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An unbiased Nitsche’s approximation of the frictional contact

between two elastic structures

Franz CHOULY * Rabii MLIKA � Yves RENARD �

30 November 2015

Abstract

Most of the numerical methods dedicated to the contact problem involving two elastic
bodies are based on the master/slave paradigm. It results in important detection difficulties
in the case of self-contact and multi-body contact, where it may be impractical, if not im-
possible, to a priori nominate a master surface and a slave one. In this work we introduce
an unbiased finite element method for the finite element approximation of frictional contact
between two elastic bodies in the small deformation framework. In the proposed method
the two bodies expected to come into contact are treated in the same way (no master and
slave surfaces). The key ingredient is a Nitsche-based formulation of contact conditions, as
in [7]. We carry out the numerical analysis of the method, and prove its well-posedness and
optimal convergence in the H1-norm. Numerical experiments are performed to illustrate the
theoretical results and the performance of the method.

Keywords: Two deformable bodies contact problem, Nitsche’s method, Unbiased /Master-
Slave formulation, Tresca friction, Finite element method.

Introduction

Although being a very rich subject in the past, contact computational mechanics for deformable
bodies in small or large strain is still the subject of intensive research. The most common ap-
proach to treat the problem of two deformable bodies in contact is known as the master/slave
formulation. In this approach one distinguishes between a master surface and a slave one on
which one prescribes the non penetration condition. A breakdown of this formulation and the
contact problem can be found in Laursen’s work [17, 18](see also [19]) and a presentation of
discretization schemes and numerical algorithms for mechanical contact is given in [24]. This
approach is confronted with important difficulties especially in the case of self-contact and multi-
body contact where it is impossible or impractical to a priori nominate a master surface and a
slave one. Automating the detection and the separation between slave and master surfaces in
these cases may generate a lack of robustness since it may create detection problem.
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If the master/slave formulation consists in a natural extension of the contact treatment
between a deformable body and a rigid ground, it has no complete theoretical justification.
Consequently, to avoid these difficulties, we give in this article an unbiased formulation of the
two elastic bodies contact problem in the small strain framework. In this formulation we do
not distinguish between a master surface and a slave one since we impose the non penetration
and the friction conditions on both of them. Unbiased contact and friction formulation have
been considered before in [22] and references therein. In there, the authors present a numerical
study of the method and make as of a penalized formulation of contact and friction. The terms
two-pass and two-half-pass are also used in literature to describe this type of methods.

In the present study, we use Nitsche’s method for contact and friction (see [5, 7]). Nitsche’s
method is a promising method to treat frictionless unilateral contact in small strain assumption.
It is an extension of the method proposed in 1971 by J. Nitsche to treat Dirichlet condition
within the variational formulation without adding Lagrange multipliers [20]. Nitsche’s method
has been widely applied on problems involving linear conditions on the boundary of a domain or
in the interface between sub-domains: see, e.g. [23] for the Dirichlet problem or [1] for domain
decomposition with non matching meshes. More recently, in [12] and [14] it has been adapted
for bilateral (persistent) contact, which still involves linear boundary conditions on the con-
tact zone. A Nitsche-based formulation for the Finite Element discretization of the unilateral
(non-linear) contact problem in linear elasticity was introduced in [5] and generalized in [7] to
encompass symmetric and non-symmetric variants. A simple adaptation to Tresca’s friction of
the Nitsche-based Finite Element Method is proposed in [4].
Conversely to standard penalization techniques (see [6, 16]), the resulting method is consistent.
Moreover, unlike mixed methods (see [13, 15]), no additional unknown (Lagrange multiplier) is
needed. Thus, the adaptation of the method to an unbiased contact description is quite easier.
In fact, since Nitsche’s method uses the contact stress as a multiplier, it is very simple to divide
this contact effort equitably on both of contact surfaces.
This study can be seen as a first step in the construction of a method taking into account contact
between two elastic solids and self-contact in large transformations in the same formalism. The
present formulation, in small deformations, allows us to ensure the consistency, the convergence
and the optimality of the method. In this context, the aim of this paper is to provide an un-
biased description of the contact and Tresca friction conditions and to use Nitsche’s method to
give a variational formulation of the problem. The formulation uses an additional parameter
θ as in [7], allowing us to introduce some interesting variants acting on the symmetry / skew-
symmetry / non-symmetry of the discrete formulation. Moreover, a unified analysis of all these
variants can be performed. We provide, as well, theoretical and numerical verifications of the
proposed method. Some mathematical analysis need to be performed to prove the consistency
of the method, its well-posedness and its optimal convergence.

In section 1 we build an unbiased formulation of the two elastic bodies frictional (Tresca)
contact problem. This formulation will be based on Nitsche’s method. To prove the efficiency of
the method (20), we carry out some mathematical analysis on it in section 2. In the last section
3 of this paper, we present the results of several two/three-dimensional numerical tests. The
tests cover a study of convergence in H1-norm of the global relative error and in L2-norm for the
contact pressure error with different values of the generalization parameter θ and the Nitsche’s
parameter γ0. The open source environment GetFEM++1 is used to perform the tests.

1http://download.gna.org/getfem/html/homepage/index.html
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Figure 1: Example of definition of ñi

1 Setting of the problem

1.1 Formal statement of the two bodies contact problem

We consider two elastic bodies (1) and (2) expected to come into contact. To simplify notations,
a general index (i) is used to represent indifferently the body (1) or (2). Let Ωi be the domain
in Rd occupied by the reference configuration of the body (i), with d = 2 or 3. Small strain
assumption is made, as well as plane strain when d = 2. We suppose that the boundary ∂Ωi of
each body consists in three non-overlapping parts ΓiD , ΓiN and ΓiC . On ΓiD (resp ΓiN ) displace-
ments ui (resp. tractions ti) are given. The body is clamped on ΓiD for the sake of simplicity. In
addition each body can be subjected to a volumic force f i (such as gravity). We denote by ΓiC
a portion of the boundary of the body (i) which is a candidate contact surface with an outward
unit normal vector ni. The actual surface on which a body comes into contact with the other
one is not known in advance, but is contained in the portion ΓiC of ∂Ωi.
Furthermore let us suppose that ΓiC is smooth. For the contact surfaces, let us assume a suffi-
ciently smooth one to one application (projection for instance) mapping each point of the first
contact surface to a point of the second one:

Π1 : Γ1
C → Γ2

C .

Let J1 be the Jacobian of the transformation Π1 and J2 =
1

J1
the Jacobian of Π2 = (Π1)−1.

We suppose in the following that J1 > 0.
We define on each contact surface a normal vector ñi (see Figure1) such that:

ñi(x) =


Πi(x)− x

‖Πi(x)− x‖
if x 6= Πi(x),

ni if x = Πi(x).
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Note that ñ1 = −ñ2 ◦Π1 and ñ2 = −ñ1 ◦Π2.

The displacements of the bodies, relatively to the fixed spatial frame are represented by
u = (u1,u2), where ui is the displacement field of body (i).
The contact problem in linear elasticity consists in finding the displacement field u verifying the
equations (1) and the contact conditions described hereafter:

divσi(ui) + f i = 0 in Ωi,(1a)

σi(ui) = Aiε(ui) in Ωi,(1b)

ui = 0 on ΓiD,(1c)

σi(ui)ni = ti on ΓiN ,(1d)

where σi = σi(j,k), 1 ≤ j, k ≤ d, stands for the stress tensor field and div denotes the divergence

operator of tensor valued functions. The notation ε(v) = 1
2(∇v+∇v

T
) represents the linearized

strain tensor field and Ai is the fourth order symmetric elasticity tensor on Ωi having the usual
uniform ellipticity and boundedness property.
For any displacement field vi and for any density of surface forces σi(vi)ni defined on ∂Ωi we
adopt the following notation:

vi = vinñ
i + vit and σi(vi)ni = σin(vi)ñi + σit(v

i),

where vit (resp σit(v
i)) are the tangential components of vi (resp σi(vi)ni).

We define an initial normal gap representing the normal distance between a point x of ΓiC and
its image on the other body: gin = (Πi(x)− x) · ñi.
We define, as well, the relative normal displacements JuK1

n = (u1 − u2 ◦ Π1) · ñ1 and JuK2
n =

(u2 − u1 ◦Π2) · ñ2.

Remark 1.1. Note that: g1
n ◦Π2 = g2

n and g2
n ◦Π1 = g1

n ; JuK1
n ◦Π2 = JuK2

n and JuK2
n ◦Π1 = JuK1

n.

In order to obtain an unbiased formulation of the contact problem we prescribe the contact
conditions deduced form the Signorini problem conditions (see [16]) on the two surfaces in a
symmetric way. Thus, the conditions describing contact on Γ1

C and Γ2
C are:

JuK1
n ≤ g1

n(2a)

σ1
n(u1) ≤ 0 on Γ1

C ,(2b)

σ1
n(u1)(JuK1

n − g1
n) = 0(2c)

JuK2
n ≤ g2

n(3a)

σ2
n(u2) ≤ 0 on Γ2

C .(3b)

σ2
n(u2)(JuK2

n − g2
n) = 0(3c)

Let si ∈ L2(ΓiC), si ≥ 0, JuK1
t = u1

t − u2
t ◦Π1 and JuK2

t = u2
t − u1

t ◦Π2 = −JuK1
t ◦Π2.

