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Abstract

The present work aims to look into the contribution of the extended
finite element method for large deformation of cracked bodies in plane
strain approximation. The unavailability of sufficient mathematical
tools and proofs for such problem makes the study exploratory. First,
the asymptotic solution is presented. Then, a numerical analysis is
realized to verify the pertinence of solution given by the asymptotic
procedure, since it serves as an Xfem enrichment basis. finally, a con-
vergence study is carried out to show the contribution of the exploita-
tion of such method.

Key Words: FExtended finite element method, hyperelastic material, crack-
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Introduction

The analysis of crack problems have long be based on the theory of linear
elastic fracture mechanics (LEFM). Nevertheless, the contradiction between
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the singular character of the displacement gradient near the crack tip and
the assumptions of the linear theory, makes this last open to doubt. Other
theories like nonlinear fracture mechanics are then developed to overcome
this limitation, and more interesting results are found due to the emergence
of numerical tools such as the finite element method, which enables the study
of more complicated cases, analytically unresolved. In spite of its advantages,
this method presents many drawbacks since its ability to detect singularities
around the crack tip and geometrical discontinuities is very limited. One of
the most classical strategies to bypass this constraint, is to refine the mesh,
at least locally, and update it for time dependent problems, which makes
computations long and expansive.

The eXtended Finite Element Method (Xfem), was introduced by Moés,
Dolbow and Belytschko in [23, 24| to remove the need of minimal refinement,
and improved later in [30], by the introduction of a technique to represent
the geometry of the crack through some level set functions. Thanks to the
capability of this method to incorporate analytical or sufficiently accurate
numerical solutions as enrichment functions, it was widely employed to study
singular phenomena, especially for nonlinear behavior. In [21], Legrain et al,
used the Xfem to study a crack problem in an incompressible rubber-like
material at large strain. Khoei et al, proposed in [16, 17] its application to
treat contact and interfaces problems for two and three-dimensional large
plasticity deformations, while Elguedj et al, in [12], employed it in order
to study plastic fracture problems based on the Hutchinson-Rice-Rosengren
(HRR) fields in the context of confined plasticity. Other applications of the
method are mentioned in [13].

In the same way, the present study is based on the Xfem method and
aims to analyze a crack problem for nonlinear (hyperelastic) material under
large (plane) strain conditions. Two classical constitutive laws (Blatz-Ko and
Ciarlet-Geymonat) will be used to test the convergence and the accuracy of
the method. The enrichment to be considered is obtained from analytical
analysis consisting to determine expressions of displacement and stress fields
by means of an asymptotic procedure. In many bibliographic references (for
instance |19, 20, 29, 31]), it was shown that the local solution is independent
of the domain geometry, which makes it valid for more general cases.

The first part of the present work, is devoted to present the asymptotic
plane strain analysis of cracked hyperelastic compressible materials. The
procedure is detailed for the Ciarlet-Geymonat material, whereas for the
Blatz Ko material, only necessary results will be recalled from [19]. The
second part is consecrated to present results obtained through the numerical
implementation of the problem with Xfem, and a convergence study is then
carried out. In particular, The sensitivity of the quality of the approximated



solution with respect to the exponent of enrichment function is investigated.

1 Asymptotic analysis of a crack tip problem
in compressible hyperelastic materials

1.1 Formulation of a crack boundary value problem

Consider an isotropic homogeneous compressible hyperelastic cracked body
B which, in undeformed configuration, occupies an infinite cylindrical region
R of the three-dimensional space R?® with

R ={z|(z1,72) €Q, —00<x3<+00}, (1.1)

where x is the position of a particle in the undeformed configuration and {2
denotes a cross section of R (Figure 1). The plane domain 2 of the two-
dimensional space R?, is described both in Euclidean coordinates and polar
coordinates r > 0, 6 € [—m, 7| relatively to the crack tip. Let us consider

oN=I'cUl'pUIl'y

Figure 1: cross section €2 of the cracked domain in undeformed configuration

that the cylindrical body B is subjected to an invertible plane deformation,
the position of a material point z(x1, z2,x3) €  is mapped to y (y1, Y2, Y3)
on *, with Q* the deformed representation of €2,

Yo() =24 +un(z)(a=1,2) Vx e and ys=xs, (1.2)

where u(x) is the displacement vector. Assume that the mapping function
y € Qis, at least, twice continuously differentiable on €2 , i.e. y € C?(9),
and then u € C?(Q). To describe the geometry of deformation, the two-
dimensional deformation gradient F' is introduced,

OYa

F(x)=Vy(z) & Fup= 5_1'6

(o, 5=1,2) on Q. (1.3)



V(.) is the gradient operator with respect to material coordinates.

