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Abstract: In this paper, we develop and analyze a finite element fictitious domain approach
based on Nitsche’s method for the approximation of frictionless contact problems of two de-
formable elastic bodies. In the proposed method, the geometry of the bodies and the boundary
conditions, including the contact condition between the two bodies, are described independently
of the mesh of the fictitious domain. We prove that the optimal convergence is preserved. Nu-
merical experiments are provided which confirm the correct behavior of the proposed method.

1 Introduction

In the vast majority of finite element software, the contact conditions between deformable solids
are taken into account through the introduction of Lagrange multipliers and/or penalization
terms. The multipliers, which generally approximate the contact stresses, represent some addi-
tional unknowns. The approximated problem is then solved in a coupled way or iteratively on
the multiplier using Uzawa’s algorithm (see e.g. [27]). Recently in [5, 6], it has been proposed
an extension to the contact conditions of Nitsche’s method [24, 11, 17] which was originally ded-
icated to Dirichlet’s condition. This method combines the advantages of both the penalty and
Lagrange multiplier methods since it remains consistent, optimal and avoid the use of multipliers.

In a fictitious domain framework, this paper aims to adapt Nitsche’s method to the case
of frictionless contact of two elastic solids with the small deformations hypothesis. Frictionless
contact is considered to keep the presentation as simpler as possible. However, the analysis
extends without additional difficulties to the case of Tresca friction, in a similar way as in [7].
One of the advantages of the fictitious domain approach comes from the possibility to work
with structured meshes regardless of the complexity of the geometry of the bodies and of the
potential contact zone. This approach is particularly advantageous in the case of free boundary
problems such as shape optimization and fluid-structure interaction. In that case, it prevents the
consecutive remeshing which can be very costly, in particular for three-dimensional problems,
and which may also generates some instabilities. More generally, a fictitious domain method
may be used in the presence of complex or moving geometries to avoid meshing them.

The fictitious domain approach we consider in this work is the one using “cut elements” which
is currently a subject of growing interest and is closely related to XFem approach introduced in
[21] and widely studied since then (see for instance [20, 16, 26, 4, 23]). The case of a body with a
Dirichlet (or transmission) condition with the use of cut-elements is studied in [16] when Lagrange
multipliers and a Barbosa-Hughes stabilization are used, and in [14, 4, 1] when Nitsche’s method
and an additional interior penalty stabilization are considered. This fictitious domain method is

∗Université de Lyon, CNRS, INSA-Lyon, ICJ UMR5208, F-69621, Villeurbanne, France. email:
Mathieu.Fabre@insa-lyon.fr

†Université de Lyon, CNRS, INSA-Lyon, ICJ UMR5208, F-69621, Villeurbanne, France. email:
Jerome.Pousin@insa-lyon.fr

‡Université de Lyon, CNRS, INSA-Lyon, ICJ UMR5208, LaMCoS UMR5259, F-69621, Villeurbanne, France.
email: Yves.Renard@insa-lyon.fr

1



to be compared with more classical strategies (see [19, 13, 12, 25, 2] and the references therein)
where the elements are not cut. These more classical strategies offer the possibility to leave
unchanged the stiffness matrix of the problem. The boundary conditions are then prescribed via
additional penalty and Lagrange multiplier terms. However, in classical strategies, it is often
quite difficult to obtain an optimal method regarding the convergence order which easily takes
into account both Dirichlet and Neumann conditions. The Fictitious domain method with cut
elements allows to consider both Dirichlet and Neumann conditions in a rather standard way.
The main price to pay is the adaptation of integration methods on cut elements.

In that context of cut elements, our study is focused on the case of two bodies with Nitsche’s
method for both the Dirichlet condition and the frictionless contact condition.

The outline of the paper is the following. In Section 2, we introduce the contact problem and
the fictitious domain situation. Then, in Section 3, the finite element approximation with the
use of Nitsche’s method is built. In particular, a specific, parameter free stabilization technique
is introduced which is necessary to guarantee the optimal rate of convergence. The properties
of the approximated problem are described in Section 4 including the existence and uniqueness
of a solution to the discrete problem, the consistency and the a priori error analysis. Finally,
in Section 5, some two and three-dimensional Hertz-type numerical experiments are presented
which illustrate the optimality regarding the convergence of the method.

2 The unilateral contact problem in a fictitious domain frame-
work

An example of fictitious domain situation is illustrated in Figure 1. Let Ωi, 1 6 i 6 2, be two
possibly overlapping domains with piecewise C 1 boundaries included in Rd, d = 2 or 3, repre-
senting the reference configurations of two elastics bodies. Let Ω be a simple shaped polygonal
fictitious domain (typically allowing the use of a structured mesh) containing both Ω1 and Ω2.
The boundary Γ1 of Ω1 (respectively Γ2 of Ω2) is divided into three non overlapping parts: Γ1,C

the slave potential zone of contact with meas(Γ1,C) > 0 (respectively Γ2,C with meas(Γ2,C) > 0);
Γ1,N the Neumann part (respectively Γ2,N ) and Γ1,D the Dirichlet part with meas(Γ1,D) > 0
(respectively Γ2,D with meas(Γ2,D) > 0).

Γ1

Ω1

n
gΓ2

Ω2Γ2,D

Ω

Γ2,C

Γ1,C

Γ1,N

Γ1,D

Γ2,N

Figure 1: Example of fictitious domain situation for a contact problem between two elastics
bodies with an example of structured mesh.
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The two elastic bodies are subjected to volume forces f = (f1, f2) on Ω1 × Ω2, to surface
loads ` = (`1, `2) on Γ1,N × Γ2,N and satisfy non homogeneous boundary Dirichlet conditions
on Γ1,D × Γ2,D, the displacement being prescribed to the given value uD = (u1,D, u2,D). We
assume small elastic deformation for the two bodies. The linearized strain tensor field is given

by ε(v) =
1

2
(∇v + ∇vT ) and the stress tensor field σ = (σij)16i,j62 is given by σ(v) = Aε(v)

where A is the fourth order symmetric elasticity tensor satisfying the usual uniform ellipticity
and boundedness properties. Consequently, the displacement (u1, u2) on Ω1 × Ω2 has to satisfy
the following set of equations, apart for the contact condition which will be described later:

Find u = (u1, u2) satisfying
−divσ(ui) = fi in Ωi,
σ(ui) = Aε(ui) in Ωi,

ui = ui,D on Γi,D,
σ(ui)ni = `i on Γi,N .

(1)

Now, concerning the contact conditions, let us define Π the orthogonal projection from the slave
boundary Γ1,C on the master boundary Γ2,C :

Π :
Γ1,C → Γ2,C

x 7→ Π(x).
(2)

In order to simplify the mathematical analysis, the operator Π is assumed to be a C 1 one to one
correspondence on Π(Γ1,C) (this hypothesis is satisfied, for instance, when Γi,C are convex and
C 1 for i ∈ {1, 2}). The outward unit normal vector n for the contact condition is chosen to be
the one of Γ2,C :

n :
Γ1,C → Rd

x 7→ n2(Π(x)).

The initial gap g between Γ1,C and Γ2,C is defined to be the following distance function:

g :
Γ1,C → R
x 7→ (x−Π(x)) · n.

For (v1, v2) a displacement field defined on Ω1 × Ω2, the normal jump is defined on the slave
boundary Γ1 for the normal displacement as follows:

[[v · n]] = (v2 ◦Π− v1) · n.

Concerning the normal stress, we define

σ(v1)n1 = −σn(v1)n+ σt(v1) with σn(v1) = −σ(v1)n1 · n

and

σ(v2 ◦Π)n2 ◦Π = σn(v2 ◦Π)n+ σt(v2 ◦Π) with σn(v2 ◦Π) = σ(v2 ◦Π)n2 ◦Π · n.

This allows to define the normal stress jump as

[[σ(u)n]] = σ(u1)n1 + σ(u2 ◦Π)n2 ◦Π JΠ,

with JΠ the Jacobian of the transformation Π. This latter expression is derived accordingly
with Newton’s second law (action-reaction principle) which is expressed on arbitrary elementary
surfaces (see Figure 2):

∀ω ⊂ Γ1,C ,

∫
ω
σ(u1)n1 dΓ = −

∫
Π(ω)

σ(u2)n2dΓ = −
∫
ω
σ(u2 ◦Π)n2 ◦Π JΠdΓ.
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Figure 2: An example illustrating the action-reaction principle between the two bodies.

These jumps being defined, the unilateral frictionless contact conditions can be expressed on
the slave boundary Γ1,C as follows:

[[u · n]] 6 g (i),
σn(u1) 6 0 (ii),

σn(u1)([[u · n]]− g) = 0 (iii),
[[σ(u)n]] = 0 (iv),
σt(u1) = 0 (v).

(3)

Now, let us introduce the Hilbert space V and the convex cone K of admissible displacements:

V = H1(Ω1)
d ×H1(Ω2)

d,

K = {v = (v1, v2) ∈ V | v1 = u1,D on Γ1,D and v2 = u2,D on Γ2,D | [[v · n]]− g 6 0 on Γ1,C}.

We assume that f belongs to L2(Ω1)
d × L2(Ω2)

d, ` belongs to L2(Γ1,N )d × L2(Γ2,N )d and uD

belongs to H
3
2 (Γ1,D)

d ×H
3
2 (Γ2,D)

d. We define the bilinear and the linear forms a(., .) and L(.)
by

a(u, v) =
∑
i=1,2

∫
Ωi

σ(ui) : ε(vi) dΩ, L(v) =
∑
i=1,2

∫
Ωi

fivi dΩ+
∑
i=1,2

∫
Γi,N

`ivi dΓ.

The weak formulation of Problem (1)-(3) as a variational inequality (see [10, 15, 18, 28]), reads:®
Find u ∈ K such that
a(u, v − u) > L(v − u) ∀v ∈ K.

(4)

Stampacchia’s Theorem ensures that Problem (4) admits a unique solution.

3 A Nitsche-based finite element approximation

3.1 Nitsche’s formulation

In this section, we assume that both the solution u and the test functions v are sufficiently
regular (for instance, (u, v) ∈ (H3/2+ν(Ω1)

d ×H3/2+ν(Ω2)
d)2 for ν > 0). From the equilibrium

equations and Green’s formula, we obtain:

a(u, v)−
∑
i=1,2

∫
Γi,D

σn(ui)ni · vi dΓ−
∫
Γ1,C

σn(u1)[[v · n]] dΓ = L(v).
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In order to build Nitsche’s formulations for the contact and Dirichlet conditions, the contact
conditions are expressed in an equivalent way by extending to our case the formulation given in
[5, 6]. Denoting z+ = max(z, 0) and for an arbitrary γ > 0, the contact conditions (3) on Γ1,C

can be equivalently rewritten:

σn(u1) = −1

γ
[[[u · n]]− g − γσn(u1)]+(5)

Let θ ∈ R be a fixed parameter. This additional parameter for Nitsche’s method determines the
symmetry properties (see remarks (3.2) and [5, 6]). Then by using (5) and [[v · n]] = ([[v · n]] −
θγσn(v)) + θγσn(v)), we obtain:

a(u, v)−
∫
Γ1,C

θγσn(u1)σn(v1) dΓ−
∑
i=1,2

∫
Γi,D

σn(ui)ni · vi dΓ

+

∫
Γ1,C

1

γ
[[[u · n]]− g − γσn(u1)]+([[v · n]]− θγσn(v1)) dΓ = L(v).

Using contact conditions (3), it holds σn(u1) = σn(u2 ◦ Π) JΠ. In order to ensure the stability,
we introduce a stabilized formulation for elements having a small contribution [14, 4, 16]. We
replace σn(u1) by a convex combination of σn(u1) and σn(u2 ◦Π) JΠ. Namely, we define

σn(u) = tσn(u2 ◦Π) JΠ + (1− t)σn(u1),(6)

for a parameter t ∈ [0, 1] which may be different for an element to an other for the finite element
approximation. Note that a similar approach has been developed in [1] where an optimal choice
of the fixed parameter t ∈ [0, 1] is proposed. We obtain:

a(u, v)−
∫
Γ1,C

θγσn(u)σn(v) dΓ−
∑
i=1,2

∫
Γi,D

σn(u)ni · vi dΓ

+

∫
Γ1,C

1

γ
[[[u · n]]− g − γσn(u)]+([[v · n]]− θγσn(v)) dΓ = L(v).