The Tresca friction condition on Γ1
C and Γ2

C reads:

(4)


‖σit(ui)‖ ≤ si if JuKit = 0,

σit(u
i) = −si JuKit

‖JuKit‖
otherwise,

4



where ‖ · ‖ stands for the euclidean norm in Rd−1.

Remark 1.2. In the frictionless contact case this condition is simply replaced by σit = 0.

Finally, we need to consider the second Newton law between the two bodies:
∫
γ1C

σ1
n(u1)ds−

∫
γ2C

σ2
n(u2)ds = 0,∫

γ1C

σ1
t (u

1)ds+

∫
γ2C

σ2
t (u

2)ds = 0,

where γ1
C is any subset of Γ1

C and γ2
C = Π1(γ1

C). Mapping all terms on γ1
C allows writing:

∫
γ1C

σ1
n(u1)− J1σ2

n(u2 ◦Π1)ds = 0,∫
γ1C

σ1
t (u

1) + J1σ2
t (u

2 ◦Π1)ds = 0,

∀γ1
C ⊂ Γ1

C

so we obtain: {
σ1
n(u1)− J1σ2

n(u2 ◦Π1) = 0,

σ1
t (u

1) + J1σ2
t (u

2 ◦Π1) = 0,
on Γ1

C .(5)

Remark 1.3. : A similar condition holds on Γ2
c :{

σ2
n(u2)− J2σ1

n(u1 ◦Π2) = 0,

σ2
t (u

2) + J2σ1
t (u

1 ◦Π2) = 0.

It is important to mention that, due to second Newton law, we need to fix s1 and s2 such

that: −s1 JuK1
t

‖JuK1
t ‖

= σ1
t (u

1) = −J1σ2
t (u

2 ◦Π1) = J1s2 JuK2
t ◦Π1

‖JuK2
t ◦Π1‖

= −J1s2 JuK1
t

|JuK1
t |
.

And so:

(6) s1 = J1s2.

1.2 Variational formulation using Nitsche’s method

In this section, we establish the weak formulation of Problem (1)–(5) using Nitsche’s method
and the unbiased writing of the contact and the friction conditions given in Section 1.1.
As in [7], we introduce an additional parameter θ. This generalization will allow several variants,
depending on the value of θ. The symmetric case is obtained when θ = 1. The advantage of
the symmetric formulation is that it derives from a potential of energy (see 1.3). These features
are lost when θ 6= 1. Nevertheless the variants θ = −1 and 0 presents some other advantages,
mostly from the numerical viewpoint. In particular, the case θ = 0 involves a reduced quan-
tity of terms, which makes it easier to implement and to extend to contact problems involving
non-linear elasticity. Also, for θ = −1, the well-posedness of the discrete formulation and the
optimal convergence are preserved irrespectively of the value of the Nitsche parameter γi.

First, we introduce the Hilbert space

V =
{
v = (v1,v2) ∈ H1(Ω1)d ×H1(Ω2)d : v1 = 0 on Γ1

D and v2 = 0 on Γ2
D

}
.
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Let u = (u1,u2) be the solution of the contact problem in its strong form (1)–(5). We assume
that u is sufficiently regular so that all the following calculations make sense.
The derivation of a Nitsche-based method comes from a reformulation of the contact conditions
(2a)-(2b)-(2c) (see for instance [5] and [7]). This reformulation comes from the augmented La-
grangian formulation of contact problems. The contact conditions (2a)-(2b)-(2c) are equivalent
to the equation (7) for a given positive function γi :

(7) σin(ui) = − 1

γi
[(JuKin − gin)− γiσin(ui)]+,

where the notation [·]+ refers to the the positive part of a scalar quantity a ∈ R. Similarly,
in [4], the Tresca friction condition is equivalent to the equation

(8) σt(u
i) = − 1

γi
[JuKit − γiσ(ui)]γsi ,

where, for any α ∈ R+, the notation [·]α refers to the orthogonal projection onto B(0, α) ⊂ Rd−1,
the closed ball centered at the origin and of radius α. In what follows some properties of the
positive part and the projection are mentioned. Those properties will be useful in the analysis
of the method.
Since a ≤ [a]+ and a[a]+ = [a]2+ ∀a ∈ R , we can write that for all a, b ∈ R :

([a]+ − [b]+)(a− b) = a[a]+ + b[b]+ − b[a]+ − a[b]+

≤ [a]2+ + [b]2+ − 2[a]+[b]+(9)

= ([a]+ − [b]+)2.

We note, also, the following classical property for a projection for all x,y ∈ Rd−1 :

(10) (y − x).([y]α − [x]α) ≥ ‖[y]α − [x]α‖2.

From the Green formula and equations (1), we get for every v ∈ V:∫
Ω1

σ1(u1) : ε(v1)dΩ +

∫
Ω2

σ2(u2) : ε(v2)dΩ =

∫
Ω1

f1 · v1dΩ +

∫
Ω2

f2 · v2dΩ

+

∫
Γ1
N

t1 · v1dΓ +

∫
Γ2
N

t2 · v2dΓ +

∫
Γ1
C

σ1(u1)n1 · v1dΓ +

∫
Γ2
C

σ2(u2)n2 · v2dΓ.

We define

a(u,v) =

∫
Ω1

σ1(u1) : ε(v1)dΩ +

∫
Ω2

σ2(u2) : ε(v2)dΩ,

and

L(v) =

∫
Ω1

f1 · v1dΩ +

∫
Ω2

f2 · v2dΩ +

∫
Γ1
N

t1 · v1dΓ +

∫
Γ2
N

t2 · v2dΓ.

So, there holds:

a(u,v)−
∫

Γ1
C

σ1
n(u1)v1

ndΓ−
∫

Γ2
C

σ2
n(u2)v2

ndΓ−
∫

Γ1
C

σ1
t (u

1) · v1
t dΓ−

∫
Γ2
C

σ2
t (u

2) · v2
t dΓ = L(v).

6



Using condition (5) we can write

a(u,v)− 1

2

∫
Γ1
C

(σ1
n(u1) + J1σ2

n(u2 ◦Π1))v1
ndΓ− 1

2

∫
Γ2
C

(σ2
n(u2) + J2σ1

n(u1 ◦Π2))v2
ndΓ

−1

2

∫
Γ1
C

(σ1
t (u

1)− J1σ2
t (u

2 ◦Π1)) · v1
t dΓ− 1

2

∫
Γ2
C

(σ2
t (u

2)− J2σ1
t (u

1 ◦Π2)) · v2
t dΓ = L(v).

So, using the property

∫
Γ1
C

J1fdΓ =

∫
Γ2
C

f ◦Π2dΓ, we have

a(u,v)− 1

2

∫
Γ1
C

σ1
n(u1)v1

ndΓ− 1

2

∫
Γ1
C

σ1
n(u1)(v2

n ◦Π1)dΓ− 1

2

∫
Γ2
C

σ2
n(u2)v2

ndΓ

−1

2

∫
Γ2
C

σ2
n(u2)(v1

n ◦Π2)dΓ− 1

2

∫
Γ1
C

σ1
t (u

1) · v1
t +

1

2

∫
Γ1
C

σ1
t (u

1) · (v2
t ◦Π1)dΓ

−1

2

∫
Γ2
C

σ2
t (u

2) · v2
t +

1

2

∫
Γ2
C

σ2
t (u

2) · (v1
t ◦Π2)dΓ = L(v).

This leads to:

a(u,v)− 1

2

∫
Γ1
C

σ1
n(u1)(v1

n + v2
n ◦Π1)dΓ− 1

2

∫
Γ2
C

σ2
n(u2)(v2

n + v1
n ◦Π2)dΓ

−1

2

∫
Γ1
C

σ1
t (u

1) · (v1
t − v2

t ◦Π1)dΓ− 1

2

∫
Γ2
C

σ2
t (u

2) · (v2
t − v1

t ◦Π2)dΓ = L(v).

With the writings, for θ ∈ R:{
v1
n + v2

n ◦Π1 = (v1
n + v2

n ◦Π1 − θγ1σ1
n(v1)) + θγ1σ1

n(v1)

v2
n + v1

n ◦Π2 = (v2
n + v1

n ◦Π2 − θγ2σ2
n(v2)) + θγ2σ2

n(v2){
v1
t − v2

t ◦Π1 = (v1
t − v2

t ◦Π1 − θγ1σ1
t (v

1)) + θγ1σ1
t (v

1)

v2
t − v1

t ◦Π2 = (v2
t − v1

t ◦Π2 − θγ2σ2
t (v

2)) + θγ2σ2
t (v

2)

we obtain:
(11)

a(u,v)− 1

2

∫
Γ1
C

θγ1σ1
n(u1)σ1

n(v1)dΓ− 1

2

∫
Γ2
C

θγ2σ2
n(u2)σ2

n(v2)dΓ− 1

2

∫
Γ1
C

θγ1σ1
t (u

1) · σ1
t (v

1)dΓ

−1

2

∫
Γ2
C

θγ2σ2
t (u

2) · σ2
t (v

2)dΓ− 1

2

∫
Γ1
C

σ1
n(u1)(v1

n + v2
n ◦Π1 − θγ1σ1

n(v1))dΓ

−1

2

∫
Γ2
C

σ2
n(u2)(v2

n + v1
n ◦Π2 − θγ2σ2

n(v2))dΓ− 1

2

∫
Γ1
C

σ1
t (u

1) · (v1
t − v2

t ◦Π1 − θγ1σ1
t (v

1))dΓ

−1

2

∫
Γ2
C

σ2
t (u

2) ·
(
v2
t − v1

t ◦Π2 − θγ2σ2
t (v

2)
)
dΓ = L(v).