In order to guarantee that mapping y performs a one-to-one continuously
differentiable deformation, the associated deformation Jacobian J (present-
ing the volume change) must be strictly positive

0<J=detF =X\ <400 on . (1.4)

Here, A1, A2, A3 denote the principal stretches and A3 = 1 for plane deforma-
tion.

For hyperelastic isotropic compressible material, the existence of an elas-
tic potential function W per unit undeformed area is assumed,

Wy(z)) =W (F)=W(I,J), (1.5)
where the invariant [ is defined by:
I=tr (FT"F) =X +}>0. (1.6)
The two-dimensional first Piola-Kirchhoff stress tensor 7 is written:

oW oW oW

=—=J—FT4+2__F Q. .
T=oF J 57 + BT on (1.7)
The two-dimensional Cauchy stress tensor is then deduced,
ow ow ow
=J YT F" ="' F'=——T+2J'"——FF" Q. 1.
oc=J"1 J oF 57 +2J 5] on (1.8)

In absence of body forces, the strong form of the boundary value problem in
undeformed configuration is expressed as follows:

Div(T)=0 on Q,

y(z) =y¢ Vo eTlp,

t(x) =Tn=1t" Vx ey,
™m =0 Vrele.

(1.9)

Where Div(.) is the divergence operator with respect to material coordinates.
The boundary 052 of the cracked body B is partitioned into Dirichlet bound-
ary ['p, Neumann boundary I'y and crack face boundary I'c. The vector n
denotes the unit normal vector to the boundary in the undeformed configura-
tion, while y¢ and ¢" denote the prescribed deformation and traction vectors
in the undeformed configuration, respectively. This last one be characterized
by a combination of modes I and II loadings conditions [29]).



Solving the local crack problem is a quite complicated problem (see [27]).
In this case, the deformation y is supposed to belong to the set of admissible
deformations with finite potential energy,

C={y@)|z e, J=det(F)>0,y(x) =y on I'p, By < +oo}, (1.10)
where the potential energy functional E,.(y(x)) is defined by:

Epr = [ W (y(x))dQ— / thydl' < +oo0. (1.11)
Qo 'y

Condition (1.11) restricts the nature of singularity of the deformation gra-
dient F' near the crack tip, which is due to the body geometrical configura-
tion B. Solving the above boundary value problem is equivalent to find the
minimizer point of the potential energy functional (1.11), when deformation
belongs to the set of admissible deformations C.

Finally, let & be the class of all {y, o, J} satisfying the boundary value
problem. Thus, it is easy to prove that

{y,0,J} C S = {Qy,QoQ",J} C S, V Q a proper order tensor (1.12)

This is ensured by the objectivity of the constitutive equation and by the
form of the boundary conditions. This property will be used later on to
better understand the nature of the local transformation field [29].

1.2 Singular elastostatic field near the crack tips for a
Ciarlet-Geymonat hyperelastic material

1.2.1 Constitutive equations

In this section, The analysis is devoted to the so called Ciarlet-Geymonat
hyperelastic material [8, 14]. Such hyperelastic potential is polyconvex, and
satisfies coerciveness inequality, which is an essential tool in existence theo-
rems [2, 8. For the plane deformation case, this potential takes the following
form:

Wi(I,J)=A(I—2)+ B(I+J*=3)+T(J). (1.13)
The function I is defined by
[:0>0—=T(0) =0 (6% —1) — DiLog(é). (1.14)

In order to ensure the convexity of this function, parameters A;, By, C; and
D; must verify the following conditions (see [8]):

A A A
MaX(O,g—Z)<A1<%, Blzg—Al’ Cl:z_%—i_Al’ and Dlzlz;—lg)’



where A > 0 and g > 0 are Lamé coefficients.