We did not treat yet the Dirichlet conditions. In order to be coherent with the fictitious
domain approach, we also describe the Dirichlet conditions thanks to Nitsche’s method [14, 4, 17].
Then, writing vi = (vi − θγσ(vi)ni)+ θγσ(vi)ni as in the formulation for the contact conditions,
we deduce:

−
∫
Γi,D

σ(ui)ni · vi dΓ

=

∫
Γi,D

1

γ
(ui − ui,D − γσ(ui)ni) · (vi − γθσ(vi)ni) dΓ−

∫
Γi,D

θγσ(ui)ni · σ(vi)ni dΓ.
(7)

We obtain the following weak formulation:

a(u, v) +

∫
Γ1,C

1

γ
[[[u · n]]− g − γσn(u)]+([[v · n]]− θγσn(v)) dΓ

+
∑
i=1,2

∫
Γi,D

1

γ
(ui − ui,D − γσ(ui)ni) · (vi − γθσ(vi)ni) dΓ

−
∫
Γ1,C

θγσn(u)σn(v) dΓ−
∑
i=1,2

∫
Γi,D

θγσ(ui)ni · σ(vi)ni dΓ = L(v) ∀v ∈ V.

(8)

Finally, defining the bilinear form

Aθγ(u, v) = a(u, v)−
∫
Γ1,C

θγσn(u)σn(v) dΓ−
∑
i=1,2

∫
Γi,D

θγσ(ui)ni · σ(vi)ni dΓ,
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our Nitsche-based method reads:

Aθγ(u, v) +

∫
Γ1,C

1

γ
[[[u · n]]− g − γσn(u)]+([[v · n]]− θγσn(v)) dΓ

+
∑
i=1,2

∫
Γi,D

1

γ
(ui − ui,D − γσ(ui)ni) · (vi − γθσ(vi)ni) dΓ = L(v) ∀v ∈ V.

(9)

3.2 Discrete Nitsche’s formulation

In what follows, Ciarlet’s notations [8] are used. Let Th be a family of triangulations of the
fictitious domain Ω such that Ω =

∪
K∈Th

K. Let hK be the diameter of K ∈ Th and h =
maxK∈Th

hK . The family of triangulations is assumed to be regular, i.e. it exists C > 0 such

that
hK
ρK

6 C where ρK denotes the radius of the ball inscribed in K. We suppose that the mesh

is quasi uniform in the sense that it exists ζ > 0 a constant such that ∀K ∈ Th, hK > ζ h.
Let K̂ be the fixed reference element (a triangle for d = 2, a tetrahedron for d = 3) and let

TK be the geometric transformation which satisfies TK(K̂) = K. The family of triangulations is
supposed affine, i.e. TK reads as

∀K ∈ Th, TK(x̂) = JK x̂+ bK , x̂ ∈ K̂,

where JK ∈ Rd,d is the Jacobian matrix of TK being invertible and bK ∈ Rd. Thus, we have:

|det(JK)| = mes(K)

mes(K̂)
, ‖JK‖ 6 hK/ρK̂ ,

∥∥∥J−1
K

∥∥∥ 6 hK̂/ρK .

Remark 3.1. The family of triangulations is regular and affine, so it holds:

|det(JK)| 6 ChdK , ‖JK‖ 6 ChK ,
∥∥∥J−1

K

∥∥∥ 6 Ch−1
K .

We introduce Uh ⊂ H1(Ω) a family of finite element spaces indexed by h coming from some
order k > 1 finite element method defined on Th. Consequently, we suppose the existence of a
global interpolation operator πh : C 0(Ω) → Uh and a local one πh

K on each element K ∈ Th such
that:

∀u ∈ C 0(Ω), πh(u) K = πh
K(u K) and ∀p ∈ Pk(K), πh

K(p) = p.

We assume that the finite element method satisfies the following classical local interpolation
error estimate for k > l > 0, u ∈ H l+1(Ω):∥∥∥u− πh

Ku
∥∥∥
m,K

6 Chl+1−m |u|l+1,K , with 0 6 m 6 l 6 k.

Note that, in particular, the classical Pk Lagrange finite element method [8] satisfies this estimate.
The approximation spaces for our problem are defined by

V h
1 = (Uh)d Ω1

, V h
2 = (Uh)d Ω2

and V h = (V h
1 × V h

2 ).

In the same way, we define the global operators

Πh
i : Hk+1(Ω)d → V h

i , i = {1, 2} and Πh : Hk+1(Ω)d ×Hk+1(Ω)d → V h.

In order to write a discrete approximation of formulation (9), let us introduce the following
discrete linear operators:

P h
τ :

V h
1 × V h

2 → L2(Γ1,C)
v 7→ [[v · n]]− τσn(v),
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P
h
i,τ :

V h
i → L2(Γi,D)

d

vi 7→ vi − τσ(vi)ni.

Then, a finite element approximation of our Nitsche-based method reads as:

Find uh ∈ V h such that

Aθγ(u
h, vh) +

∫
Γ1,C

1

γ
[P h

γ (u
h)− g]+P

h
θγ(v

h) dΓ

+
∑
i=1,2

∫
Γi,D

1

γ
(P

h
i,γ(u

h
i )− ui,D) · P

h
i,γθ(v

h
i ) dΓ = L(vh) ∀vh ∈ V h.

(10)

In the following, we define γ = γ0hK .

Remark 3.2. The additional parameter θ is aimed to be chosen in [−1, 1]. The following values
of θ are of particular interest: for θ = 1, we recover the symmetric method proposed and analyzed
in [5]; for θ = 0, we recover a non-symmetric version presented in [6] and for θ = −1, we obtain
a skew-symmetric version which has the remarkable property that convergence occurs for any
value of γ0 (see [6]).

3.3 Consistency

The advantage of Nitsche’s method, compared to penalization, is the consistency of the approx-
imation in the following sense.

Theorem 3.3. Let u be the solution to Problem (1)-(3). Assume u is sufficiently regular (typ-
ically, (u1, u2) ∈ H2+ν(Ω1)

d ×H2+ν(Ω2)
d, for ν > 0), then u is also a solution to the discrete

problem (10) replacing uh by u.

Proof. Let u be the solution to (1)-(3) and take vh ∈ V h. We assume u sufficiently regular such
that σn(u) ∈ L2(Γ1,C) and for i = 1, 2, σn(ui) ∈ L2(Γi,D). As a result, P h

θγ(u) ∈ L2(Γ1,C), for

i = 1, 2, P h
i,θγ(ui) ∈ L2(Γi,D) and Aθγ(u, v

h) makes sense. On the one hand, we use the definition
of P h

θγ , P
h
i,θγ , the reformulations (5) and (7) to obtain:

Aθγ(u, v
h) +

∫
Γ1,C

1

γ
[P h

γ (u)− g]+P
h
θγ(v

h) dΓ +
∑
i=1,2

∫
Γi,D

1

γ
(P

h
i,γ(ui)− ui,D) · P

h
i,γθ(v

h
i ) dΓ

= a(u, vh)−
∫
Γ1,C

θγσn(u)σn(v
h) dΓ−

∑
i=1,2

∫
Γi,D

θγσ(ui)ni · σ(vhi )ni dΓ

+

∫
Γ1,C

1

γ
[[[u · n]]− g − γσn(u)]+([[v

h · n]]− θγσn(v
h)) dΓ

+
∑
i=1,2

∫
Γi,D

1

γ
(ui − ui,D − γσ(ui)ni) · (vhi − γθσ(vhi )ni) dΓ

= a(u, vh)−
∫
Γ1,C

θγσn(u)σn(v
h) dΓ +

∫
Γ1,C

1

γ
(−γσn(u))([[v

h · n]]− θγσn(v
h)) dΓ

+
∑
i=1,2

∫
Γi,D

1

γ
(−γσ(ui)ni) · (vhi − γθσ(vhi )ni) dΓ−

∑
i=1,2

∫
Γi,D

θγσ(ui)ni · σ(vhi )ni dΓ

= a(u, vh)−
∫
Γ1,C

σn(u)[[v
h · n]] dΓ−

∑
i=1,2

∫
Γi,D

σ(ui)ni · vhi dΓ

= a(u, vh)−
∫
Γ1,C

σn(u1)[[v
h · n]] dΓ−

∑
i=1,2

∫
Γi,D

σ(ui)ni · vhi dΓ

On the other hand, multiplying by vhi and integrating (1), it holds:

−
∑
i=1,2

∫
Ωi

divσ(ui)vhi dΩ =
∑
i=1,2

∫
Ωi

fiv
h
i dΩ.
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Using Green’s formula, we have:

−
∫
Ωi

divσ(ui)vhi dΩ =

∫
Ωi

σ(ui) : ε(v
h
i ) dΩ−

∫
Γi

σ(ui)ni · vhi dΓ i = 1, 2,

with

−
∫
Γi

σ(ui)ni ·vhi dΓ = −
∫
Γi,D

σ(ui)ni ·vhi dΓ−
∫
Γi,N

σ(ui)ni ·vhi dΓ−
∫
Γi,C

σ(ui)ni ·vhi dΓ i = 1, 2,

−
∫
Γi

σ(ui)ni · vhi dΓ = −
∫
Γi,D

σ(ui)ni · vhi dΓ−
∫
Γi,N

`iv
h
i dΓ−

∫
Γi,C

σ(ui)ni · vhi dΓ i = 1, 2.

Using the one to one correspondence of the projection, it holds:∫
Γ2,C

σ(u2)n2 · vh2 dΓ =

∫
Γ1,C

σ(u2 ◦Π)n2 ◦Π · vh2 ◦Π JΠ dΓ.

Hence

−
∑
i=1,2

∫
Ωi

divσ(ui)vhi dΩ =

∫
Ω1

σ(u1) : ε(v
h
1 ) dΩ+

∫
Ω2

σ(u2) : ε(v
h
2 ) dΩ−

∫
Γ1,C

σ(u1)n1 · vh1 dΓ

−
∫
Γ1,C

σ(u2 ◦Π)n2 ◦Π · vh2 ◦Π JΠ dΓ

−
∑
i=1,2

∫
Γi,D

σ(ui)ni · vhi dΓ−
∫
Γ1,N

`1v
h
1 dΓ−

∫
Γ2,N

`2v
h
2 dΓ.

Using (3), it holds:

−
∑
i=1,2

∫
Ωi

divσ(ui)vhi dΩ = a(u, vh)−
∑
i=1,2

∫
Γi,D

σ(ui)ni · vhi dΓ−
∫
Γ1,N

`1v
h
1 dΓ−

∫
Γ2,N

`2v
h
2 dΓ

−
∫
Γ1,C

σn(u1)[[v
h · n]] dΓ.

So
a(u, vh)−

∑
i=1,2

∫
Γi,D

σn(ui)ni · vhi dΓ−
∫
Γ1,C

σn(u1)[[v
h · n]] dΓ = L(vh).

Which ends the proof. �

Moreover, formulation (9) is formally equivalent to (1) and (3) in the following sense.

Theorem 3.4. Let u ∈ H2(Ω1)
d ×H2(Ω2)

d be a solution to equation (9) then u is a solution to
(1) and (3).

Proof. For u ∈ H2(Ω1)
d ×H2(Ω2)

d a solution to (9) and whatever v ∈ H2(Ω1)
d ×H2(Ω2)

d, it
satisfies: ∫

Ωi

(divσ(ui) + fi)vi dΩ = 0 ∀vi ∈ H2(Ωi)

i.e.
−divσ(ui) = fi a.e. in Ωi, 1 6 i 6 2.