Let us define:

P in,γi(u) = JuKin − γiσin(ui)− gin,(12)

P in,θγi(v) = JvKin − θγiσin(vi),

Pi
t,γi(u) = JuKit − γiσit(ui),

Pi
t,θγi(v) = JvKit − θγiσit(vi)
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and Aθ(u,v) = a(u,v)− 1

2

∫
Γ1
C

θγ1σ1
n(u1)σ1

n(v1)dΓ− 1

2

∫
Γ2
C

θγ2σ2
n(u2)σ2

n(v2)dΓ

−1

2

∫
Γ1
C

θγ1σ1
t (u

1) · σ1
t (v

1)dΓ− 1

2

∫
Γ2
C

θγ2σ2
t (u

2) · σ2
t (v

2)dΓ

= a(u,v)− 1

2

∫
Γ1
C

θγ1σ1(u1)n · σ1(v1)ndΓ− 1

2

∫
Γ2
C

θγ2σ2(u2)n · σ2(v2)ndΓ.

Now we insert the expressions (7) of σin(ui) and (8) of σit(u
i) in (11) and the variational problem

could be formally written as follows:

(13)

Find a sufficiently regular u ∈ V such that for all sufficiently regular v ∈ V,

Aθ(u,v) +
1

2

∫
Γ1
C

1

γ1
[P 1
n,γ1(u)]+P

1
n,θγ1(v)dΓ +

1

2

∫
Γ2
C

1

γ2
[P 2
n,γ2(u)]+P

2
n,θγ2(v)dΓ

+
1

2

∫
Γ1
C

1

γ1
[P1

t,γ1(u)]γ1s1 ·P1
t,θγ1(v)dΓ +

1

2

∫
Γ2
C

1

γ2
[P2

t,γ2(u)]γ2s2 ·P2
t,θγ2(v)dΓ = L(v).

Remark 1.4. In the frictionless contact case the formulation reads:
Find u ∈ V such that ∀v ∈ V

Aθ(u,v) +
1

2

∫
Γ1
C

1

γ1
[P 1
n,γ1(u)]+P

1
n,θγ1(v)dΓ +

1

2

∫
Γ2
C

1

γ2
[P 2
n,γ2(u)]+P

2
n,θγ2(v)dΓ = L(v).

.

1.3 Derivation of the method from a potential

In this section we show, through a formal demonstration, that the method derives from a
potential in the frictional symmetric (θ = 1) case. Let us define the potential:

J(u) = εΩ +
2∑
i=1

(εin + εit),

with:

εΩ =
1

2
a(u,u)−

2∑
i=1

(1

4

∫
ΓiC

γi(σin(ui))2 +
1

4

∫
ΓiC

γi‖σit(ui)‖2dΓ
)
− L(u)

=
1

2
A1(u,u)− L(u);

εin =
1

4

∫
ΓiC

1

γi
[P in,γi(u)]2+dΓ;

εit =
1

4

∫
ΓiC

1

γi
‖Pi

t,γi(u)‖2dΓ− 1

4

∫
ΓiC

1

γi
‖Pi

t,γi(u)− [Pi
t,γi(u)]γisi‖2dΓ.

We compute now the derivative of this potential. We have:

DεΩ(u)[v] = A1(u,v)− L(v) (L is linear and Aθ is bilinear),
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Dεin(u)[v] =
1

2

∫
ΓiC

1

γi
[P in,γi(u)]+D

(
[P in,γi(u)]+

)
[v]dΓ

=
1

2

∫
ΓiC

1

γi
[P in,γi(u)]+H

(
P in,γi(u)

)
(D
(
P in,γi(u)

)
[v]dΓ,

where H is the Heaviside step function. Using the equalities: H(ϕ(X))[ϕ(X)]+ = [ϕ(X)]+ and
D
(
P i
n,γi

(u)
)
[v] = P i

n,γi
(v) (since P i

n,γi
is linear), we get:

Dεin(u)[v] =
1

2

∫
ΓiC

1

γi
[P in,γi(u)]+P

i
n,γi(v)dΓ.

Dεit(u)[v] =
1

2

∫
ΓiC

1

γi
Pi
t,γi(u) ·Pi

t,γi(v)dΓ

−1

2

∫
ΓiC

1

γi
(Pi

t,γi(u)− [Pi
t,γi(u)]γisi) · (Pi

t,γi(v)−D
(
[Pi

t,γi(u)]γisi
)
[v])dΓ

if ‖Pi
t,γi(u)‖ ≤ γisi, then Pi

t,γi(u)− [Pi
t,γi(u)]γisi = 0

if ‖Pi
t,γi(u)‖ > γisi, then D

(
[Pi

t,γi(u)]γisi is tangential to B(0, γisi) and

D
(
[Pi

t,γi
(u)]γisi

)
· (Pi

t,γi
(u)− [Pi

t,γi
(u)]γisi) = 0.

So, in both cases we have:

Dεit(u)[v] =
1

2

∫
ΓiC

1

γi
[Pi

t,γi(u)]γisi ·Pi
t,γi(v)dΓ

so, if we consider the first order optimality condition Dε(u)[v] = 0∀v ∈ V, we get:

A1(u,v) +
2∑
i=1

(1

2

∫
ΓiC

1

γi
[P in,γi(u)]+P

i
n,γi(v)dΓ +

1

2

∫
ΓiC

1

γi
[Pi

t,γi(u)]γisi ·Pi
t,γi(v)dΓ

)
= L(v).

1.4 Strong-weak formulation equivalence

In this section, we are going to establish the formal equivalence between (13) and (1)-(5). Since
the construction of (13) is quite elaborated and consists in particular in the splitting of the
contact terms into two parts, this step is necessary to ensure the coherence of the formulation.

Theorem 1.5. Let u = (u1, u2) be a sufficiently regular solution to the problem (13), then u
solves the problem (1)-(5) for all θ ∈ R.

Proof. Let u = (u1, u2) be a sufficiently regular solution to the problem (13). Using the defini-
tions of Aθ, P

i
γi

(u) and P i
θγi

(v), we obtain:

a(u,v)− 1

2

∫
Γ1
C

θγ1σ1
n(u1)σ1

n(v1)dΓ− 1

2

∫
Γ2
C

θγ2σ2
n(u2)σ2

n(v2)dΓ− 1

2

∫
Γ1
C

θγ1σ1
t (u

1) · σ1
t (v

1)dΓ

−1

2

∫
Γ2
C

θγ2σ2
t (u

2) · σ2
t (v

2)dΓ +
1

2

∫
Γ1
C

1

γ1
[JuK1

n − g1
n − γ1σ1

n(u1)]+(v1
n + v2

n ◦Π1 − θγ1σ1
n(v1))dΓ

+
1

2

∫
Γ2
C

1

γ2
[JuK2

n − g2
n − γ2σ2

n(u2)]+(v2
n + v1

n ◦Π2 − θγ2σ2
n(v2))dΓ

+
1

2

∫
Γ1
C

1

γ1
[JuK1

t − γ1σ1
t (u

1)]γ1s1 · (v1
t − v2

t ◦Π1 − θγ1σ1
t (v

1))dΓ

+
1

2

∫
Γ2
C

1

γ2
[JuK2

t − γ2σ2
t (u

2)]γ2s2 ·
(
v2
t − v1

t ◦Π2 − θγ2σ2
t (v

2)
)
dΓ = L(v).
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Using Green’s formula we can write

a(u,v) = −
∫

Ω1

divσ1(u1) · v1dΩ−
∫

Ω2

divσ2(u2) · v2dΩ

+

∫
∂Ω1

σ1(u1)n1 · v1dΓ +

∫
∂Ω2

σ2(u2)n2 · v2dΓ.