The comprehension of material behavior when subjected to a pure homo-
geneous plane deformation, is necessary for our purpose, before the asymp-
totic formulation of the problem (cf. Knowles and Sternberg [19] and Le
and Stumpf [20]). Thus, consider a state of uni-axial tension parallel to the
ro-axis. The transverse stretch is then parallel to the xq-axis,

Yi = Nixi, (i=1,2) (no sum),

A=A >1and A\ = A()), (1.16)
The stress state corresponding to such deformation is,
055 = 0 (Z 7é j), 011 = 0, 099 — O'QQ(X, )\), on 2. (117)
From (1.8), (1.16) and (1.17), one can easily deduce:
1 oWy
=—— =90 0. 1.18
=N (1.18)

To determine how A()\) behaves asymptotically as A — oo, we take Ay = A

and A\ = A(A) in (1.16). Then, by proceeding to the limit and after keeping
only dominant terms, equation (1.18) gives

2

D
! +o(A™h)  as A — oo (1.19)

=25 e

Accordingly, the transformation Jacobian J takes the form:

2

= +o(1). (1.20)

J= M=M= |
1172 2<Bl+01)

According to this result, we can conclude that J remains constant as A — oo.
This property depends on material behavior through the elastic potential W
[18, 20].

1.2.2 First order asymptotic analysis

Our main objective is to resolve the plane strain problem stated through
(1.9) for a class of hyperelastic materials whose strain energy is given by
(1.13). Then, we assume that solution corresponding to such problem admits
the asymptotic representation:

yi(r,0) = r™u(0) + o(r™), (i =1,2), —-w<0<m,

0<m <1, (1.21)
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where the condition on m; guarantees that transformation y; remains bounded
while stresses become singular near the crack tip. Functions u; and us must
be, at least, twice continuously differentiable and fail to vanish identically on
[—m, 7).

The asymptotic form of the two deformation invariants is established from
the combination of (1.4), (1.6) and (1.21),

=2 Dp@) +o(r?™ D), p(f) = mi(uf +u3) + (i +83), ) o)
J = r2m=Ng(0) + o(r? ™), q(0) = ma(urtip — ugiiy). '
The coefficient ¢(#) relative to the first order expression of J can vanish
identically on [—m,x]. It is then possible that the first non-zero coefficient
may appear at a higher order of r. According to this remark, we will write

J=r"H(0) +o(r'), Hy(0) > 0. (1.23)

The comparison between the two expressions of J, i.e. (1.23) and the second
of (1.22), leads to

Indeed, if I; < 2(m; — 1), then H;(6) = 0, which contradicts (1.23). In order
to determine parameter /; and function H;, we invoke results given in the
case of pure homogeneous plane deformation, and we assume that if A — oo,

we have a local state of uni-axial traction. Consequently, the identification
between (1.20) and (1.23) for § = £ gives

2

D
L . L =0. (1.25)

2(By + ()

H =

Inequality (1.24) transforms through condition m; < 1 to 2(m; — 1) < I5.
Hence, we have ¢(6) = my(uytia — ugti;) = 0. The solution of such equation
is of the form:

In order to determine U(f), we proceed to the resolution of equilibrium equa-
tions given in (1.9), which by means of (1.7), (1.3) and (1.13) leads to

oW,
ol

Ay; =0, (i =1,2) = miu+i=0. (1.27)
The corresponding solution is given by

U(0) = bysin(m40) + bacos(m40); by, by € R. (1.28)



Boundary conditions given in (1.9), together with (1.7), (1.13) and (1.20)
furnish: .
(a3 + a3)U(£m)U(£7) = 0. (1.29)

Therefore, three cases arise: U(£n) = 0, both U(47) and U(+n) vanishes
and U(+7) = 0. The first case means that all points on the crack edge map
the crack tip, which is meaningless from a physical point of view. The second
case implies, through (1.22) that I = 0 for § = %, which is impossible since
I=X+X2>0 () >0). As a result, only the case U(£n) = 0 holds. Thus,
this result together with (1.28) provide the problem global solution

yi(r,0) = a;r™U(0) + o(r™), (i =1,2), —7<60<m,
1
29

my = =, and U(6) = sin(m40). (1.30)

Now, we recall the objectivity principal, especially property given by (1.12),
and with a special choice of the proper orthogonal tensor @ (corresponding
to a rigid body motion), we obtain:

) = [Qul ) @] = |

then, we deduce

e |88

} and a = a; + a3, (1.31)

c|8e |8

{ yi =olr™), (1.32)

ys = asin(my0) + o(r™).