We have, for all v ∈ H2(Ω1)
d ×H2(Ω2)

d:∫
Γ1,C

1

γ
[[[u · n]]− g − γσn(u)]+[[v · n]] dΓ +

∫
Γ1,C

σ(u1)n1 · v1 dΓ +

∫
Γ2,C

σ(u2)n2 · v2 dΓ = 0,

8



∫
Γ1,C

1

γ
[[[u · n]]− g − γσn(u)]+(v1 − v2 ◦Π · ·n) dΓ−

∫
Γ1,C

σn(u1)n · v1 dΓ

+

∫
Γ1,C

σn(u2 ◦Π)n · v2 ◦Π JΠ dΓ = 0.

Hence ∫
Γ1,C

Ä1
γ
[[[u · n]]− g − γσn(u)]+ + σn(u1)

ä
v1 · n dΓ = 0 ∀v1 ∈ H2(Ω1)

and ∫
Γ1,C

Ä1
γ
[[[u · n]]− g − γσn(u)]+ − σn(u2 ◦Π) JΠ

ä
v2 ◦Π · n dΓ = 0 ∀v2 ∈ H2(Ω2).

Hence
1

γ
[[[u · n]]− g − γσn(u)]+ = −σn(u1) a. e. on Ω1,

which is a formulation equivalent to (3). Arguing in the same way as above the Neumann and
Dirichlet conditions are recovered. �

3.4 Stabilization method

A stabilization technique is necessary to control the possible bad quality of σn(uh) on elements
having very small intersection with the real domains. The stabilization used is the one proposed
in [16] which consists in using extension of the normal stress on a neighbor element having a
sufficiently large intersection with the real domain. The advantage of this stabilization technique
is the absence of parameter to fit, except the threshold under which an intersection is considered
to be too small. Note that other stabilization techniques are available, such as the so-called ghost
penalty stabilization considered in [4].

For a given small radius 1 > ρ̂ > 0, let Rρ̂ (respectively Rρ̂) be an operator of approximation
of the normal stress of displacements σn(uh) (respectively σ(uhi )) which we define thereafter. For
K ∈ Th such that K ∩ Γ1,C , we note SK = {K ′ ∈ Th | K ′ ∩ Π(K) 6= ∅}. We note also EK , the
polynomial extrapolation of an element vh ∈ V h define from K to Ω.

We distinguish three cases to define the stabilized operator Rρ̂. Let K ∈ Th and K∩Γ1,C 6= ∅
then:

• if the intersection between K and Ω1 is sufficiently large i.e. it exists ŷK > 0 such that
B(ŷK , ρ̂) ⊂ T−1

K (K ∩ Ω1) (see Figure 3 a)), then Rρ̂(v
h) K = σn(v

h
1 K),

• otherwise, if it exists K̃ ∈ SK intersecting Ω2 such that it exists ŷ
K̃

> 0 with B(ŷ
K̃
, ρ̂) ⊂

T−1

K̃
(K̃ ∩ Ω2) (see Figure 3 b)), then Rρ̂(v

h) K = σn(EK̃
(vh2 ) ◦Π)JΠ,

• otherwise, we suppose that it exits a neighbor element K ′ of K such that it exists ŷK′ > 0
with B(ŷK′ , ρ̂) ⊂ T−1

K′ (K ′ ∩ Ω1) (see Figure 3 c)), then Rρ̂(v
h) K = σn(EK′(vh1 )).

In the same way, we define the operator Rρ̂ on Γi,D for i = 1, 2:

Rρ̂ :

V h
i → L2(Γi,D)

d

vi 7→ Rρ̂(v
h
i ) =

®
σ(vhi )ni ∃ ŷK > 0 such that B(ŷK , ρ̂) ⊂ T−1

K (K ∩ Ω1)
σ(EK′(vhi ))ni otherwise.

Let us introduce the stabilized discrete linear operators:

P h,ρ̂
τ :

V h
1 × V h

2 → L2(Γ1,C)
v 7→ [[v · n]]− τRρ̂(v),

9



KK

Ω1

Γ1,C

Ω2 Ω2

Γ1,C

Ω1

Ω2

c) Otherwisea) If Ω1 ∩K is sufficiently large b) If ∃K̃ ∈ SK such that
Ω2 ∩ K̃ is sufficiently large

K̃

K
Γ2,C

Ω1

Γ2,C

K’
Γ1,C

Γ2,C

Figure 3: The different cases for the definition of Rρ̂.

P
h,ρ̂
i,τ :

V h
i → L2(Γi,D)

d

vi 7→ vi − τRρ̂(vi).

We define the discrete form of Aθγ(., .) as follows:

Ah
θγ(u

h, vh) = a(uh, vh)−
∫
Γ1,C

θγRρ̂(u
h)Rρ̂(v

h) dΓ−
∑
i=1,2

∫
Γi,D

θγRρ̂(u
h
i )Rρ̂(v

h
i ) dΓ.

The stabilized version of our approximation (10) reads:

Find uh ∈ V h such that

Ah
θγ(u

h, vh) +

∫
Γ1,C

1

γ
[P h,ρ̂

γ (uh)− g]+P
h,ρ̂
θγ (vh) dΓ

+
∑
i=1,2

∫
Γi,D

1

γ
(P

h,ρ̂
i,γ (u

h
i )− ui,D) · P

h,ρ̂
i,γθ(v

h
i ) dΓ = L(vh) ∀vh ∈ V h.

(11)

Note that strict consistency of this stabilized discrete problem do not occur. However, we
have the following result.

Theorem 3.5. Let u be the solution to Problem (1)-(3). Assume u is sufficiently regular (typ-
ically, (u1, u2) ∈ H2+ν(Ω1)

d ×H2+ν(Ω2)
d for ν > 0), then u is also a solution to the following

problem: 

a(u, vh)−
∫
Γ1,C

θγσn(u)Rρ̂(v
h) dΓ−

∑
i=1,2

∫
Γi,D

θγσ(ui)ni ·Rρ̂(v
h
i ) dΓ

+

∫
Γ1,C

1

γ
[P h

γ (u)− g]+P
h,ρ̂
θγ (vh) dΓ

+
∑
i=1,2

∫
Γi,D

1

γ
(P

h
i,γ(ui)− ui,D) · P

h,ρ̂
i,γθ(v

h
i ) dΓ = L(vh) ∀vh ∈ V h.

(12)

Proof. The proof can be straightforwardly deduced from the one of Theorem 3.3.

4 Analysis of the Nitsche-based approximation

4.1 Existence and uniqueness Theorems

Theorem 4.1. Let γ = γ0hK . It exists a unique solution vh ∈ V h to the discrete problem (11),
for all γ0 > 0 if θ = −1 and for γ0 > 0 sufficiently small if θ 6= −1.

Proof. The proof is adapted from [6]. The main adaptation concerns the stabilization. For this
purpose, we begin by providing some stability and approximation property for operators Rρ̂ and
Rρ̂ in lemmas 4.2, 4.5 and 4.6. Then a coercivity property is proved in Lemma 4.7. Finally, the
existence and uniqueness result is deduce from the hemi-continuity of the non-linear operator
which corresponds to (11).

10



Lemma 4.2. Let vh ∈ V h, there exists a constant C > 0 independent of h such that∥∥∥Rρ̂(v
h)
∥∥∥2
0,Γ1,C

6 Ch−1(
∥∥∥vh1∥∥∥21,Ω1

+
∥∥∥vh2∥∥∥21,Ω2

) ∀vh ∈ V h.(13)

Proof. First, we define the following matrix norms:

|‖A‖|∞,K̂ = sup
x∈K̂

(|‖A(x)‖|F ) and |‖A‖|2
2,K̂

=

∫
K̂
|‖A(x)‖|2F dx,

where |‖.‖|F is Frobenius’ norm. If v is a fixed vector, we define the translation of a vector
u, by tv(u) = u + v. In the following, the constant C may vary from a line to another but
is independent of h. In order to prove (13), we distinguish the three different cases from the
definition of Rρ̂. First, by using the geometric transformation, the integral is expressed on the
reference element. Then by using the equivalence of the infinity norm with the 2-norm located
on a ball, we are able to deal with the 2-norm located on the current element. Finally by using
the definition of the stress tensor, we obtain the result.

• If K satisfies ∃ ŷK > 0 such that B(ŷK , ρ̂) ⊂ T−1
K (K ∩Ω1), then Rρ̂(u

h) K = σn(u
h
1 K) and

it holds: ∥∥∥Rρ̂(u
h)
∥∥∥2
0,Γ1,C∩K

=

∫
Γ1,C∩K

σn(u
h
1)

2 dΓ.

We define Γ̂1 = T−1
K (Γ1,C ∩ K) and σ̂(u1) = σ(uh1) ◦ TK and n̂1 a unit normal vector on

Γ̂1,C . ∫
Γ1,C∩K

σn(u
h
1)

2 dΓ =

∫
Γ̂1

σ̂n(u1)
2 |det(JK)|

∥∥∥J−1
K n̂1

∥∥∥ dΓ̂

=

∫
Γ̂1

|σ̂(u1)n · n|2 |det(JK)|
∥∥∥J−1

K n̂1

∥∥∥ dΓ̂

6 Chd−1
K |‖σ̂(u1)‖|2∞,K̂

∣∣∣Γ̂1

∣∣∣ .
(14)

because
|σ̂(u1)n · n| 6 |‖σ̂(u1)‖|F ‖n‖22 = |‖σ̂(u1)‖|F .

Moreover,
∣∣∣Γ̂∣∣∣

1
is bounded, indeed the operator TK is a continuous one to one correspon-

dence. Now using the equivalence of norms in P k(K̂)d, we have:

|‖σ̂(u1)‖|2∞,K̂
6 |‖σ̂(u1)‖|2∞,B(ŷK ,2) = |‖σ̂(u1) ◦ t−ŷK‖|

2
∞,B(0,2)

6 C |‖σ̂(u1) ◦ t−ŷK‖|
2
2,B(0,ρ̂) = C |‖σ̂(u1)‖|22,B(ŷK ,ρ̂)

6 C |‖σ̂(u1)‖|22,T−1
K (Ω1∩K))

= C

∫
T−1
K (Ω1∩K)

|‖σ̂(u1)‖|2F dx̂.
(15)

Using the upper bound of
∣∣∣Γ̂1

∣∣∣ and the previous inequalities, it holds:

∫
Γ1,C∩K

Rρ̂(u
h)2 dΓ 6 C

hd−1
K

hdK

∫
T−1
K (Ω1∩K)

|‖σ̂(u1)‖|2F |det(JK)| dx̂

6 Ch−1
K

∫
Ω1∩K

∣∣∣∥∥∥σ(uh1)∥∥∥∣∣∣2F dx

6 Ch−1
K

∫
Ω1∩K

∣∣∣∥∥∥A∇uh1

∥∥∥∣∣∣2
F

dx

6 Ch−1
K

∫
Ω1∩K

∥∥∥∇uh1

∥∥∥2
2

dx.
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• Otherwise, if ∃K̃ ∈ SK such as ∃ ŷ
K̃

> 0 such that B(ŷ
K̃
, ρ̂) ⊂ T−1

K̃
(K̃ ∩ Ω2), then

Rρ̂(v
h) K = σn(EK̃

(vh2 ) ◦Π)JΠ and using the continuous of JΠ i.e. JΠ 6 C, it holds:∥∥∥Rρ̂(u
h)
∥∥∥2
0,Γ1,C∩K

=

∫
Γ1,C∩K

σn(EK̃
(uh2) ◦Π)2 (JΠ)

2 dΓ

6 C

∫
Γ1,C∩K

σn(EK̃
(uh2) ◦Π)2 JΠ dΓ

6 C

∫
Π(Γ1,C∩K)

σn(EK̃
(uh2))

2 dΓ

6 C

∫∪
K∈SK

Γ2,C∩K
σn(EK̃

(uh2))
2 dΓ.