If we take v = (v1, 0) with v1 = 0 on ∂Ω1, we obtain:∫
Ω1

divσ1(u1) · v1dΩ =

∫
Ω1

f1 · v1dΩ ∀v1,

which yields (1a) for i=1. In the same way we establish (1a) for i=2.
To establish (2),(3),(4) and (5), we consider a displacement field v that vanishes on the boundary
except on the contact surfaces where v = (v1,v2). Then (13) and (1a) gives
(14)∫

Γ1
C

σ1
n(u1)v1

ndΓ +

∫
Γ1
C

σ1
t (u

1) · v1
t dΓ +

∫
Γ2
C

σ2
n(u2)v2

ndΓ +

∫
Γ2
C

σ2
t (u

2) · v2
t dΓ

−1

2

∫
Γ1
C

θγ1σ1
n(u1)σ1

n(v1)dΓ− 1

2

∫
Γ2
C

θγ2σ2
n(u2)σ2

n(v2)dΓ− 1

2

∫
Γ1
C

θγ1σ1
t (u

1) · σ1
t (v

1)dΓ

−1

2

∫
Γ2
C

θγ2σ2
t (u

2) · σ2
t (v

2)dΓ +
1

2

∫
Γ1
C

1

γ1
[JuK1

n − g1
n − γ1σ1

n(u1)]+(v1
n + v2

n ◦Π1 − θγ1σ1
n(v1))dΓ

+
1

2

∫
Γ2
C

1

γ2
[JuK2

n − g2
n − γ2σ2

n(u2)]+(v2
n + v1

n ◦Π2 − θγ2σ2
n(v2))dΓ

+
1

2

∫
Γ1
C

1

γ1
[JuK1

t − γ1σ1
t (u

1)]γ1s1 · (v1
t − v2

t ◦Π1 − θγ1σ1
t (v

1))dΓ

+
1

2

∫
Γ2
C

1

γ2
[JuK2

t − γ2σ2
t (u

2)]γ2s2 ·
(
v2
t − v1

t ◦Π2 − θγ2σ2
t (v

2)
)
dΓ = 0.

We need to discuss two cases: θ 6= 0 and θ = 0.

Case 1 θ 6= 0:
In (14), let us consider v = (v1,v2) such that:

(15)

{
v1 = 0 and σ1

t (v
1) = 0 , σ1

n(v1) 6= 0 on Γ1
C and

v2 = 0 and σ2(v2)n2 = 0 on Γ2
C ,

so,

θ

2

∫
Γ1
C

(
[JuK1

n − g1
n − γ1σ1

n(u1)]+ + γ1σ1
n(u1)

)
σ1
n(v1)dΓ = 0 ∀v satisfying (15).

Then:

σ1
n(u1) = − 1

γ1
[JuK1

n − g1
n − γ1σ1

n(u1)]+,

which implies (2). Arguing in the same way we obtain (3) and the friction conditions (4).

Remark 1.6. It is easy to show that v satisfying (15) can be built by considering s(x) the
curvilinear coordinate system on the boundary ΓC and d(x) the signed distance to ΓC . Then, for
g a given vector field of Rd, u(x) = B−1(s(x))g(s(x))d(x) satisfies u(x) = 0 and σ(u)n = g on
ΓC , with Bil = Aijklnknj, A being the elasticity tensor.
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To obtain the second Newton law, we use Nitsche’s writing of (2) and (3) in (14) with: vt = 0
and σt = 0 and v2

n = −v1
n ◦Π2:∫

Γ1
C

σ1
n(u1)v1

ndΓ−
∫

Γ2
C

σ2
n(u2)v1

n ◦Π2dΓ = 0 ∀v1
n.

Then: ∫
Γ1
C

[σ1
n(u1)− J1σ2

n(u2 ◦Π1)]v1
ndΓ = 0 ∀v1

n.

For v1
n = v2

n = 0 and v2
t = v1

t ◦Π2 and using (4) in (14) ,we have similary∫
Γ1
C

[σ1
t (u

1) + J1σ2
t (u

2 ◦Π1)] · v1
t dΓ = 0 ∀v1

t ,

and we have (5).

Case 2 θ = 0:
Let us take v1

t = v2
t = 0 and v2

n = −v1
n ◦Π2, v1

n = −v2
n ◦Π1, then (14) reads:∫

Γ1
C

[σ1
n(u1)− J1σ2

n(u2 ◦Π1)]v1
ndΓ = 0 ∀v1

n.

Let us take,now v1
n = v2

n = 0 and v2
t = v1

t ◦Π2, v1
t = v2

t ◦Π1, then (14) reads:∫
Γ1
C

[σ1
t (u

1) + J1σ2
t (u

2 ◦Π1)] · v1
t dΓ = 0 ∀v1

t ,

and we have (5).
Let v2 = 0 on Γ2

C . Taking v1
t = 0, we get:∫

Γ1
C

[
σ1
n(u1)+

1

2γ1
[JuK1

n−g1
n−γ1σ1

n(u1)]++J1 1

2γ2
[JuK2

n◦Π1−g2
n◦Π1−γ2σ2

n(u2◦Π1)]+

]
v1
ndΓ = 0 ∀v1

n.

Then:

σ1
n(u1) = −1

2

[ 1

γ1
[JuK1

n − g1
n − γ1σ1

n(u1)]+ +
J1

γ2
[JuK1

n − g1
n − γ2σ2

n(u2 ◦Π1)]+

]
.

Since J1 > 0, σ1
n(u1) ≤ 0 and so we obtain (2b. The second Newton law (5) yields:

(16) σ1
n(u1) = −1

2

[ 1

γ1
[(JuK1

n − g1
n)− σ1

n(u1)]+ + [
J1

γ2
(JuK1

n − g1
n)− σ1

n(u1)]+

]
.

We discuss both cases:
If σ1

n(u1) = 0 :
1

2
(

1

γ1
+
J1

γ2
)[JuK1

n − g1
n]+ = 0 then JuK1

n ≤ g1
n.

If σ1
n(u1) < 0 :

1

γ1
(JuK1

n − g1
n)− σ1

n(u1) > 0 or
J1

γ2
((JuK1

n − g1
n)− σ1

n(u1)) > 0 or both .
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1. If we suppose first that:
1

γ1
(JuK1

n − g1
n)− σ1

n(u1) > 0 and
J1

γ2
(JuK1

n − g1
n)− σ1

n(u1) > 0, the

equation (16) holds :

σ1
n(u1) = −1

2
[(

1

γ1
+
J1

γ2
)(JuK1

n − g1
n)− 2σ1

n(u1)] then JuK1
n = g1

n.

2. If now there only holds
1

γ1
(JuK1

n − g1
n)− σ1

n(u1) > 0 and
J1

γ2
(JuK1

n − g1
n)− σ1

n(u1) = 0, we

can write (16):

σ1
n(u1) = − 1

2γ1
(JuK1

n − g1
n) +

1

2
σ1
n(u1)).

So σ1
n(u1) = −1

γ
(JuK1

n − g1
n).

Then, since σn(u1) < 0 : JuK1
n > g1

n. But in this case,

J1

γ2
(JuK1

n − g1
n)− σ1

n(u1) > 0,

and this contradicts the assumption
J1

γ2
(JuK1

n − g1
n)− σ1

n(u1) = 0 . So, this case is absurd.

In a similar way we get contradiction for the case
J1

γ2
(JuK1

n − g1
n)− σ1

n(u1) > 0.

To conclude, we establish that: if σ1
n(u1) = 0 , JuK1

n ≤ g1
n and if σ1

n(u1) < 0 , JuK1
n = g1

n; and
this is equivalent to (2a) and (2c).

We suppose, now, that v1
n = 0 and v2 = 0. We get:∫

Γ1
C

[
σ1
t (u

1) +
1

2γ1
[JuK1

t − γ1σ1
t (u

1)]γ1s1 −
J1

2γ2
[JuK2

t ◦Π1 − γ2σ2
t (u

2 ◦Π1)]γ2s2
]
· v1

t dΓ = 0 ∀v1
t .

Then, using the property: ∀γ > 0, [x]γs = γ
[x
γ

]
s
, it yields:

σ1
t (u

1) +
1

2

[JuK1
t

γ1
− σ1

t (u
1)
]
s1
− J1

2

[JuK2
t ◦Π1

γ2
− σ2

t (u
2 ◦Π1)

]
s2

= 0.

We use the Newton law (5) and the condition (6) to obtain:

(17) σ1
t (u

1) +
1

2

[JuK1
t

γ1
− σ1

t (u
1)
]
s1

+
1

2

[
J1 JuK1

t

γ2
− σ1

t (u
1)
]
s1

= 0.

1. If ‖JuK1
t

γ1
− σ1

t (u
1)‖ < s1 and ‖J1 JuK1t

γ2
− σ1

t (u
1)‖ < s1:

JuK1
t

2
(

1

γ1
+
J1

γ2
) = 0; so JuK1

t = 0. In this case we obtain: σ1
t (u

1) =
[
σ1
t (u

1)
]
s1

,

and so: ‖σ1
t (u

1)‖ < s1.
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2. If ‖JuK1
t

γ1
− σ1

t (u
1)‖ ≥ s1 and ‖J1 JuK1

t

γ2
− σ1

t (u
1)‖ ≥ s1:

(18) σ1
t (u

1) +
s1

2

JuK1t
γ1
− σ1

t (u
1)

‖ JuK1t
γ1
− σ1

t (u
1)‖

+
s1

2

J1 JuK1t
γ2
− σ1

t (u
1)

‖J1 JuK1t
γ2
− σ1

t (u
1)‖

= 0.

The equation (18) shows that σ1
t (u

1) and JuK1
t are collinear.