Such solution provides the following weak estimate:
J~o(r ), (1.33)

which presents a number of mathematical and physical inconsistencies and is
therefore inadequate. In fact, the Jacobian J has a degenerate form which re-
flects the degenerate character of the deformation asymptotic approximation
(1.21) which is not locally one-to-one.

1.2.3 Second order asymptotic analysis

The first order approximation to the local deformation in the vicinity of
the crack tips does not constitute an invertible mapping. Consequently, we
must refine (1.21) and (1.22) by developing a two term approximation,

Yo = aor™ U (0)+7"2V, (0)+0 (r™), Vo () € C* ([—7, 7)), Vo #0, (1.34)

J(r,0) = Hy+12+0(r?), Hy(0) € C" ([—m,7]), Hy #0, (1.35)
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with mg > my , Il > 0, V, (0) and H, () are still undetermined, whereas
my , U and H; are now given by (1.25) and (1.30). Using the asymptotic
deformation form (1.34), the deformation invariants J and I become

J = Tm1+m272 (mlU@g + mQU![/2> +o0 (Tm1+m272) on [_77-7 7'('] ) (136)

[ =a*r*™ VG (0)+rmtm 2K (0) 40 (r™T™2)  on [, 7], (1.37)
where
GO =U*0)+mU? @),
K (0) =mmaU (0)x2(0)+ U (6) %2 (6),
X2 (0) =aVi(0) + a2l (),
WQ (9) = a1V2 (9) — a2V1 (0) .

(1.38)

Comparing the Jacobian expressions given by (1.35) and (1.36), one can
deduce that m; + my — 2 < 0. Consequently

mlU![—}Q — mgU!PQ =0 on [—7'(',71'] if mi<me<2-— maq, (139)

mlUlpg—mgU![/g =0 on [—7'(',71'] if my<mo=2-—my. (140)
Boundary conditions can be obtained from (1.39) and (1.40),

Uy (£w) =0 if my < my <2—my, (1.41)
. H .
WQ (j:w) = TTLIU—(ljju)) if mo — 2 — ma. (142)

These boundary conditions are not natural and do not have physical sig-
nificance. They come from the first order differential equations (1.39) and
(1.40). In order to obtain other conditions for the function ¥, (), we re-
call that equilibrium equation is strongly elliptic due to the polyconvexity
of the hyperelastic potential W7y, then the associated boundary value prob-
lem solution has continuous partial derivatives for all orders. So, ¥, () is
C> ([=m, 7)) (cf. [19, 20, 29]). After replacing (1.34) and (1.35) in the equi-
librium field equations and the traction free boundary conditions (1.9), then
recalling that U satisfies relation (1.27), one obtains the eigenvalue problem

mp < mo <2—mj. (143)

X2+ max2 =0 on [—m 7],
)('2 (:|:7T) = O,

The two eigenvalue problems are now well defined for ¥ and y, with ms an
eigenvalue parameter whose minimal value will be considered.



The solution of the eigenvalue problem on Yo, defined by (1.43) with msy
as parameter is given by:

X2 (0) = bicos (maf) on [—m, 7], (1.44)
while (1.39) with condition ¥, in C™ gives
Wy (0) = bU? (0) = bysin® (m10) on [—m, 7] and mg =2m; =1, (1.45)

where by is a real constant.
In the same way, equilibrium equations and boundary conditions furnish
the eigenvalue problem on J:

1
12 =m; = 5, (146)

4 (Al + Bl) (WQ + m%%) + CL2A2 (mlﬁgU — lQHQU) =0 on [—71',7'('] s

1.47)

4(Ay + B) Wy 4+ a’AyHoU =0 at 0 = =, (1.48)
D

where, Ay =2 (B; + C) — F;
i
By combining (1.45), (1.47) and (1.48), one arrives to:
4(A+ B
Hy () = XA Bb ) (1.49)

AQ(ZZ

With a similar analysis to the one developed for the first order asymptotic
procedure, we find that, again, the deformation asymptotic development
(1.34) provides a weak estimate of the deformation Jacobian J. However,
we do not need to refine our approximation by a third order asymptotic
approximation, since it will not be necessary for the Xfem enrichment.