We define Γ̂2 = T−1

K̃
(
∪

K∈SK
Γ2,C ∩K) and σ̂(u2) = σ(uh2)◦TK̃

and n̂2 a unit normal vector

on Γ̂2,C . As previously, we have
∣∣∣Γ̂2

∣∣∣ bounded. In the same way as in (14), we have:∫∪
K∈SK

Γ2,C∩K
σn(EK̃

(uh2))
2 dΓ 6 Chd−1

K̃
|‖σ(û2)‖|2∞,Γ̂2

∣∣∣Γ̂2

∣∣∣ .
Now using the equivalence of norms in P k(K̂)d and in the same way as in (15), we obtain:

|‖σ(û2)‖|2∞,Γ̂2
6 |‖σ(û2)‖|2∞,B(ŷ

K̃
,2 ||Π|| ||T−1

K̃
||)

6 C

∫
T−1

K̃
(Ω1∩K̃)

|‖σ(û2)‖|2F dx̂.

Hence, using the previous inequalities, it holds:∫
Γ1,C∩K

Rρ̂(u
h)2 dΓ 6 C

hd−1

K̃

hd
K̃

∫
T−1

K̃
(Ω1∩K̃)

|‖σ̂(u1)‖|2F
∣∣∣det(J

K̃
)
∣∣∣ dx̂

6 Ch−1

K̃

∫
Ω1∩K̃

∥∥∥∇uh2

∥∥∥2
2

dx.

• Otherwise, we suppose it exits an neighbor element K ′ of K such that ∃ ŷK′ > 0 such that
B(ŷK′ , ρ̂) ⊂ T−1

K′ (K ′ ∩ Ω1), then Rρ̂(v
h) K = σn(EK′(vh1 )). Then, it holds:∥∥∥Rρ̂(u

h)
∥∥∥2
0,Γ1,C∩K

=

∫
Γ1,C∩K

σn(EK′(uh1))
2 dΓ

We define by Γ̂′
1 = T−1

K′ (Γ1,C ∩K) and σ̂′(u1) = σ(uh1)◦TK′ and by n̂1 a unit normal vector
on Γ̂1,C . As previously, we have

∣∣∣Γ̂′
1

∣∣∣ bounded. In the same way as in (14), we have:∫
Γ1,C∩K

σn(EK′(uh1))
2 dΓ =

∫
Γ̂′
1

σ̂′(u1)
2 |det(JK′)|

∥∥∥J−1
K′ n̂1

∥∥∥ dΓ̂

6 Chd−1
K′ |‖σ̂′(u1)‖|2∞,T−1

K′ (K)

∣∣∣Γ̂′
1

∣∣∣ .
Now using the equivalence of norms in P k(K̂)d and in the same way as in (15), we have:∣∣∥∥σ(û′1)∥∥∣∣2∞,T−1

K′ (K) 6
∣∣∥∥σ(û′1)∥∥∣∣2∞,B(ŷK′ ,4)

6 C

∫
T−1
K′ (Ω1∩K′)

∣∣∥∥σ(û′1)∥∥∣∣2F dx̂.

Hence, using the previous inequalities, it holds:∫
Γ1,C∩K

Rρ̂(u
h)2 dΓ 6 C

hd−1
K′

hdK′

∫
T−1
K′ (Ω1∩K′)

∣∣∥∥σ(û′1)∥∥∣∣2F |det(JK′)| dx̂

6 Ch−1
K′

∫
Ω1∩K′

∥∥∥∇uh1

∥∥∥2
2

dx.

12



Finally, by iterating on all the elements K intersecting Γ1,C and using the quasi uniformity
of the mesh, we obtain (13).

�

Remark 4.3. The following more general operator Rρ̂ could be considered:

Rρ̂(u
h) K = (1− t)σn(EK′(uh2 ◦Π))JΠ + tσn(EK′′(uh1)),

with t ∈ [0, 1], the element K ′ being K itself or a neighbor element such as the intersection
between K ′ and Ω2 is large enough and the element K ′′ being K itself or a neighbor element such
as the intersection between K ′′ and Ω1 is large enough. Lemma 4.2 can be easily extended to this
operator. When the elastic coefficients in Ω1 and Ω2 are equal, a proposed optimum choice is
given by (see [1]):

tK =
mes(Ω1 ∩K)

mes(Ω1 ∩K) + mes(Ω2 ∩K)
.

Remark 4.4. When the initial gap between the two bodies vanishes, for ρ̂ sufficiently small
either K ∩Ω1 or K ∩Ω2 is sufficiently large and thus it is not necessary to consider any neighbor
element.

Lemma 4.5. Let uh ∈ V h, Γi,D be Lipschitz continuous then it exits a constant C > 0 indepen-
dent of h such that ∥∥∥Rρ̂(u

h
1)
∥∥∥2
0,Γ1,D

6 Ch−1
∥∥∥uh1∥∥∥21,Ω1

,

and ∥∥∥Rρ̂(u
h
2)
∥∥∥2
0,Γ2,D

6 Ch−1
∥∥∥uh2∥∥∥21,Ω2

.

The proof of this lemma can be straightforwardly deduced from the one of Lemma 4.2.

Now, Let uh, vh ∈ V h and γ = hKγ0 and using lemma 4.2, it holds:∥∥∥γ 1
2Rρ̂(u

h − vh)
∥∥∥2
0,Γ1,C

6 Cγ0
∑
i=1,2

∥∥∥uhi − vhi

∥∥∥2
k+1,Ωi

,

∥∥∥γ 1
2Rρ̂(u

h
i − vhi )

∥∥∥2
0,Γi,D

6 Cγ0
∥∥∥uhi − vhi

∥∥∥2
1,Ωi

.

Due to the know approximation properties of the stabilized operators on regular and quasi-
uniform families of meshes (see [16]), one obtains the following lemma:

Lemma 4.6. For any v ∈ Hk+1(Ω1)
d ×Hk+1(Ω2)

d

∥∥∥Rρ̂(Π
h(v))− σn(v)

∥∥∥2
0,Γ1,C

6 Ch2k−1
∑
i=1,2

‖v‖21,Ωi
,

and ∑
i=1,2

∥∥∥Rρ̂(Π
h
i (vi))− σ(vi)ni

∥∥∥2
0,Γi,D

6 Ch2k−1
∑
i=1,2

‖v‖2k+1,Ωi
.

Let us prove now a coercivity property.

Lemma 4.7. For M > 0 fixed. Then is exists α > 0 such that for all γ with M > γ > 0 the
following coercivity property holds:

a(v, v) +
1

2

∑
i=1,2

∫
Γi,D

γ−1v2i dΓ > α
∑
i=1,2

‖vi‖21,Ωi ∀v ∈ V.(16)
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Proof. We argue by contradiction. It is sufficient to prove the result for γ = M . Suppose there
exists (vn)n∈N ⊂ V such that

∑
i=1,2 ‖vi,n‖21,Ωi

= 1, for n ∈ N, which satisfies

a(vn, vn) +
1

2

∑
i=1,2

∫
Γi,D

M−1v2i,n dΓ 6 1

n
.

Hence, it holds lim
n→+∞

∑
i=1,2

∫
Γi,D

v2i,n dΓ = 0 and lim
n→+∞

a(vn, vn) = 0. From the weak sequential

compactness of the unit ball of V , there exits v ∈ V and a subsequence still denoted by vn which
weakly converges to v. The compact injection of H1 into L2 implies that up to a subsequence,
vn converges to v strongly in L2(Ω1)

d × L2(Ω2)
d. First, we show that v = 0 and then that

vn converges to v strongly in H1(Ω1)
d × H1(Ω2)

d. By using the lower semi-continuity of v 7→∑
i=1,2

∫
Γi,D

v2i,n dΓ, we have
∑
i=1,2

∫
Γi,D

v2i dΓ = 0 with mes(Γi,D) 6= 0. Furthermore, due to the

L2-convergence, one has lim
n→+∞

∑
i=1,2

‖vi,n‖0,Ωi
=

∑
i=1,2

‖vi‖0,Ωi
. Similarly by using the weak lower

semi-continuity of a(., .), we deduce a(v, v) = 0 and using the property of the fourth order tensor
A, it holds:

0 =

∫
Ωi

σ(vi) : ε(vi) dΩ =

∫
Ωi

ε(vi) : ε(vi) dΩ = ‖ε(vi)‖0,Ωi
.

Let us finally show that v = 0. Since, the tensor A is uniformly elliptic, it holds:

a(vn, vn) > C
∑
i=1,2

∫
Ωi

ε(vi,n) : ε(vi,n) dΩ = C
∑
i=1,2

‖ε(vi,n)‖0,Ωi
and lim

n→+∞
a(vn, vn) = 0.

Hence
lim

n→+∞

∑
i=1,2

‖ε(vi,n)‖0,Ωi
=

∑
i=1,2

‖ε(vi)‖1,Ωi
= 0 .

Moreover, thanks to Korn’s inequality (see [9]), it holds:∑
i=1,2

‖ε(vi,n)‖0,Ωi
+

∑
i=1,2

‖vi,n‖0,Γi,D
> C

∑
i=1,2

‖vi,n‖0,Ωi
.

We deduce:
lim

n→+∞

∑
i=1,2

‖vi,n‖1,Ωi
=

∑
i=1,2

‖vi‖1,Ωi
= 0

which contradicts
∑

i=1,2 ‖vi,n‖21,Ωi
= 1. �

Now, in order to get existence and uniqueness of the solution, we will define the following
operator Bh from V h to V h:

(Bhuh, vh)1,Ω = Ah
θγ(u

h, vh) +
∑
i=1,2

∫
Γi,D

1

γ
(P

h,ρ̂
i,γ (u

h
i )− ui,D) · P

h,ρ̂
i,γθ(v

h
i ) dΓ

+

∫
Γ1,C

1

γ
[P h,ρ̂

γ (uh)− g]+P
h,ρ̂
θγ (vh) dΓ ∀uh, vh ∈ V h.

(17)

In the following, we make frequent use of the inequality:

([a]+ − [b]+)(a− b) > ([a]+ − [b]+)
2 > 0 ∀a, b ∈ R.

Now, to get existence and uniqueness of a solution, it is sufficient to prove that Bh is hemi-
continuous (see the Corollary 15 p. 126 of [3]). Bh is hemi-continuous if for all uh, vh ∈ V h the
function

[0, 1] 3 t 7→ (B(uh − tvh), vh)
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is continuous. First, we need to prove Bh is coercive which is a consequence of the previous
lemmas. Then we establish an estimate which will imply the hemi-continuity. Let uh, vh ∈ V h,
it holds:

(Bhuh −Bhvh, uh − vh)1,Ω
= Ah

θγ(u
h − vh, uh − vh)

+
∑
i=1,2

∫
Γi,D

1

γ
(P

h,ρ̂
i,γ (u

h
i )− P

h,ρ̂
i,γ (v

h
i )) · (P

h,ρ̂
i,γθ(u

h
i )− P

h,ρ̂
i,γθ(v

h
i )) dΓ

+

∫
Γ1,C

1

γ
([P h,ρ̂

γ (uh)− g]+ − [P h,ρ̂
γ (vh)− g]+)(P

h,ρ̂
θγ (uh)− P h,ρ̂

θγ (vh)) dΓ

= a(uh − vh, uh − vh)−
∫
Γ1,C

θγRρ̂(u
h − vh)Rρ̂(u

h − vh) dΓ

−
∑
i=1,2

∫
Γi,D

θγRρ̂(u
h
i − vhi ) ·Rρ̂(u

h
i − vhi ) dΓ

+
∑
i=1,2

∫
Γi,D

1

γ
(P

h,ρ̂
i,γ (u

h
i )− P

h,ρ̂
i,γ (v

h
i )) · (P

h,ρ̂
i,γθ(u

h
i )− P

h,ρ̂
i,γθ(v

h
i )) dΓ

+

∫
Γ1,C

1

γ
([P h,ρ̂

γ (uh)− g]+ − [P h,ρ̂
γ (vh)− g]+)(P

h,ρ̂
θγ (uh)− P h,ρ̂

θγ (vh)) dΓ

= I + II + III

with I = a(uh − vh, uh − vh)−
∫
Γ1,C

θγRρ̂(u
h − vh)Rρ̂(u

h − vh) dΓ

−
∑
i=1,2

∫
Γi,D

θγRρ̂(u
h
i − vhi ) ·Rρ̂(u

h
i − vhi ) dΓ,

II =
∑
i=1,2

∫
Γi,D

1

γ
(P

h,ρ̂
i,γ (u

h
i )− P

h,ρ̂
i,γ (v

h
i )) · (P

h,ρ̂
i,γθ(u

h
i )− P

h,ρ̂
i,γθ(v

h
i )) dΓ,

III =

∫
Γ1,C

1

γ
([P h,ρ̂

γ (uh)− g]+ − [P h,ρ̂
γ (vh)− g]+)(P

h,ρ̂
θγ (uh)− P h,ρ̂

θγ (vh)) dΓ.