So:



JuK1t
γ1
− σ1

t (u
1)

‖ JuK1t
γ1
− σ1

t (u
1)‖

=
J1 JuK1t

γ2
− σ1

t (u
1)

‖J1 JuK1t
γ2
− σ1

t (u
1)‖

,

or
JuK1t
γ1
− σ1

t (u
1)

‖ JuK1t
γ1
− σ1

t (u
1)‖

= −
J1 JuK1t

γ2
− σ1

t (u
1)

‖J1 JuK1t
γ2
− σ1

t (u
1)‖

(∗),

and we obtain, from (18) :



σ1
t (u

1) = −s1
JuK1t
γ1
−σ1

t (u
1)

‖ JuK1t
γ1
−σ1

t (u
1)‖

= − 1
γ1

[JuK1
t − γ1σ1

t (u
1)]γ1s1 ,

and this is equivalent to (4).

or

σ1
t (u

1) = 0 which is impossible in (∗).

3. If now ‖JuK1
t

γ1
− σ1

t (u
1)‖ < s1 and ‖J1 JuK1

t

γ2
− σ1

t (u
1)‖ ≥ s1 :

σ1
t (u

1) +
1

2

(JuK1
t

γ1
− σ1

t (u
1)
)

+
s1

2

J1 JuK1t
γ2
− σ1

t (u
1)

‖J1 JuK1t
γ2
− σ1

t (u
1)‖

= 0.

Projecting on
σ1
t (u

1)

‖σ1
t (u

1)‖ and laying a = ‖σ1
t (u

1)‖ ; b =
σ1
t (u

1) · JuK1
t

γ1‖σ1
t (u

1)‖
,

we get:


|b− a| < s1 and |bJ1 γ1

γ2
− a| ≥ s1

and

(b+ a) + εs1 = 0 ; where ε = sign(bJ1 γ1

γ2
− a) = ±1.

Let ε = +1; so, a = −b−s1 and we obtain:


b− a = 2b+ s1 and |b− a| < s1

and

bJ1 γ1

γ2
− a = (J1 γ1

γ2
+ 1)b+ s1 and bJ1 γ1

γ2
− a ≥ s1.

So:


−s1 < b < 0

and

(J1 γ1

γ2
+ 1)b ≥ 0

which is absurd.

Let ε = −1; so a = −b+s1 and we obtain:


b− a = 2b− s1 and |b− a| < s1

and

bJ1 γ1

γ2
− a = (J1 γ1

γ2
+ 1)b− s1 and bJ1 γ1

γ2
− a ≤ −s1,

so:


0 < b < s1

and

(J1 γ1

γ2
+ 1)b ≤ 0

, which is absurd.
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4. If ‖ JuK1t
γ1
− σ1

t (u
1)‖ ≥ s1 and ‖J1 JuK1t

γ2
− σ1

t (u
1)‖ < s1:

We argue in the same way laying a = ‖σ1
t (u

1)‖ ; b = J1σ
1
t (u

1) · JuK1
t

γ2‖σ1
t (u

1)‖
.

Thus, we establish the friction condition (4) for i=1. In the same way, when supposing v1 = 0,
we get (2a)-(2b)-(2c) and (4) for i=2.

1.5 Discretization of the variational formulation

Let T ih a family of triangulations of the domain Ωi supposed regular and conformal to the
subdivisions of the boundaries into ΓiD, ΓiN and ΓiC . We introduce

Vh = (V1
h ×V2

h), with Vi
h =

{
vih ∈ C 0(Ωi) : vih|T ∈ (Pk(T ))d, ∀T ∈ T ih ,vih = 0 on ΓiD

}
,

the family of finite dimensional vector spaces indexed by h and coming from T ih .
We consider in what follows that γi is a positive piecewise constant function on the contact
interface ΓiC which satisfies

γi|Ki∩ΓiC
= γ0hKi ,

for every Ki ∈ T ih that has a non-empty intersection of dimension d− 1 with ΓiC , and where γ0

is a positive given constant. Note that the value of γi on element intersections has no influence.
This allows to define a discrete counterpart of (13). Let us introduce for this purpose, with the
same notation, the discrete linear operators:

P i
n,γi

(uh) = JuhKn − gin − γiσin(uih),

P i
n,θγi

(vh) = JvhKin − θγiσin(vih),(19)

Pi
t,γi

(uh) = JuhKit − γiσit(uih),

Pi
t,θγi

(vh) = JvhKit − θγiσit(vih).

Then the unbiased formulation of the two bodies contact in the discrete setting reads:
(20)

Find uh ∈ Vh such that, ∀vh ∈ Vh,

Aθ(uh,vh) +
1

2

∫
Γ1
C

1

γ1
P 1
n,θγ1(vh)[P 1

n,γ1(uh)]+dΓ +
1

2

∫
Γ2
C

1

γ2
P 2
n,θγ2(vh)[P 2

n,γ2(uh)]+dΓ

+
1

2

∫
Γ1
C

1

γ1
P1
t,θγ1(vh) · [P1

t,γ1(uh)]γ1s1dΓ +
1

2

∫
Γ2
C

1

γ2
P2
t,θγ2(vh) · [P2

t,γ2(uh)]γ2s2dΓ = L(vh).

2 Mathematical analysis of the method

A major difference between Nitsche’s method and classical penalty methods is the property of
consistency demonstrated in 2.1. Using the same arguments as in [5] we prove the well-posedness
and the optimal convergence of (20) when the mesh size h vanishes.
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2.1 Consistency

Like Nitsche’s method for unilateral contact problems [5], our Nitsche-based formulation (20) is
consistent:

Lemma 2.1. Suppose that the solution u of (1)-(5) lies in (H
3
2

+ν(Ω1))d × (H
3
2

+ν(Ω2))d with
ν > 0, then u is also solution of :

(21)

Aθ(u,vh) +
1

2

∫
Γ1
C

1

γ1
P 1
n,θγ1(vh)[P 1

n,γ1(u)]+dΓ +
1

2

∫
Γ2
C

1

γ2
P 2
n,θγ2(vh)[P 2

n,γ2(u)]+dΓ

+
1

2

∫
Γ1
C

1

γ1
P1
t,θγ1(vh) · [P1

t,γ1(u)]γ1s1dΓ +
1

2

∫
Γ2
C

1

γ2
P2
tθγ2(vh) · [P2

t,γ2(u)]γ2s2dΓ = L(vh), ∀vh ∈ Vh.

Proof. Let u be a solution of (1)–(5) and set vh ∈ Vh. Since ui ∈ (H
3
2

+ν(Ωi))d, we have
σin(ui) ∈ (Hν(ΓiC))d and Pnγi and Ptγi are well-defined and belong to  L2(ΓiC).
With equations (1)–(4) and integration by parts, it holds:

a(u,vh)−
∫

Γ1
C

σ1
n(u1)v1

hndΓ−
∫

Γ2
C

σ2
n(u2)v2

hndΓ−
∫

Γ1
C

σ1
t (u

1)·v1
htdΓ−

∫
Γ2
C

σ2
t (u

2)·v2
htdΓ = L(vh).

We use now (5) to write:

a(u,v)− 1

2

∫
Γ1
C

σ1
n(u1)(v1

hn + v2
hn ◦Π1)dΓ− 1

2

∫
Γ2
C

σ2
n(u2)(v2

hn + v1
hn ◦Π2)dΓ

− 1

2

∫
Γ1
C

σ1
t (u

1) · (v1
ht − v2

ht ◦Π1)dΓ− 1

2

∫
Γ2
C

σ2
t (u

2) · (v2
ht − v1

ht ◦Π2)dΓ = L(vh).

With the writings: For any θ ∈ R,{
v1
hn + v2

hn ◦Π1 = (v1
hn + v2

hn ◦Π1 − θγ1σ1
n(v1

h)) + θγ1σ1
n(v1

h)

v2
hn + v1

hn ◦Π2 = (v2
hn + v1

hn ◦Π2 − θγ2σ2
n(v2

h)) + θγ2σ2
n(v2

h){
v1
th − v2

ht ◦Π1 = (v1
ht − v2

ht ◦Π1 − θγ1σ1
t (v

1
h)) + θγ1σ1

t (v
1
h)

v2
th − v1

ht ◦Π2 = (v2
ht − v1

ht ◦Π2 − θγ2σ2
t (v

2
h)) + θγ2σ2

t (v
2
h),

the writing (7) of the contact conditions and the notations (12), we obtain (21).

2.2 Well-posedness

To prove well-posedness of our formulation, we first need the following classical discrete trace
inequality.

Lemma 2.2. There exists C > 0, independent of the parameter γ0 and of the mesh size h, such
that:

(22) ‖γi
1
2σit(v

i
h)‖20,Γic + ‖γi

1
2σin(vih)‖20,Γic ≤ Cγ0‖vih‖21,Ωi ,

for all vih ∈ Vi
h.

Proof. The inequality (22) is obtained using a scaling argument as in [4] Lemma 3.2 .
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We then show in Theorem 2.3 that the problem (20) is well-posed using an argument in ( [3])
for M-type and pseudo-monotone operators. In the proof of the well-posedness, two cases are
discused: θ = 1 and θ 6= 1.