1.3 Singular elastostatic field near the crack tips for a
Blatz-Ko material
This strain energy function was introduced by Blatz and Ko in [4] to

model a highly compressible rubber-like material behavior. Knowles and
Sternberg proposed a corrected form [19]

I
Wo(I,J) = (Al + ByJ + CQﬁ + Dy)", (1.50)

where As, By, Cs, Dy are constants depending on material and n is a hard-
ening parameter.
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In order to satisfy the Baker-Ericksen inequality and the Noll-Coleman
requirement |1, 9, 10], Knowles and Sternberg showed that material param-
eters must verify the following inequalities:

1
Ay >0, 0< By <24, (Cy>0 and 5 <n <o (1.51)

An asymptotic procedure is developed in [19] in order to resolve a problem
similar to that enunciated in the previous section. Only singular part of the
transformation is given here, where the entirely solution is detailed in [19]:

ys(r,0) = r'=m f(0), (—m <0< 7), (1.52)

f(0) being a function depending on 6. It admits the following form:

0712
f(0) =dysin {1 - zlkiio—(jfs) [w(B,n) + kcos 0]*/2,

w(f,n) =[1 — ksin®6]'/? and k = "L,

(1.53)

where, d; designates a constant depending on boundary conditions at infinity.

The singular part of the transformation for Ciarlet-Geymonat material,
relatively to the first order asymptotic development, is of the form y,(r, 0) =
2 as sin(g). Now, let’s remark that, when the Blatz-Ko material parameter
n is equal to 1, the singular transformation for both two materials have the
same asymptotic form, which is given by

ya(r,0) = r%sin(g), (a=1,2), (1.54)

which constitutes a unique Xfem enrichment basis.

2 The Xfem cut-off Method

Many mechanical problems are related to discontinuous geometries (crack,
vertex, hole etc.), which leads in most cases to the presence of singularities
(when stress and strain become unbounded). Therefore, the analysis of such
problems by means of the classical finite element method requires some spe-
cific precautions, like mesh refinement and mesh update (for time dependent
problems), which increases computation time and cost.

The Xfem method (eXtended Finite Element Method) was introduced by
Moés et al in [23], and became rapidly an important element of modeling
in a wide domain of applications due to its interesting advantages. Indeed,
it makes possible the decoupling of mesh and geometrical discontinuities,

11
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Figure 2: Xfem enrichment Figure 3: Cut-off function

and in contrast to other methods like Generalized Finite Element Method or
Partition of Unity Finite Element Method, which adopt a global enrichment
(see [25]), the Xfem enrichment is realized at a local level.

The crack (or geometrical discontinuity in general) is taken into account,
within Xfem framework, by recourse to the following step (or Heaviside like)
function, taking into account the displacement jump between the two sides

of the crack:
1 for (z —x°) -n >0,

H(z) = { —1  elsewhere, (2.1)

where, ¢ denotes the crack position and n the unit outward normal vector
to the crack face.

This enrichment concerns nodes whose corresponding shape functions
supports are entirely cut by the crack (see Figure 2), while nodes of convex
containing the crack tip are enriched by the singular functions basis obtained
from asymptotic analysis. For both Ciarlet-Geymonat and Blatz-Ko cases
(n taken equal to 1 for the second case), this basis takes the form

(F(@)) = (r2sin(3)), (2.2

The Xfem cut-off variant, enables finding satisfactory results, without in-
creasing outstandingly the number of degrees of freedom or deteriorating the
associated linear system condition number. Besides, it consists to make a reg-
ular transition between enriched and non-enriched regions. Then, this variant
avoids limitations met in the case of others variants like Xfem with fixed en-
richment area (see [6]). Note that there exists some other methods proposed
in literature to resolve the conditioning problem inherent to the asymptotic

12



enrichment. In [3], the Xfem implementation was improved by mean of an
additional preconditioning based on a local Cholesky decomposition. In [7],
authors showed the significant contribution of a new strategy of vectorial en-
richment to the improvement of convergence rates and condition number, in
the context of linear fracture mechanics. In [22], a corrected (or a modified)
extended finite element method was proposed for three-dimensional problems
with some remedies for limitations caused by the linearly dependence of the
enrichment functions to the blending elements.