Now, we need to bound I, II, III from below to prove the coercivity. Using Young’s inequality,
it holds:

III =

∫
Γ1,C

1

γ
([P h,ρ̂

γ (uh)− g]+ − [P h,ρ̂
γ (vh)− g]+)

([[uh.n]]− θγRρ̂(u
h)− g − [[vh.n]] + θγRρ̂(v

h) + g) dΓ

=

∫
Γ1,C

1

γ
([P h,ρ̂

γ (uh)− g]+ − [P h,ρ̂
γ (vh)− g]+)(P

h,ρ̂
γ (uh)− g − P h,ρ̂

γ (vh) + g) dΓ

+(1− θ)

∫
Γ1,C

1

γ
([P h,ρ̂

γ (uh)− g]+ − [P h,ρ̂
γ (vh)− g]+)(γRρ̂(u

h)− γRρ̂(v
h)) dΓ

>
∥∥∥γ− 1

2 ([P h,ρ̂
γ (uh)− g]+ − [P h,ρ̂

γ (vh)− g]+)
∥∥∥2
0,Γ1,C

− |1− θ|
∥∥∥γ− 1

2 ([P h,ρ̂
γ (uh)− g]+ − [P h,ρ̂

γ (vh)− g]+)
∥∥∥
0,Γ1,C

∥∥∥γ 1
2Rρ̂(u

h − vh)
∥∥∥
0,Γ1,C

.

Using Young’s inequality for β > 0:

III > (1− |1− θ|
2β

)
∥∥∥γ− 1

2 ([P h,ρ̂
γ (uh)− g]+ − [P h,ρ̂

γ (vh)− g]+)
∥∥∥2
0,Γ1,C

−|1− θ|β
2

∥∥∥γ 1
2Rρ̂(u

h − vh)
∥∥∥2
0,Γ1,C
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II =
∑
i=1,2

∫
Γi,D

1

γ
(uhi − vhi − γ(Rρ̂(u

h
i )−Rρ̂(v

h
i ))) · (uhi − vhi − γθ(Rρ̂(u

h
i )−Rρ̂(v

h
i ))) dΓ

=
∑
i=1,2

∫
Γi,D

1

γ
(uhi − vhi ) · (uhi − vhi ) dΓ

+
∑
i=1,2

∫
Γi,D

γθ(Rρ̂(u
h
i )−Rρ̂(v

h
i )) · (Rρ̂(u

h
i )−Rρ̂(v

h
i )) dΓ

−(1 + θ)
∑
i=1,2

∫
Γi,D

1

γ
(uhi − vhi ) · (γ(Rρ̂(u

h
i )−Rρ̂(v

h
i ))) dΓ

>
∑
i=1,2

∥∥∥γ− 1
2 (uhi − vhi )

∥∥∥2
Γi,D

+ θ
∑
i=1,2

∥∥∥γ 1
2 (Rρ̂(u

h
i )−Rρ̂(v

h
i ))

∥∥∥2
Γi,D

− |1 + θ|
∑
i=1,2

∥∥∥γ− 1
2 (uhi − vhi )

∥∥∥
Γi,D

∥∥∥γ 1
2 (Rρ̂(u

h
i )−Rρ̂(v

h
i ))

∥∥∥
Γi,D

.

Using Young’s inequality for β′ > 0:

II > (1− |1 + θ|
2β′ )

∑
i=1,2

∥∥∥γ− 1
2 (uhi − vhi )

∥∥∥2
Γi,D

+ (θ − |1 + θ|β′

2
)
∑
i=1,2

∥∥∥γ 1
2 (Rρ̂(u

h
i )−Rρ̂(v

h
i ))

∥∥∥2
Γi,D

.

We deduced from the estimates of II and III that:

(Bhuh −Bhvh, uh − vh)1,Ω

> a(uh − vh, uh − vh)− θ
∥∥∥γ 1

2Rρ̂(u
h − vh)

∥∥∥2
0,Γ1,C

− θ
∑
i=1,2

∥∥∥γ 1
2 (Rρ̂(u

h
i )−Rρ̂(v

h
i ))

∥∥∥2
Γi,D

+(1− |1− θ|
2β

)
∥∥∥γ− 1

2 ([P h,ρ̂
γ (uh,ρ̂)− g]+ − [P h,ρ̂

γ (vh)− g]+)
∥∥∥2
0,Γ1,C

− |1−θ|β
2

∥∥∥γ 1
2Rρ̂(u

h − vh)
∥∥∥2
0,Γ1,C

+(1− |1 + θ|
2β′ )

∑
i=1,2

∥∥∥γ− 1
2 (uhi − vhi )

∥∥∥2
Γi,D

+ (θ − |1 + θ|β′

2
)
∑
i=1,2

∥∥∥γ 1
2 (Rρ̂(u

h
i )−Rρ̂(v

h
i ))

∥∥∥2
Γi,D

> a(uh − vh, uh − vh) + (1− |1 + θ|
2β′ )

∑
i=1,2

∥∥∥γ− 1
2 (uhi − vhi )

∥∥∥2
Γi,D

−|1 + θ|β′

2

∑
i=1,2

∥∥∥γ 1
2 (Rρ̂(u

h
i )−Rρ̂(v

h
i ))

∥∥∥2
Γi,D

− (θ +
|1− θ|β

2
)
∥∥∥γ 1

2Rρ̂(u
h − vh)

∥∥∥2
0,Γ1,C

+(1− |1− θ|
2β

)
∥∥∥γ− 1

2 ([P h,ρ̂
γ (uh)− g]+ − [P h,ρ̂

γ (vh)− g]+)
∥∥∥2
0,Γ1,C

.

If θ = 1 and β′ = 2, we have:

(Bhuh −Bhvh, uh − vh)1,Ω

> a(uh − vh, uh − vh) +
1

2

∑
i=1,2

∥∥∥γ− 1
2 (uhi − vhi )

∥∥∥2
Γi,D

− 2
∑
i=1,2

∥∥∥γ 1
2 (Rρ̂(u

h
i )−Rρ̂(v

h
i ))

∥∥∥2
Γi,D

+
∥∥∥γ− 1

2 ([P h,ρ̂
γ (uh)− g]+ − [P h,ρ̂

γ (vh)− g]+)
∥∥∥2
0,Γ1,C

−
∥∥∥γ 1

2Rρ̂(u
h − vh)

∥∥∥2
0,Γ1,C

.

Thus, if γ0 is sufficiently small and using the coercivity (16) for I and the previous lemma 4.7:

(Bhuh −Bhvh, uh − vh)1,Ω > C
∑
i=1,2

∥∥∥uhi − vhi

∥∥∥2
1,Ωi

.

If θ = −1, choose β = |1−θ|
2 , it holds:

(Bhuh −Bhvh, uh − vh)1,Ω

> a(uh − vh, uh − vh) +
∑
i=1,2

∥∥∥γ− 1
2 (uhi − vhi )

∥∥∥2
Γi,D
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and from the coercivity (16) for I, we obtain:

(Bhuh −Bhvh, uh − vh)1,Ω > C
∑
i=1,2

∥∥∥uhi − vhi

∥∥∥2
1,Ωi

.

If θ 6= 1, we take β = |1−θ|
2 and β′ = |1 + θ|, it holds:

(Bhuh −Bhvh, uh − vh)1,Ω

> a(uh − vh, uh − vh) +
1

2

∑
i=1,2

∥∥∥γ− 1
2 (uhi − vhi )

∥∥∥2
Γi,D

− (1 + θ)2

2

∑
i=1,2

∥∥∥γ 1
2 (Rρ̂(u

h
i )−Rρ̂(v

h
i ))

∥∥∥2
Γi,D

−1

4
(1 + θ)2

∥∥∥γ 1
2Rρ̂(u

h − vh)
∥∥∥2
0,Γ1,C

.

So, using γ0 sufficiently small and using the coercivity (16) for I and previous lemma 4.7, it
holds:

(Bhuh −Bhvh, uh − vh)1,Ω > C
∑
i=1,2

∥∥∥uhi − vhi

∥∥∥2
1,Ωi

.

Now, we prove the hemi-continuity of Bh. Let t, s ∈ [0, 1] and uh, vh ∈ V h, we have:∣∣∣(Bh(uh − tvh)−Bh(uh − svh), vh)1,Ω
∣∣∣

=
∣∣∣a((s− t)vh, vh)− (s− t)

∫
Γ1,C

θγRρ̂(v
h)2 dΓ− (s− t)

∑
i=1,2

∫
Γi,D

θγRρ̂(v
h
i ) ·Rρ̂(v

h
i ) dΓ

+(s− t)
∑
i=1,2

∫
Γi,D

1

γ
P

h,ρ̂
i,γ (v

h
i ) · P

h,ρ̂
i,γθ(v

h
i ) dΓ

+

∫
Γ1,C

1

γ
([P h,ρ̂

γ (uh − tvh)− g]+ − [P h,ρ̂
γ (uh − svh)− g]+)P

h,ρ̂
θγ (vh) dΓ

∣∣∣
6 |s− t| a(vh, vh) + |s− t| |θ|

∥∥∥γ 1
2Rρ̂(v

h)
∥∥∥2
Γ1,C

+ |s− t| |θ|
∑
i=1,2

∫
Γi,D

∣∣∣γ 1
2Rρ̂(v

h
i )

∣∣∣2 dΓ

+ |s− t|
∑
i=1,2

∫
Γi,D

1

γ

∣∣∣P h,ρ̂
i,γ (v

h
i )

∣∣∣ · ∣∣∣P h,ρ̂
i,γθ(v

h
i )

∣∣∣ dΓ

+

∣∣∣∣∣
∫
Γ1,C

1

γ
([P h,ρ̂

γ (uh − tvh)− g]+ − [P h,ρ̂
γ (uh − svh)− g]+)P

h,ρ̂
θγ (vh) dΓ

∣∣∣∣∣
6 |s− t| a(vh, vh) + |s− t| |θ|

∥∥∥γ 1
2Rρ̂(v

h)
∥∥∥2
Γ1,C

+ |s− t| |θ|
∑
i=1,2

∥∥∥γ 1
2Rρ̂(v

h
i )

∥∥∥2
Γi,D

+ |s− t|
∑
i=1,2

∫
Γi,D

1

γ

∣∣∣P h,ρ̂
i,γ (v

h
i )

∣∣∣ · ∣∣∣P h,ρ̂
i,γθ(v

h
i )

∣∣∣ dΓ

+

∫
Γ1,C

1

γ

∣∣∣[P h,ρ̂
γ (uh − tvh)− g]+ − [P h,ρ̂

γ (uh − svh)− g]+
∣∣∣ ∣∣∣P h,ρ̂

θγ (vh)
∣∣∣ dΓ.

For all a, b in R, we have the following estimate:

|[a]+ − [b]+| 6 |a− b| .