Theorem 2.3. Suppose that γ0 > 0 is sufficiently small or θ = −1, then Problem (20) admits
one unique solution uh in Vh. When θ = −1 we do not need the assumption of smallness of γ0.

Proof. Using the Riesz representation theorem, we define a (non-linear) operator
B : Vh → Vh, by means of the formula:

(Buh,vh)1 = Aθ(uh,vh) +
1

2

∫
Γ1
C

1

γ1
P 1
n,θγ1(vh)[P 1

n,γ1(uh)]+dΓ

+
1

2

∫
Γ2
C

1

γ2
P 2
n,θγ2(vh)[P 2

n,γ2(uh)]+dΓ +
1

2

∫
Γ1
C

1

γ1
P1
t,θγ1(vh) · [P1

t,γ1(uh)]γ1s1dΓ

+
1

2

∫
Γ2
C

1

γ2
P2
t,θγ2(vh) · [P2

t,γ2(uh)]γ2s2dΓ,

for all uh,vh ∈ Vh, and where (., .)1 stands for the scalar product in V.
Note that Problem (20) is well-posed if and only if Bh is a one-to-one operator. Let vh,wh ∈ Vh.
Using the expression Pnθγ(.) = Pnγ (.) + (1− θ)σn(.) (and same for Pt

θγ) we have:

(Bvh −Bwh,vh −wh)1 = a(vh −wh,vh −wh)

+

2∑
i=1

(
− θ

2
‖γi

1
2σ(vih −wi

h)n‖20,ΓiC

+
1

2

∫
ΓiC

1

γi
P in,γi(vh −wh)

(
[P in,γi(vh)]+ − [P in,γi(wh)]+

)
dΓ

+
(1− θ)

2

∫
ΓiC

1

γi
γiσin(vih −wi

h)
(
[P in,γi(vh)]+ − [P in,γi(wh)]+

)
dΓ

+
1

2

∫
ΓiC

1

γi
Pi
t,γi(vh −wh).

(
[Pi

t,γi(vh)]γisi − [Pi
t,γi(wh)]γisi

)
dΓ

+
(1− θ)

2

∫
ΓiC

1

γi
γiσit(v

i
h −wi

h).
(
[Pi

t,γi(v
i
h)]γisi − [Pi

t,γi(wh)]γisi
)
dΓ
)

We use Cauchy-Schwarz inequality and the proprieties (9) and (10) to get:

(Bvh −Bwh,vh −wh)1 ≥ a(vh −wh,vh −wh) +
2∑
i=1

(
− θ

2
‖γi

1
2σ(vih −wi

h)n‖20,ΓiC

+
1

2
‖γi−

1
2
(
[P in,γi(vh)]+ − [P in,γi(wh)]+

)
‖20,ΓiC +

1

2
‖γi−

1
2
(
[Pi

t,γi(vh)]γisi − [Pi
t,γi(wh)]γisi

)
‖20,ΓiC

−|1− θ|
2
‖γi−

1
2
(
[P in,γi(vh)]+ − [P in,γi(wh)]+

)
‖0,ΓiC‖γ

i
1
2σin(vih −wi

h)‖0,ΓiC

−|1− θ|
2
‖γi−

1
2
(
[Pi

t,γi(vh)]γisi − [Pi
t,γi(wh)]γisi

)
‖0,ΓiC‖γ

i
1
2σit(v

i
h −wi

h)‖0,ΓiC
)
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If θ = 1, we use the coercivity of a(·, ·) and the property (22) to get:

(Bvh −Bwh,vh −wh)1 ≥ a(vh −wh,vh −wh)−
2∑
i=1

1

2
‖γi

1
2σi(vih −wi

h)ni‖20,ΓiC

≥ a(vh −wh,vh −wh)−
2∑
i=1

1

2

(
‖γi

1
2σin(vih −wi

h)‖20,ΓiC + ‖γi
1
2σit(v

i
h −wi

h)‖20,ΓiC

)
≥ C‖vh −wh‖21

when γ0 is sufficiently small.
We suppose now that θ 6= 1 ; let β > 0. Applying Young inequality yields:

(Bvh −Bwh,vh −wh)1 ≥ a(vh −wh,vh −wh) +

2∑
i=1

(
− θ

2
‖γi

1
2σi(vih −wi

h)ni‖20,ΓiC

+
1

2
‖γi−

1
2
(
[P in,γi(vh)]+ − [P in,γi(wh)]+

)
‖20,ΓiC +

1

2
‖γi−

1
2
(
[Pi

t,γi(vh)]γisi − [Pi
t,γi(wh)]γisi

)
‖20,ΓiC

−|1− θ|
4β

‖γi−
1
2
(
[P in,γi(vh)]+ − [P in,γi(wh)]+

)
‖20,ΓiC −

|1− θ|β
4

‖γi
1
2σin(vih −wi

h)‖20,ΓiC
−|1− θ|

4β
‖γi−

1
2
(
Pi
t,γi(vh)]γisi − [Pi

t,γ(wh)]γisi
)
‖20,ΓiC −

|1− θ|β
4

‖γi
1
2σit(v

i
h −wi

h)‖20,ΓiC

)
= a(vh −wh,vh −wh) +

2∑
i=1

(
− 1

2

(
θ +
|1− θ|β

2

)(
‖γi

1
2σin(vih −wi

h)‖20,ΓiC

+‖γi
1
2σit(v

i
h −wi

h)‖20,ΓiC

)
+

1

2

(
1− |1− θ|

2β

)(
‖γi−

1
2
(
[P in,γi(vh)]+ − [P in,γi(wh)]+

)
‖20,ΓiC

+‖γi−
1
2
(
[Pi

t,γi(vh)]γisi − [Pi
t,γi(wh)]γisi

)
‖20,ΓiC

))
Choosing β =

|1− θ|
2

and γ0 sufficiently small we get:

(Bvh −Bwh,vh −wh)1 ≥ a(vh −wh,vh −wh)− (1 + θ)2

8

2∑
i=1

(
‖γi

1
2σin(vih −wi

h)‖20,ΓiC

+ ‖γi
1
2σit(v

i
h −wi

h)‖20,ΓiC

)
.

(Bvh −Bwh,vh −wh)1 ≥ C‖v −w‖21

Note that, when θ = −1 we do not need the assumption of smallness of γ0.
Let us show, now, that B is hemicontinuous. Since Vh is a vector space, it is sufficient to show
that:

ϕ : [0, 1] → R
t 7→ (B(vh − twh),wh)1

17



is a continuous real function for all vh,wh ∈ Vh. Let t, s ∈ [0, 1] , we compute:

|ϕ(t)− ϕ(s)| =
∣∣∣(B(vh − twh)−B(vh − swh),wh)1

∣∣∣
=
∣∣∣Aθ((s− t)wh,wh) +

2∑
i=1

(1

2

∫
ΓiC

1

γi
P in,θγi(wh)

(
[P inγi(vh − twh)]+ − [P inγi(vh − swh)]+

)
dΓ

+
1

2

∫
ΓiC

1

γi
Pi
t,θγi(wh)

(
[Pi

tγi(vh − twh)]γisi − [Pi
tγi(vh − swh)]γisi

)
dΓ
)∣∣∣

≤ |s− t|Aθ(wh,wh) +
2∑
i=1

(1

2

∫
ΓiC

1

γi
|P in,θγi(wh)|

∣∣∣[P inγi(vh − twh)]+ − [P inγi(vh − swh)]+

∣∣∣dΓ

+
1

2

∫
ΓiC

1

γi
‖Pi

t,θγi(wh)‖
∥∥∥[Pi

tγi(vh − twh)]γisi − [Pi
tγi(vh − swh)]γisi

∥∥∥dΓ
)

We use the bounds |[a]+ − [b]+| ≤ |a− b| for all a, b ∈ R and
∥∥[a]γigi − [b]γigi

∥∥ ≤ ‖a− b‖ for all
a,b ∈ Rd−1 to deduce that:∫

ΓiC

1

γi
|P in,θγi(wh)|

∣∣∣[P inγi(vh − twh)]+ − [P inγi(vh − swh)]+

∣∣∣dΓ

+

∫
ΓiC

1

γi
‖Pi

t,θγi(wh)‖
∥∥∥[Pi

tγi(vh − twh)]γisi − [Pi
tγi(vh − swh)]γisi

∥∥∥dΓ

≤
∫

ΓiC

1

γi
|P in,θγi(wh)|

∣∣∣P inγi(vh − twh)− P inγi(vh − swh)
∣∣∣dΓ

+

∫
ΓiC

1

γi
‖Pi

t,θγi(wh)‖
∥∥∥Pi

tγi(vh − twh)−Pi
tγi(vh − swh)

∥∥∥dΓ

≤|s− t|
(∫

ΓiC

1

γi
|P in,θγi(wh)||P inγi(wh)|dΓ +

∫
ΓiC

1

γi
‖Pi

t,θγi(wh)‖‖Pi
tγi(wh)‖dΓ

)
It results that:

|ϕ(t)− ϕ(s)| ≤ |s− t|
(
Aθ(wh,wh) +

2∑
i=1

(∫
ΓiC

1

2γi
|P in,θγi(wh)||P inγi(wh)|dΓ

+

∫
ΓiC

1

2γi
‖Pi

t,θγi(wh)‖‖Pi
tγi(wh)‖dΓ

))
.