The singular enrichment is realized in a region around the crack tip,
according to a cut-off function y (Figure 3), defined by two parameters
and 1 (ro < r1), such that

x(r) =1 if r < ro,
0 < x(r) <1 ifrog<r<ry, (2.3)
x(r)=0 if r > ry.

Consequently, the Xfem cut-off enriched space has the following form:

V= {v" 0" = Zai%‘ + Z biHpi + cFx; a;, bi,c € R}, (2.4)

iel 1€ly

where, the three terms designate, successively, the classical finite element
method term, the Heaviside enrichment term and finally the singular enrich-
ment term (I being the set of all finite element node indices and Iy the set
of node indices corresponding to the finite element shape functions ¢; having
their support entirely cut by the crack).

3 Numerical tests

For numerical tests, we consider a non-cracked domain {2 being a square
defined by: o
2 =1-0.5,0.5] x [-0.5,0.5].

The crack curve is designated by I'c = [—0.5,0] x {0} (see Figure 4). The
cut-off function is chosen independent of 6 and being the unique C?(0, +00)
piecewise fifth-order polynomial in r verifying

x(r) =1 if r < 0.06,
0 < y(r) <1 if0.06<7r < 0.35,
x(r)=0 if r > 0.35.

The stress state to be considered is an opening mode of the crack. Neu-
mann condition are introduced by a symmetric linear traction forces applied

13
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Figure 4: The triangulation of the non-cracked domain

on the upper and lower boundaries. In order to avoid singular phenomena
which can arise on the Dirichlet-Neumann transition and may perturb the
analysis, only a Neumann boundary condition is considered. The lateral
boundaries are traction free and to prevent rigid body motions the displace-
ment is prescribed on two points in the horizontal axis of symmetry. At the
first point (0.5,0), vertical and horizontal translations are eliminated, and
to prevent rotations, vertical translation are eliminated in the second point
(0.2,0).

The choice of parameters defining the two materials must satisfy the
conditions (1.15) and (1.51). Accordingly, we take for all tests, the above
values:

Ai=B1=1,C;1=3/2,D;=2,n=1,A=pu=1 and 7 = 0.3,

while applied forces F' measure |Fpk|| = 2 for the Blatz-Ko material and
|Fcc|| = 0.5 for the Ciarlet-Geymonat material (all physical quantities are
expressed in the international system of units). Then, they will be reduced to
one per cent for some tests at small deformations. These tests are considered
in order to make a comparison with the linear theory and do not mean that
singularity disappears (it is still present at the crack-tip even in the case of
linear theory).

Now, since exact solution for such problem is not analytically known, the
considered reference solution was obtained by Xfem cut-off method and by
mean of Lagrange elements Py 1 with a very fine mesh (while the approxi-
mated solution is then obtained by means of Pk elements).

14



Figures 5 and 6 show the numerical solution obtained by Xfem method.
The displacement and Von-Mises stress fields distribution are presented for
Blatz-Ko material (a similar form is obtained for Ciarlet-Geymonat material).