So we deduce that∫
Γ1,C

1

γ

∣∣∣[P h,ρ̂
γ (uh − tvh)− g]+ − [P h,ρ̂

γ (uh − svh)− g]+
∣∣∣ ∣∣∣P h,ρ̂

θγ (vh)
∣∣∣ dΓ

6
∫
Γ1,C

1

γ

∣∣∣P h,ρ̂
γ (uh − tvh)− P h,ρ̂

γ (uh − svh)
∣∣∣ ∣∣∣P h,ρ̂

θγ (vh)
∣∣∣ dΓ

6
∫
Γ1,C

1

γ

∣∣∣[[(uh − tvh) · n]]− γRρ̂(u
h − tvh)− [[(uh − svh) · n]] + γRρ̂(u

h − svh)
∣∣∣ ∣∣∣P h,ρ̂

θγ (vh)
∣∣∣ dΓ

6
∫
Γ1,C

1

γ

∣∣∣(s− t)[[vh · n]]− (s− t)γRρ̂(v
h)
∣∣∣ ∣∣∣P h,ρ̂

θγ (vh)
∣∣∣ dΓ

6 |s− t|
∫
Γ1,C

1

γ

∣∣∣[[vh · n]]− γRρ̂(v
h)
∣∣∣ ∣∣∣P h,ρ̂

θγ (vh)
∣∣∣ dΓ.
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Hence ∣∣∣(Bh(uh − tvh)−Bh(uh − svh), vh)1,Ω
∣∣∣

6 |s− t|
(
a(vh, vh) + |θ|

∥∥∥γ 1
2Rρ̂(v

h)
∥∥∥2
Γ1,C

+ |θ|
∑
i=1,2

∥∥∥γ 1
2Rρ̂(v

h
i )

∥∥∥2
Γi,D

+
∑
i=1,2

∫
Γi,D

1

γ

∣∣∣P h,ρ̂
i,γ (v

h
i )

∣∣∣ · ∣∣∣P h,ρ̂
i,γθ(v

h
i )

∣∣∣ dΓ +

∫
Γ1,C

1

γ

∣∣∣P h,ρ̂
γ (vh)

∣∣∣ ∣∣∣P h,ρ̂
θγ (vh)

∣∣∣ dΓ
)
.

Hence Bh is hemi-continuous. This ends the proof of Theorem 4.1. �

4.2 A priori Error analysis

In this section some optimal a priori error estimates are proved for the problem under consider-
ation. The rate of convergence is the same as for standard finite element methods.

Theorem 4.8. Let u be a solution of the stabilized problem (4) belonging to H
3
2
+ν(Ω1)

d ×
H

3
2
+ν(Ω2)

d with ν > 0.

1. If θ 6= 1, we suppose γ0 > 0 is sufficiently small. The solution uh of the stabilized problem
(11) satisfies the following error estimate:

∑
i=1,2

∥∥∥ui − uhi

∥∥∥2
1,Ωi

+

∥∥∥∥γ 1
2 (σn(u) +

1

γ
[P h,ρ̂

γ (uh)− g]+)

∥∥∥∥2
0,Γ1,C

+
∑
i=1,2

∥∥∥γ− 1
2 (P

h
i,γ(ui)− P

h,ρ̂
i,γ (ui))

∥∥∥2
0,Γi,D

6 C inf
vh∈V h

( ∑
i=1,2

∥∥∥ui − vhi

∥∥∥2
1,Ωi

+
∥∥∥γ− 1

2 (u− vh)
∥∥∥2
0,Γ1,C

+
∥∥∥γ 1

2 (σn(u)−Rρ̂(v
h))

∥∥∥2
0,Γ1,C

+
∑
i=1,2

∥∥∥γ− 1
2 (ui − vhi )

∥∥∥2
0,Γi,D

+
∑
i=1,2

∥∥∥γ 1
2 (σ(ui)−Rρ̂(v

h
i ))

∥∥∥2
0,Γi,D

)
(18)

with C > 0 a constant independent of h, u and γ0.

2. If θ = 1, then for all γ0 > 0, the solution uh of the stabilized problem (11) satisfies the
error estimate (18) with C > 0 a constant independent of h and u.

Proof. Let vh ∈ V h, using the coercivity inequality (16) and continuity of the form a(., .) +
1

2

∑
i=1,2

∫
Γi,D

γ−1(.)2 dΓ and Young’s inequality, it holds:

α
∑
i=1,2

∥∥∥ui − uhi

∥∥∥2
1,Ωi

6 a(u− uh, u− uh) +
1

2

∑
i=1,2

∫
Γi,D

γ−1(ui − uhi )
2 dΓ

= a(u− uh, (u− vh) + (vh − uh)) +
1

2

∑
i=1,2

∥∥∥γ− 1
2 (ui − uhi )

∥∥∥2
0,Γi,D

6 C
∑
i=1,2

∥∥∥ui − uhi

∥∥∥
1,Ωi

∥∥∥ui − vhi

∥∥∥
1,Ωi

+ a(u− uh, vh − uh)

+
1

2

∑
i=1,2

∥∥∥γ− 1
2 (ui − uhi )

∥∥∥2
0,Γi,D

6 α

2

∑
i=1,2

∥∥∥ui − uhi

∥∥∥2
1,Ωi

+
C2

2α

∑
i=1,2

∥∥∥ui − vhi

∥∥∥2
1,Ωi

+
1

2

∑
i=1,2

∥∥∥γ− 1
2 (ui − uhi )

∥∥∥2
0,Γi,D

+ a(u, vh − uh)− a(uh, vh − uh).
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Hence
α

2

∑
i=1,2

∥∥∥ui − uhi

∥∥∥2
1,Ωi

6 C2

2α

∑
i=1,2

∥∥∥ui − vhi

∥∥∥2
1,Ωi

+
1

2

∑
i=1,2

∥∥∥γ− 1
2 (ui − uhi )

∥∥∥2
0,Γi,D

+a(u, vh − uh)− a(uh, vh − uh).

(19)

Let u be the solution to (4), it verifies the stabilized formulation (12), thus we have:

a(u, vh − uh)− a(uh, vh − uh) =

∫
Γ1,C

θγ(σn(u)−Rρ̂(u
h))Rρ̂(v

h − uh) dΓ

−
∑
i=1,2

∫
Γi,D

1

γ
(P

h
i,γ(ui)− P

h,ρ̂
i,γ (u

h
i )) · P

h,ρ̂
i,γθ(v

h
i − uhi ) dΓ

+
∑
i=1,2

∫
Γi,D

θγ(σ(ui)ni −Rρ̂(u
h
i )) ·Rρ̂(v

h
i − uhi ) dΓ

+

∫
Γ1,C

1

γ
([P h,ρ̂

γ (uh)− g]+ − [P h
γ (u)− g]+)P

h,ρ̂
θγ (vh − uh) dΓ.

(20)

First, using Cauchy-Schwarz and Young’s inequalities for β1 > 0, it holds:∫
Γ1,C

θγ(σn(u)−Rρ̂(u
h))Rρ̂(v

h − uh) dΓ =

∫
Γ1,C

θγRρ̂(v
h − uh)2 dΓ

+

∫
Γ1,C

θγ(σn(u)−Rρ̂(v
h))Rρ̂(v

h − uh) dΓ

6 θ
∥∥∥γ 1

2Rρ̂(v
h − uh)

∥∥∥2
0,Γ1,C

+ |θ|
∥∥∥γ 1

2 (σn(u)−Rρ̂(v
h))

∥∥∥
0,Γ1,C

∥∥∥γ 1
2Rρ̂(v

h − uh)
∥∥∥
0,Γ1,C

6 θ2

2β1

∥∥∥γ 1
2 (σn(u)−Rρ̂(v

h))
∥∥∥2
0,Γ1,C

+ (θ +
β1
2
)
∥∥∥γ 1

2Rρ̂(v
h − uh)

∥∥∥2
0,Γ1,C

.

(21)

For all a, b ∈ R, we have the following estimate:

(22) ([a]+ − [b]+)(b− a) 6 −([a]+ − [b]+)
2.

Then, set:

τ1 =

∫
Γ1,C

1

γ
([P h,ρ̂

γ (uh)− g]+ − [P h
γ (u)− g]+)P

h,ρ̂
θγ (vh − uh) dΓ

=

∫
Γ1,C

(σn(u) +
1

γ
[P h,ρ̂

γ (uh)− g]+)P
h,ρ̂
θγ (vh − uh) dΓ.

Using Cauchy-Schwarz and Young’s inequalities for β2 > 0 and β3 > 0 and (22), it holds:

τ1 =

∫
Γ1,C

(σn(u) +
1

γ
[P h,ρ̂

γ (uh)− g]+)(P
h
γ (u)− g + g − P h,ρ̂

γ (uh)) dΓ

+

∫
Γ1,C

(σn(u) +
1

γ
[P h,ρ̂

γ (uh)− g]+)(P
h,ρ̂
γ (vh)− P h

γ (u)) dΓ

+(1− θ)

∫
Γ1,C

(σn(u) +
1

γ
[P h,ρ̂

γ (uh)− g]+)γRρ̂(v
h − uh) dΓ

6 −
∥∥∥∥γ 1

2 (σn(u) +
1

γ
[P h,ρ̂

γ (uh)− g]+)

∥∥∥∥2
0,Γ1,C

+

∥∥∥∥γ 1
2 (σn(u) +

1

γ
[P h,ρ̂

γ (uh)− g]+)

∥∥∥∥
0,Γ1,C

∥∥∥γ− 1
2 (P h,ρ̂

γ (vh)− P h
γ (u))

∥∥∥
0,Γ1,C

+ |1− θ|
∥∥∥∥γ 1

2 (σn(u) +
1

γ
[P h,ρ̂

γ (uh)− g]+)

∥∥∥∥
0,Γ1,C

∥∥∥γ 1
2Rρ̂(v

h − uh)
∥∥∥
0,Γ1,C

6
(
− 1 +

1

2β2
+

|1− θ|
2β3

) ∥∥∥∥γ 1
2 (σn(u) +

1

γ
[P h,ρ̂

γ (uh)− g]+)

∥∥∥∥2
0,Γ1,C

+
β2
2

∥∥∥γ− 1
2 (P h,ρ̂

γ (vh)− P h
γ (u))

∥∥∥2
0,Γ1,C

+
|1− θ|β3

2

∥∥∥γ 1
2Rρ̂(v

h − uh)
∥∥∥2
0,Γ1,C

.