Which means that ϕ is Lipschitz, so that B is hemicontinuous. We finally apply the Corollary
15 (p.126) of [3] to conclude that B is a one to one operator.

2.3 A priori error analysis

Our Nitsche-based method (20) converges in a optimal way as the mesh parameter h vanishes.
This is proved in the Theorem 2.5, where we provide an estimate of the displacement error in
H1-norm and of the contact error in L2(ΓiC)-norm. We establish, first, the following abstract
error estimate.

Theorem 2.4. Suppose that u is a solution to (1-5) and belongs to (H
3
2

+ν(Ω1))d×(H
3
2

+ν(Ω2))d

with ν > 0.
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1. We suppose γ0 sufficiently small. The solution uh to the discrete problem (20) satisfies
the following error estimate:
(23)

2∑
i=1

(
‖ui − uih‖21,Ωi +

1

2
‖γi

1
2
(
σin(ui) +

1

γi
[P in,γ(uh)]+

)
‖20,ΓiC +

1

2
‖γi

1
2
(
σit(u

i) +
1

γi
[Pi

t,γi(uh)]γisi
)
‖20,ΓiC

)
≤ C inf

vh∈Vh

( 2∑
i=1

‖ui − vih‖21,Ωi +
1

2
‖γi−

1
2 (ui − vih)‖20,ΓiC +

1

2
‖γi

1
2σ(ui − vih)ni‖20,ΓiC

)
,

where C > 0 is a constant independent of h, u and γ0.
2. If θ = −1, for all γ0 > 0, the solution uh to the problem (20) satisfies the estimate (23)

with C > 0 a constant independent of h and u, but eventually dependent of γ0.

Proof. Let vh ∈ Vh, using the coercivity and the continuity of the form a(·, ·) as well as Young’s
inequality, we obtain:

α
2∑
i=1

‖ui − uih‖21,Ωi ≤ a(u− uh,u− uh)

= a(u− uh,u− vh) + a(u− uh,vh − uh)

≤ C
2∑
i=1

‖ui − uih‖1,Ωi‖ui − vih‖1,Ωi + a(u− uh,vh − uh)

≤ α

2

2∑
i=1

‖ui − uih‖21,Ωi +
C2

2α

2∑
i=1

‖ui − vih‖21,Ωi

+a(u,vh − uh)− a(uh,vh − uh).

Therefore, we get:

α

2

2∑
i=1

‖ui − uih‖21,Ωi ≤
C2

2α

2∑
i=1

‖ui − vih‖21,Ωi + a(u,vh − uh)− a(uh,vh − uh).

Since u solves (1-5) and uh solves (20), using the Lemma 2.1 yields:

α

2

2∑
i=1

‖ui − uih‖21,Ωi ≤
C2

2α

2∑
i=1

‖ui − vih‖21,Ωi +
2∑
i=1

(
− θ

2

∫
ΓiC

γiσi(uih − ui)ni · σi(vih − uih)nidΓ

+
1

2

∫
ΓiC

1

γi
Pi
t,θγi(vh − uh) ·

(
[Pi

t,γi(uh)]γisi − [Pi
t,γi(u)]γisi

)
dΓ(24)

+
1

2

∫
ΓiC

1

γi
P in,θγi(vh − uh)

(
[P in,γi(uh)]+ − [P in,γi(u)]+

)
dΓ
)
.

Let β1 > 0. The first integral term in (24) is bounded, using Cauchy-Schwarz and Young’s
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inequalities, as follows:
(25)

−θ
2

∫
ΓiC

γiσi(uih − ui)ni · σi(vih − uih)nidΓ

=
θ

2

∫
ΓiC

γiσi(vih − uih)ni · σi(vih − uih)nidΓ− θ

2

∫
ΓiC

γiσi(vih − ui)ni · σi(vih − uih)nidΓ

≤ θ

2
‖γi

1
2σi(vih − uih)ni‖20,ΓiC +

|θ|
2
‖γi

1
2σi(vih − ui)ni‖0,ΓiC‖γ

i
1
2σi(vih − uih)ni‖0,ΓiC

≤ β1θ
2

4
‖γi

1
2σi(vih − ui)ni‖20,ΓiC +

1

2

(
θ +

1

2β1

)
‖γi

1
2σi(vih − uih)ni‖20,ΓiC .

For the second integral term in (24), we can write:∫
ΓiC

1

γi
Pi
t,θγi(vh − uh) ·

(
[Pi

t,γi(uh)]γisi − [Pi
t,γi(u)]γisi

)
dΓ

=

∫
ΓiC

1

γi
Pi
t,γi(vh − u) ·

(
[Pi

t,γi(uh)]γisi − [Pi
t,γi(u)]γisi

)
dΓ

+

∫
ΓiC

1

γi
Pi
t,γi(u− uh) ·

(
[Pi

t,γi(uh)]γisi − [Pi
t,γi(u)]γisi

)
dΓ

+

∫
ΓiC

(1− θ)σit(vih − uih) ·
(
[Pi

t,γi(uh)]γisi − [Pi
t,γi(u)]γisi

)
dΓ.

Using the bound (10) and applying two times Cauchy-Schwarz and Young’s inequalities, we
obtain for β2 > 0 and β3 > 0:
(26)∫

ΓiC

1

γi
Pi
t,θγi(vh − uh) ·

(
[Pi

t,γi(uh)]γisi − [Pi
t,γi(u)]γisi

)
dΓ

≤ 1

2β2

∥∥∥γi 12(σit(ui) +
1

γi
[Pi

t,γi(uh)]γisi
)∥∥∥2

0,ΓiC

+
β2

2
‖γi−

1
2 [Pi

t,γi(vh − u)]γisi‖20,ΓiC

−
∥∥∥γi 12(σit(ui) +

1

γi
[Pi

t,γi(uh)]γisi
)∥∥∥2

0,ΓiC

+
|1− θ|

2β3

∥∥∥γi 12(σit(ui) +
1

γi
[Pi

t,γi(uh)]γisi
)∥∥∥2

0,ΓiC

+
|1− θ|β3

2
‖γi

1
2σit(v

i
h − uih)‖20,ΓiC .

In a similar way, we can upper bound the third integral term of (24).

Noting that:

(27)
‖γi−

1
2 [Pi

t,γi(vh − u)]γisi‖20,ΓiC
+‖γi−

1
2 [P i

n,γi
(vh − u)]+‖20,ΓiC ≤ 2‖γi−

1
2 (ui − vih)‖2

0,ΓiC
+ 2‖γi

1
2σi(ui − vih)ni‖2

0,ΓiC
,

and using estimates (25) and (26) in (24), we obtain:
(28)

α

2

2∑
i=1

‖ui − uih‖21,Ωi ≤
C2

2α

2∑
i=1

‖ui − vih‖21,Ωi

+
1

2

2∑
i=1

(
(
β1θ

2

2
+ β2)‖γi

1
2σi(ui − vih)ni‖20,ΓiC + β2‖γi

− 1
2 (ui − vih)‖20,ΓiC

+
(
− 1 +

1

2β2
+
|1− θ|

2β3

)(
‖γi

1
2 (σit(u

i) +
1

γi
[Pi

t,γi(uh)]γsi)‖20,ΓiC + ‖γi
1
2 (σin(ui) +

1

γ
[P in,γi(uh)]+)‖20,ΓiC

)
+
( 1

2β1
+ θ +

|1− θ|β3

2

)(
‖γi

1
2σi(vih − uih)ni‖20,ΓiC

))
.
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We use now the estimate (22) to get:

(29) ‖γi
1
2σi(vih − uih)ni‖20,ΓiC ≤ Cγ

1
2
0 ‖v

i
h − uih‖21,Ωi ≤ Cγ

1
2
0 (‖vih − ui‖21,Ωi + ‖uih − ui‖21,Ωi)

For a fixed θ ∈ R we choose β2 and β3 large enough that:

−1 +
1

2β2
+
|1− θ|

2β3
< −1

2

Choosing γ0 small enough in (29) and putting the estimate in (28), we establish the first state-
ment of the theorem.

We consider now the case θ = −1 in which (28) becomes:

α

2

2∑
i=1

‖ui − uih‖21,Ωi ≤
C2

2α

2∑
i=1

‖ui − vih‖21,Ωi

+
1

2

2∑
i=1

(
(
β1

2
+ β2)‖γi

1
2σi(ui − vih)ni‖20,ΓiC + β2‖γi

− 1
2 (ui − vih)‖20,ΓiC

+
(
− 1 +

1

2β2
+

1

β3

)(
‖γi

1
2 (σit(u

i) +
1

γi
[Pi

t,γi(uh)]γisi)‖20,ΓiC + ‖γi
1
2 (σin(ui) +

1

γi
[P in,γi(uh)]+)‖20,ΓiC

)
+
( 1

2β1
− 1 + β3

)(
‖γi

1
2σi(vih − uih)ni‖20,ΓiC

))
.