0ar 080

06F 0B

0.4r 0.4r
nzr 7 0zr

e 5 -0zt

_.af 4 -0.4F
-0.6F -0.6[

-0.8F -0.81

-05 -03 -0 01 03 05 07 -05 -03 -001 01 03 05 07

Figure 5: Von-Mises stress distribution Figure 6: Displacement field distribution
(Blatz-Ko law, h=1/18) (Blatz-Ko law, h=1/18)

3.1 Numerical study of singularity exponent

The first step of the present analysis, is to verify numerically results
given by the previous asymptotic procedure. The main idea is to find solution
corresponding to the minimum of the system total potential energy £, whose
expression is given by 1.11. Hence, the potential energy is computed as a
function of the singularity exponent o by means of the generic finite element
C++ library Getfem-++!, preprogrammed to allow such operation (a general
idea about Xfem codes implementation and a free C++ based Xfem library
are given in [5]), and for a transformation with the following representation:

ya(r,0) = r* f(0). (3.1)

Let us note here, that there exist other numerical methods to determine
singularities, such as the singularity exponent estimation based on classical
finite element [28] and the adaptive singular element method, proposed in
[11] for linear problems and neo-Hookean materials at large strain.

thttp://download.gna.org/getfem /html /homepage/
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Since the explicit form of the function f(6) is supposed here unknown, we
consider that it is sufficiently smooth, and we proceed to its decomposition
into Fourier series:

f(0) = Z ﬁ%cos(ig) + B?sin(ig). (3.2)

Taking into account the rapid convergence of this series, we keep only a
few terms for the implementation. The enrichment space is then reduced to

{F;} = {r“cos(ig), ro‘sin(ig)}; i=1.7 (3.3)
Figures 7 and 8 show that potential energy first minimum corresponds
to a value of the singularity exponent close to the theoretical one (equal
to 1/2). For Blatz-Ko case, the hardening parameter n was taken equal to
1. Since singularity exponent depends on this parameter, other values of n
was considered to verify the pertinence of results enunciated by (1.52). For
n=0.8(a=0.375) and n = 2 (o« = 0.75), figures 9 and 10 confirm analytical
predictions.
One can remark from figures 7 and 8 that the estimate of the minimum
is not very accurate since the variations near the minimum are small. A
consequence is that a small variation of the singularity exponent « is inca-
pable to change remarkably the solution. An investigation of the influence of
singularity exponent variation on convergence and approximation error will
be presented in the next section.
Still in figures 7 and 8, a second minimum near o = 1 appears, but it is
not necessary to take it into consideration for enrichment, since the classical
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Figure 9: Energy as a function of sin- Figure 10: Energy as a function of sin-
gularity exponent (Blatz-Ko law, n = 0.8, gularity exponent (Blatz-Ko law, n = 2,
h = 1/20) h = 1/20)

finite element shape function can approximate a term 7! in an optimal way. In
the presented case, the mesh is rather coarse, which may explain the presence
of this minimum. Indeed, Figure 11 proves that it disappears when mesh is
slightly refined (h = 1/40), without the need of an extreme refinement. This
does not mean that the minimum depends on mesh size because it is a very
special case.

The same test investigates the existence of higher singularities. Thus, it
consists to fix a first enrichment based on '/2, then checking if any singularity
arises for a > 1. Nevertheless, the method fails to detect any minimum as
shown in Figure 11.

3.2 Convergence study

In order to estimate the contribution of the Xfem enrichment, some con-
vergence tests were established to compare the error in L? and H'-norms
found with the classical finite element method and those relative to the Xfem
Cut-off. First, a Lagrange elements P; were used for both large strain and
small strain cases. Figures 12, 13, 16 and 17 present convergence curves
for the Blatz-Ko case, and Figures 14,15, 18 and 19 are associated to the
Ciarlet-Geymonat case.

A convergence study is also made for Ps elements, and enrichment was
limited to the first singularity expression, since numerical study failed to
detect higher terms (Figure 11). For both two potentials, results are given
by Figures 20, 21, 22 and 23.

Tables (1, 2) summarize main results of the convergence study for studied
potentials. Now, let us recall that the function 72 f(6) belongs to H*/?>~"(12),
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Figure 18: LZ-error for classical fem and
Xfem cut-off, with P; elements (Ciarlet-
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Vn > 0 (see [15] for the linear case). Consequently, the convergence of
classical finite element method is limited to O(h'/?) for the norm of energy
(and O(h) for the L:-norm). This was confirmed through all tests realized
with this method and independently of the type of used elements (P, or Ps).