(23)
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Moreover, set:

τ2 = −
∑
i=1,2

∫
Γi,D

γ−1(P
h
i,γ(ui)− P

h,ρ
i,γ (u

h
i )) · P

h,ρ
i,γθ(v

h
i − uhi ) dΓ

+
∑
i=1,2

∫
Γi,D

θγ(σ(ui)ni −Rρ̂(u
h
i )) ·Rρ̂(v

h
i − uhi ) dΓ

= −
∑
i=1,2

∫
Γi,D

γ−1(ui − uhi ) · (vhi − uhi ) dΓ

+θ
∑
i=1,2

∫
Γi,D

(ui − uhi ) ·Rρ̂(v
h
i − uhi ) dΓ

+
∑
i=1,2

∫
Γi,D

(vhi − uhi ) · (σ(ui)ni −Rρ̂(u
h
i )) dΓ

= −
∑
i=1,2

∥∥∥γ− 1
2 (ui − uhi )

∥∥∥2
0,Γi,D

−
∑
i=1,2

∫
Γi,D

γ−1(ui − uhi ) · (vhi − ui) dΓ

+
∑
i=1,2

∫
Γi,D

(vhi − ui) · (σ(ui)ni −Rρ̂(u
h
i )) dΓ

+
∑
i=1,2

∫
Γi,D

(ui − uhi ) · (σ(ui)ni −Rρ̂(u
h
i )) dΓ

−
∑
i=1,2

∫
Γi,D

(ui − uhi ) · (Rρ̂(v
h
i − uhi )) dΓ

+(1 + θ)
∑
i=1,2

∫
Γi,D

(ui − uhi ) · (Rρ̂(v
h
i − uhi )) dΓ

= −
∑
i=1,2

∥∥∥γ− 1
2 (ui − uhi )

∥∥∥2
0,Γi,D

−
∑
i=1,2

∫
Γi,D

γ−1(vhi − ui) · (P
h
i,γ(ui)− P

h,ρ
i,γ (u

h
i )) dΓ

+
∑
i=1,2

∫
Γi,D

(ui − uhi ) · (σ(ui)ni −Rρ̂(v
h
i )) dΓ

+(1 + θ)
∑
i=1,2

∫
Γi,D

(ui − uhi ) · (Rρ̂(v
h
i − uhi )) dΓ

Using Young’s inequality for β4 > 0, it holds:

−
∑
i=1,2

∫
Γi,D

γ−1(vhi − ui) · (P
h
i,γ(ui)− P

h,ρ
i,γ (u

h
i )) dΓ

6 β4
2

∑
i=1,2

∥∥∥γ− 1
2 (vhi − ui)

∥∥∥2
0,Γi,D

+
1

2β4

∑
i=1,2

∥∥∥γ− 1
2 (P

h
i,γ(ui)− P

h,ρ
i,γ (u

h
i ))

∥∥∥2
0,Γi,D

6 β4
2

∑
i=1,2

∥∥∥γ− 1
2 (vhi − ui)

∥∥∥2
0,Γi,D

+
1

β4

∑
i=1,2

∥∥∥γ− 1
2 (ui − uhi )

∥∥∥2
0,Γi,D

+
1

β4

∑
i=1,2

∥∥∥γ 1
2 (σ(ui)ni −Rρ̂(u

h
i ))

∥∥∥2
0,Γi,D

,

(24)

and for β5 > 0∑
i=1,2

∫
Γi,D

(ui − uhi ) · (σ(ui)ni −Rρ̂(v
h
i )) dΓ

6 1

2β5

∑
i=1,2

∥∥∥γ− 1
2 (ui − uhi )

∥∥∥2
0,Γi,D

+
β5
2

∑
i=1,2

∥∥∥γ 1
2 (σ(ui)ni −Rρ̂(v

h
i ))

∥∥∥2
0,Γi,D

,
(25)

and for β6 > 0

(1 + θ)
∑
i=1,2

∫
Γi,D

(ui − uhi ) · (Rρ̂(v
h
i − uhi )) dΓ

6 |1 + θ|
2β6

∑
i=1,2

∥∥∥γ− 1
2 (ui − uhi )

∥∥∥2
0,Γi,D

+
β6 |1 + θ|

2

∑
i=1,2

∥∥∥γ 1
2 (Rρ̂(v

h
i − uhi ))

∥∥∥2
0,Γi,D

.
(26)
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Using inequalities (24), (25) and (26) in τ2 +
1

2

∑
i=1,2

∥∥∥γ− 1
2 (ui − uhi )

∥∥∥2
0,Γi,D

, it holds:

τ2 +
1

2

∑
i=1,2

∥∥∥γ− 1
2 (ui − uhi )

∥∥∥2
0,Γi,D

6
(
− 1

2
+

1

β4
+

1

2β5
+

|1 + θ|
2β6

) ∑
i=1,2

∥∥∥γ− 1
2 (ui − uhi )

∥∥∥2
0,Γi,D

+
β4
2

∑
i=1,2

∥∥∥γ− 1
2 (vhi − ui)

∥∥∥2
0,Γi,D

+
1

β4

∑
i=1,2

∥∥∥γ 1
2 (σ(ui)ni −Rρ̂(u

h
i ))

∥∥∥2
0,Γi,D

+
β5
2

∑
i=1,2

∥∥∥γ 1
2 (σ(ui)ni −Rρ̂(v

h
i ))

∥∥∥2
0,Γi,D

+
β6 |1 + θ|

2

∑
i=1,2

∥∥∥γ 1
2 (Rρ̂(v

h
i − uhi ))

∥∥∥2
0,Γi,D

.

(27)

Gathering (20), (21), (23) and (27) in (19), it holds:

α

2

∑
i=1,2

∥∥∥ui − uhi

∥∥∥2
1,Ωi

6 C2

2α

∑
i=1,2

∥∥∥ui − vhi

∥∥∥2
1,Ωi

+
θ2

2β1

∥∥∥γ 1
2 (σn(u)−Rρ̂(v

h))
∥∥∥2
0,Γ1,C

+
Ä
θ +

β1
2

|1− θ|β3
2

ä ∥∥∥γ 1
2Rρ̂(v

h − uh)
∥∥∥2
0,Γ1,C

+
(
− 1 +

1

2β2
+

|1− θ|
2β3

) ∥∥∥∥γ 1
2 (σn(u) +

1

γ
[P h,ρ

γ (uh)− g]+)

∥∥∥∥2
0,Γ1,C

+
β2
2

∥∥∥γ− 1
2 (P h,ρ

γ (vh)− P h
γ (u))

∥∥∥2
0,Γ1,C

+
(
− 1

2
+

1

β4
+

1

2β5
+

|1 + θ|
2β6

) ∑
i=1,2

∥∥∥γ− 1
2 (ui − uhi )

∥∥∥2
0,Γi,D

+
β4
2

∑
i=1,2

∥∥∥γ− 1
2 (vhi − ui)

∥∥∥2
0,Γi,D

+
1

β4

∑
i=1,2

∥∥∥γ 1
2 (σ(ui)ni −Rρ̂(u

h
i ))

∥∥∥2
0,Γi,D

+
β5
2

∑
i=1,2

∥∥∥γ 1
2 (σ(ui)ni −Rρ̂(v

h
i ))

∥∥∥2
0,Γi,D

+
β6 |1 + θ|

2

∑
i=1,2

∥∥∥γ 1
2 (Rρ̂(v

h
i − uhi ))

∥∥∥2
0,Γi,D

.

(28)

Using lemmas 4.2 and 4.5, we obtain:∥∥∥γ 1
2Rρ̂(v

h − uh)
∥∥∥2
0,Γ1,C

6 C1γ0
∑
i=1,2

∥∥∥vhi − uhi

∥∥∥2
1,Ωi

6 2C1γ0
Ä ∑
i=1,2

∥∥∥vhi − ui
∥∥∥2
1,Ωi

+
∑
i=1,2

∥∥∥ui − uhi

∥∥∥2
1,Ωi

ä
,

∑
i=1,2

∥∥∥γ 1
2Rρ̂(v

h
i − uhi )

∥∥∥2
0,Γi,D

6 C2γ0
∑
i=1,2

∥∥∥vhi − uhi

∥∥∥2
1,Ωi

6 2C2γ0
Ä ∑
i=1,2

∥∥∥vhi − ui
∥∥∥2
1,Ωi

+
∑
i=1,2

∥∥∥ui − uhi

∥∥∥2
1,Ωi

ä
,

and we know∥∥∥γ− 1
2P h,ρ

γ (vh)− P h
γ (u)

∥∥∥2
0,Γ1,C

6 2
∥∥∥γ− 1

2 (vh − u)
∥∥∥2
0,Γ1,C

+ 2
∥∥∥γ 1

2 (Rρ̂(v
h)− σn(u))

∥∥∥2
0,Γ1,C

,
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and using Young’s inequality for β > 0, it holds:

−
∑
i=1,2

∥∥∥γ− 1
2 (ui − uhi )

∥∥∥2
0,Γi,D

6 −(1− 1

β
)
∑
i=1,2

∥∥∥γ 1
2σ(ui)ni −Rρ̂(u

h
i )
∥∥∥2
0,Γi,D

−(1− β)
∑
i=1,2

∥∥∥γ− 1
2P

h
γ(u)− P

h,ρ
γ (uh)

∥∥∥2
0,Γi,D

.
(29)

Let θ ∈ R be fixed, if β2, β3, β4, β5 and β6 are chosen sufficiently large such that:

−1 +
1

2β2
+

|1− θ|
2β3

< −1

2
,

−1

2
+

1

β4
+

1

2β5
+

|1 + θ|
2β6

< −1

4
.

And if γ0 is sufficiently small and β < 1, we get the inequality (18).

In the case θ = −1, thanks to (28), it holds:

α

2

∑
i=1,2

∥∥∥ui − uhi

∥∥∥2
1,Ωi

6 C2

2α

∑
i=1,2

∥∥∥ui − vhi

∥∥∥2
1,Ωi

+
1

2β1

∥∥∥γ 1
2 (σn(u)−Rρ̂(v

h))
∥∥∥2
0,Γ1,C

+(−1 +
β1
2

+ β3)
∥∥∥γ 1

2Rρ̂(v
h − uh)

∥∥∥2
0,Γ1,C

+
(
− 1 +

1

2β2
+

1

β3

) ∥∥∥∥γ 1
2 (σn(u) +

1

γ
[Pγ(u

h)− g]+)

∥∥∥∥2
0,Γ1,C

+
β2
2

∥∥∥γ− 1
2P h,ρ

γ (vh)− P h
γ (u)

∥∥∥2
0,Γ1,C

+
(
− 1

2
+

1

β4
+

1

2β5

) ∑
i=1,2

∥∥∥γ− 1
2 (ui − uhi )

∥∥∥2
0,Γi,D

+
β4
2

∑
i=1,2

∥∥∥γ− 1
2 (vhi − ui)

∥∥∥2
0,Γi,D

+
1

β4

∑
i=1,2

∥∥∥γ 1
2 (σ(ui)ni −Rρ̂(u

h
i ))

∥∥∥2
0,Γi,D

+
β5
2

∑
i=1,2

∥∥∥γ 1
2 (σ(ui)ni −Rρ̂(v

h
i ))

∥∥∥2
0,Γi,D

.

(30)

Let η1 > 0 and η2 > 0, we take β1 = 2η1, β2 = 1 + 1/η1, β3 = 1 + η1, β4 = 2(1 + η2),
β5 = 2(1 + 1/η2), then it holds:

α

2

∑
i=1,2

∥∥∥ui − uhi

∥∥∥2
1,Ωi

6 C2

2α

∑
i=1,2

∥∥∥ui − vhi

∥∥∥2
1,Ωi

+
1

4η1

∥∥∥γ 1
2 (σn(u)−Rρ̂(v

h))
∥∥∥2
0,Γ1,C

+ 2η1
∥∥∥γ 1

2Rρ̂(v
h − uh)

∥∥∥2
0,Γ1,C

− η1
2(1 + η1)

∥∥∥∥γ 1
2 (σn(u) +

1

γ
[Pγ(u

h)− g]+)

∥∥∥∥2
0,Γ1,C

+
1 + η1
2η1

∥∥∥γ− 1
2P h,ρ

γ (vh)− P h
γ (u)

∥∥∥2
0,Γ1,C

− η2
4(1 + η2)

∑
i=1,2

∥∥∥γ− 1
2 (ui − uhi )

∥∥∥2
0,Γi,D

+(1 + η2)
∑
i=1,2

∥∥∥γ− 1
2 (vhi − ui)

∥∥∥2
0,Γi,D

+
1

2(1 + η2)

∑
i=1,2

∥∥∥γ 1
2 (σ(ui)ni −Rρ̂(u

h
i ))

∥∥∥2
0,Γi,D

+(1 + 1/η2)
∑
i=1,2

∥∥∥γ 1
2 (σ(ui)ni −Rρ̂(v

h
i ))

∥∥∥2
0,Γi,D

.
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Using (29) and β =
η2

2 + η2
< 1, we have:

− η2
4(1 + η2)

∑
i=1,2

∥∥∥γ− 1
2 (ui − uhi )

∥∥∥2
0,Γi,D

6 1

2(1 + η2)

∑
i=1,2

∥∥∥γ 1
2σ(ui)ni −Rρ̂(u

h
i )
∥∥∥2
0,Γi,D

− η2
2(1 + η2)(2 + η2)

∑
i=1,2

∥∥∥γ− 1
2P

h
γ(u)− P

h,ρ
γ (uh)

∥∥∥2
0,Γi,D

,

and ∑
i=1,2

∥∥∥γ 1
2σ(ui)ni −Rρ̂(u

h
i )
∥∥∥2
0,Γi,D

6 2
∑
i=1,2

∥∥∥γ 1
2σ(ui)ni −Rρ̂(v

h
i )

∥∥∥2
0,Γi,D

+2
∑
i=1,2

∥∥∥γ 1
2σ(Rρ̂(v

h
i − uhi )

∥∥∥2
0,Γi,D

.

