’
1
= |1 = 0P ()| P (W)
I'cVh
It results that:
4p . hu2 h o h 1
lo(t) — ()| < s —t| [ S IW"[[5.0 + |Aey, (W', W )‘ + [ —
T r'cYh

C

(P, ()| Py (W) dr) ,
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which means that ¢ is Lipschitz, so that B is hemicontinuous. Since properties (27), (28) also
hold, we finally apply the Corollary 15 (p.126) of [7] to conclude that B, is a one-to-one operator.
This ends the proof. O

4 Conclusion and perspectives

In this paper dealing with frictionless unilateral contact in the small displacements and defor-
mations framework, we extend to the elastodynamic case the Nitsche-based method previously
defined and analyzed in the elastostatic case. The resulting semi-discrete problem is shown to be
well-posed and we derive some stability results. For the symmetric variant of Nitsche’s method,
we prove the conservation of an augmented energy. We then define several time-marching schemes
for which we obtain appropriate CFL conditions ensuring well-posedness.

The stability of the time-marching schemes and the corresponding numerical experiments can be
found in reference [13].

5 Appendix 1. Estimate for the inverse of the discrete mass
operator

Lemma 5.1. Suppose that the mesh T" is quasi-uniform. Then there exists C > 0 independent
of p, vo and h such that:

M) 7oy, < CpH (L 47 A, (29)
where || - ||, is the operator norm induced by the vector norm || - ||, in Vh.

Proof: We start from the definition of the operator norm, then use the (obvious) invertibility of
M":

- M) =", V"1l

(M"Y, = sup et = gup (30)
" vheve VP, vievn [[MPVR].,
Let v! € V. We now bound from below the norm |[M"v"|,, , with first:
M:vE wh h h h h vi|2
MR, = sup (Vh—aW%h — sup <pV};w ) 2p(v };v ) :pH hHo,Q. (31)
whevh w1, whevn [ W'y, V"]l V"]l
From [6, Theorem 1.6.6] the following trace inequality holds:
h h h

lonll.re < ClIv"lloellv"lLe. (32)

Then we use the quasi-uniformity of the mesh 7Ty, the trace inequality (32) and two times the
inverse inequality (11) to obtain:

V2, = VM3 + Il 2ol
< VM2 o+ Cloh) M kR
< Ch VP2 o + Clyoh) LIV loalvh e
< ChY VM2 o + Clyo) h 2 V3 g
< CA+y MR 2" R g,
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We reinject this estimate into (31) to end up with bounding from below | M"v"||.,, :

h2
—1 thHWh'

M v
MOV, -

Vv

Cp

This last inequality can be rewritten as

||Vh||7h < C’p_l(1+fy_1)h_2
MV, — 0 '

Combined with (30), this ends the proof. O
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