It was proved in [26] that this Xfem variant gives an optimal convergence
rate for linear problems. However, there is no work in literature generalizing
this result for nonlinear problems. Consequently, it is not guaranteed to find
an optimal convergence in such a case. Nevertheless, optimality was attained
for the norm of energy and for P, elements. A considerable improvement is
noticed for the L?-norm of the errors, which decrease considerably with the
application of the Xfem method. An analogous observation is made for the
small deformations case, with better results for the L?norm and a rapid
convergence of the H'-norm (slightly over optimal).

Concerning P, elements, they lead to a relative optimality, if we suppose
that the next term of the asymptotic development is of the order of 3?2
(as given theoretically). Indeed, the best convergence reachable rate in this
case is limited to h*? for H'-norm and h°/? for L*-norm, which was found
through realized tests.

Elements P, Py
Norm [llze | e | Wllze | (-l
classical fem || 1.0023 | 0.4809 || 1.0046 | 0.4852
xfem cut-off || 1.6215 | 1.0271 || 2.5322 | 1.5521

Table 1: fem and xfem cut-off convergence rates for Blatz-Ko potential

Elements Py Py
Norm ST o S PP [ 7
classical fem || 1.0069 | 0.4834 || 1.0151 | 0.4885
xfem cut-off || 1.6020 | 1.0190 || 2.6410 | 1.3552

Table 2: fem and xfem cut-off convergence rates for Ciarlet-Geymonat potential

In order to verify the influence of the variation of the singularity exponent
in the Xfem enrichment, two tests were realized. The first one (Figure 24)
consists in looking into effects of small variation of a on convergence and
approximation error (only the H'-norm test are presented, since the L*-
norm test leads to the same conclusion). The second test look into the effects
of large variations of a (Figures 25 and 26). In order to make comparison
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Figure 24: Influence of small variations of the singularity exponent on the
H'-norm (Blatz-Ko law)

between all obtained curves coherent, same conditions were guaranteed for all
cases and the enrichment basis is the one given by (3.3), even when a = 0.5.

Contrary to the second minimum, the first one is smooth enough to make
solution unchanged for a small variation of «, as illustrated through Figure
24. Figures 25 and 26 show the influence of an important variation of the
parameter o on the convergence of the Xfem method. We remark that the
best convergence rate is obtained for « = 0.4 and o = 0.5, due to the fact
that they minimize energy more than others. Besides, the corresponding
convergence curves keep a constant slope, contrary to other ones (a = 0.2,
a = 0.3) for which, slopes degrade when mesh is refined. This is probably
due to the underestimation of the singularity for unrefined mesh. Indeed,
when this last is more precise, the estimated value of a increases more and
more, which makes the consideration of @ = 0.2 and a = 0.3, more and more
erroneous.

An other important notice is seen through previous tests. The comparison
between solutions obtained from the analytical and the serial form of the
enrichment for the case when o = 0.5, shows that results are similar, and
leads consequently to the coherence of assumption made in (3.3).

A concluding remark about improvement obtained with the Xfem cut-
off, is that this method improves results without increasing the number of
degrees of freedom. Table (3), compares the number of degrees of freedom
used by the classical finite element method and Xfem cut-off variant, and
shows that it is almost the same.
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Figure 25: Influence of considerable variations of the singularity exponent on
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Number of cells in each direction || Classical fem | Xfem Cut-off
26 1487 1489
50 5255 5257
90 16655 16657

Table 3: Number of degrees of freedom of classical fem and Xfem (Blatz-Ko potential)

Conclusion

In the present paper, an analysis of a singular problem in cracked domain
was carried out. The study deals with the fully nonlinear theory at large
strain, and aims to apply the Xfem method in order to overcome the limita-
tions of classical finite element method, when used for such cases. In spite
of the absence of analytical and mathematical proofs, results were relevant
(analogous to linear theory predictions) and emphasize the contribution of
the Xfem cut-off variant to the improvement of numerical convergence and
estimation errors, without deteriorating the linear system conditioning or in-
creasing numerical problem size. Besides, the established work, leads to a
coherence between results obtained from the asymptotic procedure and those
obtained numerically, since each one confirms other. Finally, we should keep
in mind an interesting observation concerning the smooth character of the
first minimum of potential energy. Indeed, this proves that even a non-precise
estimation of the first singularity exponent does not affect considerably the
approximated solution.
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