Let γ0 be positive. If we take η1 = α/(32C1γ0) and η2 = C2γ0/(32α), then we get the inequality
(18). This ends the proof of Theorem 4.8 �

Theorem 4.9. Let u be a solution of the variational problem (4). Suppose that u belongs to
(H

3
2
+ν(Ω1))

d × (H
3
2
+ν(Ω2))

d with 1/2 > ν > 0 if k = 1 and with 1 > ν > 0 if k = 2. Then, if
additionally γ0 > 0 is sufficiently small when θ 6= 1, the solution uh of the stabilize problem (10)
satisfies the following a priori error estimate:

∑
i=1,2

∥∥∥ui − uhi

∥∥∥2
1,Ωi

+

∥∥∥∥γ 1
2 (σn(u) +

1

γ
[P h,ρ̂

γ (uh)− g]+)

∥∥∥∥2
0,Γ1,C

+
∑
i=1,2

∥∥∥γ− 1
2 (P

h,ρ̂
i,γ (u

h
i )− P

h
i,γ(ui))

∥∥∥2
0,Γi,D

6 Ch1+2ν
∑
i=1,2

‖u‖23
2
+ν,Ωi

(31)

with C > 0 a constant independent of h and u.

Proof. Now let us establish the inequality (31). Set vhi = Πh
i (ui), we have the following

estimates: ∥∥∥ui −Πh
i (ui)

∥∥∥
m,Ωi

6 Chk+1−m ‖ui‖k+1,Ωi
,

∥∥∥Rρ̂(Π
h(u))− σn(u)

∥∥∥2
0,Γ1,C

6 Ch2k−1 ∑
i=1,2 ‖u‖2k+1,Ωi

,

and ∑
i=1,2

∥∥∥Rρ̂(Π
h
i (ui))− σ(ui)ni

∥∥∥2
0,Γi,D

6 Ch2k−1 ∑
i=1,2 ‖u‖2k+1,Ωi

.

If we replace vhi by Πh
i (ui) in (18), γ = γ0h and we use the previous inequalities, we get (31).

We can write: ∑
i=1,2

∥∥∥ui − uhi

∥∥∥
1,Ωi

+

∥∥∥∥γ 1
2 (σn(u) +

1

γ
[P h,ρ̂

γ (uh)− g]+)

∥∥∥∥
0,Γ1,C

+
∑
i=1,2

∥∥∥γ− 1
2 (P

h,ρ̂
i,γ (u

h
i )− P

h
i,γ(ui))

∥∥∥
0,Γi,D

6 Ch1/2+ν
∑
i=1,2

‖u‖ 3
2
+ν,Ωi

(32)

�
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5 Numerical study

This section is dedicated to some numerical experiments with isoparametric Lagrange P1 or P2
finite element methods. The accuracy of the method is discussed for the different cases with
respect to the finite element used, the mesh size and the value of the parameter γ0. Note that
the following results are obtained without the stabilization introduced in Section 3.4. From a
numerical viewpoint, the stabilization seems not strictly necessary to obtain an optimal rate of
convergence. This has already been observed in a linear case in [16]. The numerical tests in two
dimensions (resp. three dimensions) are performed on a fictitious domain Ω = ]−0.5, 0.5[2 (resp.
Ω = ]− 0.5, 0.5[3 which contains the first body Ω1, a circle of radius 0.25 and center (0, 0) (resp.
a sphere of radius 0.25 and center (0, 0, 0)), and the second Ω2 = ] − 0.5, 0.5[×] − 0.5,−0.25[
(resp. Ω2 = ] − 0.5, 0.5[2×] − 0.5,−0.25[). A Dirichlet condition is prescribed on the bottom of
the rectangle (resp. parallelepiped).

The projector Π is defined from the lower part of the boundary of Ω1 (i.e. for Γ1,C = {x ∈
∂Ω1 : xd ≤ 0}) onto its projection on the top boundary of Ω2. All remaining parts of the
boundaries of Ω1 and Ω2 are considered traction free.

Since no Dirichlet condition is applied on Ω1, the problem is only semi-coercive. In order to
recover the uniqueness of the solution, it is needed to prescribe the horizontal rigid translation
in 2D and two horizontal translations and one rotation in 3D. This is done by prescribing the
displacement on some given convenient points.

We use a generalized Newton’s method to solve the discrete problem (10) (see [27] for more
details) on the finite element library Getfem++1.

Figure 4: 2D numerical reference solution with contour plot of Von Mises stress. Parameters
h = 1/400, γ0 = 1/200, θ = −1 and P2 elements.

For simplicity, we consider a dimensionless situation with Lamé coefficients λ = 1 and µ = 1
and a vertical volume density of force −0.1.

The situation studied is not strictly speaking of Hertz type due to the fact that Ω2 is bounded.
The expression of the exact solution being unknown, the convergence is studied with respect to

1see http://download.gna.org/getfem/html/homepage/
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Figure 5: Cross-section of 3D numerical reference solution with contour plot of Von Mises stress.
Parameters h = 1/30, γ0 = 1/200, θ = −1 and P2 elements.

a reference solution computed with a P2 isoparametric element on a very fine mesh (h = 1/200
in 2D and h = 1/30 in 3D) with the skew-symmetric method θ = −1 (see Figures 4 and 5).

5.1 Numerical convergence in the two dimensional case

We perform a numerical convergence study on the three methods θ = 1, θ = 0 and θ = −1
for a fixed parameter γ0 = 1/200 (chosen small in order to have the convergence for the three
cases). On figures 6, 7 and 8, the relative error in percentage in L2 and H1-norms on each bodies
for P1 Lagrange finite elements are plotted. As expected the optimal convergence is obtained
in H1-norm for all methods in good accordance with Theorem 4.9. The rate of convergence in
L2-norm is slightly sub-optimal on Ω2 if one refers to Aubin-Nitsche lemma in the linear case.
However, such a result is not available for the nonlinear contact problem. Moreover, this slight
sub-optimal convergence may be caused by the Neumann-Dirichlet transition at the bottom of
Ω2.

On figures 9, 10 and 11, the same experiments are reported but for P2 isoparametric Lagrange
finite elements. The convergence rate for the three cases is close to 1.6 on Ω1 and 1.3 on Ω2. This
is also close to optimality if one takes into account that the expected maximal regularity of the
displacement next to the transition between contact and non-contact should be H5/2−η for any
η > 0 (However, this result has only been proved in a scalar case in [22]). Accordingly, one could
expect that the convergence rate in the L2-norm would be close to 2.5. This is approximately
the case with again some sub-optimal rates which may due to the nonlinear characteristic of the
contact condition or to the presence of non-regularities on the transition between the Dirichlet
and the Neumann condition.

5.2 Influence of the parameter γ0

The influence of γ0 on the H1-norm of the error is plotted in Figure 12 for P1 elements and
on Figure 13 for P2 elements. The most affected method is the one for θ = 1. Indeed, it
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Figure 6: Convergence curves in 2D for the method θ = 1, with γ0 = 1/200 and P1 finite
elements for the relative L2-norm of the error (on the left) and the relative H1-norm of the error
(on the right).
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Figure 7: Convergence curves in 2D for the method θ = 0, with γ0 = 1/200 and P1 finite
elements for the relative L2-norm of the error (on the left) and the relative H1-norm of the error
(on the right).
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Figure 8: Convergence curves in 2D for the method θ = −1, with γ0 = 1/200 and P1 finite
elements for the relative L2-norm of the error (on the left) and the relative H1-norm of the error
(on the right).

converges only for γ0 very small. The large oscillation in the error norm comes from the fact
that Newton’s algorithm do not fully converge for all numerical experiments probably because
there is no solution to the discrete problem in some cases. The method for θ = 0 gives a more
regular error with respect to γ0. It is still important to have γ0 small to keep a good solution
but a larger value is allowed. Accordingly to the theoretical result of Theorem 4.9, the influence
of γ0 on the method θ = −1 is more limited. There is only a slight increase of the error for large
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Figure 9: Convergence curves in 2D for the method θ = 1, with γ0 = 1/200 and P2 finite
elements for the relative L2-norm of the error (on the left) and the relative H1-norm of the error
(on the right).
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Figure 10: Convergence curves in 2D for the method θ = 0, with γ0 = 1/200 and P2 finite
elements for the relative L2-norm of the error (on the left) and the relative H1-norm of the error
(on the right).
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Figure 11: Convergence curves in 2D for the method θ = −1, with γ0 = 1/200 and P2 finite
elements for the relative L2-norm of the error (on the left) and the relative H1-norm of the error
(on the right).

values of γ0. Note that the nonlinear discrete system (10) becomes very stiff when γ0 is very
small. Thus, the possibility to have a large γ0 is an advantage.
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Figure 12: Influence of γ0 on the relative H1-norm of the error on Ω1 (on the left) and on Ω2

(on the right) in 2D for h = 1/90 and P1 elements.
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Figure 13: Influence of γ0 on the relative H1-norm of the error on Ω1 (on the left) and on Ω2

(on the right) in 2D for h = 1/90 and P2 elements.

5.3 Numerical experiments in the 3D case

Due to the high number of degrees of freedom in 3D, it obviously has not been possible to
produce convergence curves with a mesh size as small as in 2D. The convergence curves for 3D
are shown in Figures 14, 15 and 16 only for P1 elements. Although we also made some tests
with P2 elements and on the influence of γ0, we do not reproduce them for brevity of the paper.
Indeed, the conclusions that can be drawn are were very similar to the 2D case.
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Figure 14: Convergence curves in 3D for the method θ = 1, with γ0 = 1/100 and P1 finite
elements for the relative L2-norm of the error (on the left) and the relative H1-norm of the error
(on the right).
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Figure 15: Convergence curves in 3D for the method θ = 0, with γ0 = 1/100 and P1 finite
elements for the relative L2-norm of the error (on the left) and the relative H1-norm of the error
(on the right).
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Figure 16: Convergence curves in 3D for the method θ = −1, with γ0 = 1/100 and P1 finite
elements for the relative L2-norm of the error (on the left) and the relative H1-norm of the error
(on the right).

Conclusion

In this paper, we developed a fictitious domain approach for the approximation in small de-
formations of the frictionless contact with nonzero initial gap of two elastic bodies. The main
ingredients are the adaptation of Nitsche’s method for the contact condition introduced in [5, 6]
and the fictitious domain method (inspired by the X-fem) developed in [16] including the stabi-
lization proposed for the elements having a small intersection with the real domains.

Perspective of this works would be to weakened the conditions on the projection operator Π
to include for instance non regular situations such as the one illustrated in Figure 17 where Π is
only piecewise regular. Another possibility would be to consider a non-orthogonal projection.

As already mentioned, the analysis can be easily adapted to Tresca friction similarly as it
has been done in [7] for the non-fictitious domain situation.

From this study we conclude that the presented method allow an optimal approximation
of unilateral contact problems for affine and quadratic finite element methods. The method for
θ = 1 is symmetric which can be an advantage for the numerical solving but requires a very small
parameter γ0 which may lead to a very stiff discrete problem (10). The method for θ = 0 has the
advantage of the simplicity and allows the use of a moderate γ0. Finally, the skew-symmetric
method θ = −1 allows the use of larger value of γ0 which can be a real advantage for the solving
of the discrete problem.
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Figure 17: Example of non regular situation on Γ1,C .
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