Let be given η > 0. Set β1 = 1
2η , β2 = 1 + 1

η , β3 = 1 + η. And so we arrive at:

α

2

2∑
i=1

‖ui − uih‖21,Ωi ≤
C2

2α

2∑
i=1

‖ui − vih‖21,Ωi

+
1

2

2∑
i=1

(
(

5

4η
+ 1)‖γi

1
2σi(ui − vih)ni‖20,ΓiC +

1 + η

η
‖γi−

1
2 (ui − vih)‖20,ΓiC

− η

2(1 + η)

(
‖γi

1
2 (σit(u

i) +
1

γi
[Pi

t,γi(uh)]γisi)‖20,ΓiC + ‖γi
1
2 (σin(ui) +

1

γi
[P in,γi(uh)]+)‖20,ΓiC

)
+2η‖γi

1
2σi(vih − uih)ni‖20,ΓiC

)
Set η =

α

16C2γ0
, where C is the constant in (29) to conclude the proof of the theorem.

Theorem 2.5. Suppose that u = (u1,u2) is a solution to problem (1-5) and belongs to (H
3
2

+ν(Ω1))d×
(H

3
2

+ν(Ω2))d with 0 < ν ≤ 1

2
if k = 1 and 0 < ν ≤ 1 if k = 2 ( k is the degree of the finite

element method). If θ = −1 or γ0 is sufficiently small, the solution uh to the problem (20)
satisfies the following estimate:
(30)

2∑
i=1

(
‖ui − uih‖21,Ωi +

1

2
‖γi

1
2
(
σin(ui) +

1

γi
[P in,γi(uh)]+

)
‖20,ΓiC +

1

2
‖γi

1
2
(
σit(u

i) +
1

γi
[Pi

t,γi(uh)]γisi
)
‖20,ΓiC

)
≤ Ch

1
2

+ν
2∑
i=1

‖ui‖23
2

+ν,Ωi

where C is a constant independent of u and h.
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Proof. To establish (30) we need to bound the right terms in estimate (23). We choose vih = Iihui
where Iih stands for the Lagrange interpolation operator mapping onto Vi

h. The estimation of
the Lagrange interpolation error in the H1-norm on a domain is classical (see, e.g., [8], [2] and [9])

(31) ‖ui − Iihui‖1,Ωi ≤ Ch
1
2

+ν‖ui‖ 3
2

+ν,Ωi

for −1
2 < ν ≤ k − 1

2 .

Let E in ΓiC be an edge of triangle K ∈ T ih, we have:

‖γi−
1
2 (ui − Iihui)‖0,E ≤ Ch

1
2

+ν‖ui‖1+ν,E ≤ Ch
1
2 ‖ui‖1+ν,E

A summation on all the edges E , with the trace theorem yields:

(32) ‖γi−
1
2 (ui − Iihui)‖0,ΓiC ≤ Ch

1
2

+ν

k ‖ui‖1+ν,ΓiC
≤ Ch

1
2 ‖ui‖ 3

2
+ν,Ωi

From Appendix A of [7] (see also [11]), we get the following estimate:

(33) ‖γi
1
2σ(ui − Iihui)ni‖0,ΓiC ≤ Ch

1
2 ‖ui‖ 3

2
+ν,Ωi

By inserting (31), (32) and (33) onto (23) we get (30).

3 Numerical experiments

In this section, we test the Nitsche’s unbiased method (20) for two/three-dimensional contact
between two elastic bodies Ω1 and Ω2. The first body is a disk/sphere and the second is a rect-
angle/rectangular cuboid. This situation is not strictly a Hertz type contact problem because
Ω2 is bounded.
The tests are performed with P1 and P2 Lagrange finite elements. The finite element library Get-
fem++ is used. The discrete contact problem is solved by using a generalized Newton method.
Further details on generalized Newton’s method applied to contact problems can be found for
instance in [21] and the references therein.
The accuracy of the method is discussed for the different cases with respect to the finite element
used, the mesh size, and the value of the parameters θ and γ0. We perform experiences with
a frictionless contact to compare the results of the formulation with other formulations using
Nitsche’s method (given mainly in [10] and [7]). Moreover, we present the convergence curves
for a frictional contact in figures 10 and 11.

The numerical tests in two dimensions (resp. three dimensions) are performed on a domain
Ω =]−0.5, 0.5[2 (resp. Ω =]−0.5, 0.5[3) containing the two bodies Ω1 and Ω2 . The first body is
a disk of radius 0.25 and center (0,0) (resp. a sphere of radius 0.25 and center (0,0,0)), and the
second is rectangle ]−0.5, 0.5[×]−0.5,−0.25[ (resp. Ω2 =]−0.5, 0.5[2×]−0.5, 0.25[). The contact
surface Γ1

C is the lower semicircle and Γ2
C is the top surface of Ω2 (i.e. Γ1

C = {x ∈ ∂Ω1;x2 ≤ 0}
and Γ2

C = {x ∈ ∂Ω2;x2 = −0.25} (resp. Γ1
C = {x ∈ ∂Ω1;x3 ≤ 0} and Γ2

C = {x ∈ ∂Ω2;x3 =
−0.25})). A Dirichlet condition is prescribed on the bottom of the rectangle (resp. cuboid).
Since no Dirichlet condition is applied on Ω1 the problem is only semi-coercive. To overcome the
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non-definiteness coming from the free rigid motions, the horizontal displacement is prescribed
to be zero on the two points of coordinates (0,0) and (0,0.1) (resp. (0,0,0) and (0,0,0.1)) which
blocks the horizontal translation and the rigid rotation. The projector Π1 is defined from Γ1

C

to Γ2
C in the vertical direction. All remaining parts of the boundaries are considered traction

free. For simplicity, we consider a dimensionless configuration with Lamé coefficients λ = 1 and
µ = 1 and a volume density of vertical force fv = −0.25.

The expression of the exact solution being unknown, the convergence is studied with respect
to a reference solution computed with a P2 element on a very fine mesh for θ = −1. (see Figures
2 and 3).

Figure 2: 2D Numerical reference solution with contour plot of Von Mises stress. h = 1/400, γ0 =
1/100 and P2 elements.
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Figure 3: Cross-section of 3D numerical reference solution with contour plot of Von Mises stress.
h = 1/50, γ0 = 1/100 and P2 elements.

3.1 Convergence in the two dimensional frictionless case

We perform a numerical convergence study on the three methods θ = 1, θ = 0 and θ = −1 for
a fixed parameter γ0 = 1

100 (chosen small in order to have the convergence for the three cases)
and friction coefficients s1 = s2 = 0. In each case we plot the relative error in percentage in the
H1-norm of the displacement in the two bodies and the error of the L2 norm of the Nitsche’s
contact condition on Γ1

C and Γ2
C . The error of the Nitsche’s contact condition is equal to:

‖γi
1
2
(
σin(uhiref ) + 1

γi
[P in,γ(uh)]+

)
‖0,ΓiC

‖γ
1
2σin(uhiref )‖0,ΓiC

, where uhiref is the reference solution on Ωi.

On figures 4, 5 and 6 the curves of relative error in percentage for Lagrange P1 finite elements
are plotted. The convergence rate in a H1-norm is about 1 for the three values of θ which is in
this case optimal, according to Theorem 2.5. On figures 7, 8 and 9 the same experiments are
reported for Lagrange P2 finite elements. The convergence rate for the three cases is about 1.5
which correspond to optimality as well.
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Figure 4: Convergence curves in 2D for the method θ = 1, with γ0 = 1/100 and P1 finite
elements for the relative H1-norm of the error (a) and the relative L2(ΓC)-norm of the error (b).
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Figure 5: Convergence curves in 2D for the method θ = 0, with γ0 = 1/100 and P1 finite
elements for the relative H1-norm of the error (a) and the relative L2(ΓC)-norm of the error (b).
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Figure 6: Convergence curves in 2D for the method θ = −1, with γ0 = 1/100 and P1 finite
elements for the relative H1-norm of the error (a) and the relative L2(ΓC)-norm of the error (b).
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Figure 7: Convergence curves in 2D for the method θ = 1, with γ0 = 1/100 and P2 finite
elements for the relative H1-norm of the error (a) and the relative L2(ΓC)-norm of the error (b).
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Figure 8: Convergence curves in 2D for the method θ = 0, with γ0 = 1/100 and P2 finite
elements for the relative H1-norm of the error (a) and the relative L2(ΓC)-norm of the error (b).
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Figure 9: Convergence curves in 2D for the method θ = −1, with γ0 = 1/100 and P2 finite
elements for the relative H1-norm of the error (a) and the relative L2(ΓC)-norm of the error (b).
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3.2 Convergence in 2D frictional contact case

We establish, as well, the convergence curves for a frictional contact (Tresca friction) with a
friction coefficient s1 = 0.1 with the method θ = −1, for a Nitsche’s parameter γ0 = 1

100 . The
frictional contact curves are presented for P1 and P2 Lagrange elements in figures 10 and 11.
Similar curves are obtained with other values of θ. The optimal convergence is obtained, as well
in the frictional case with a convergence rate close to the frictionless case.
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Figure 10: Convergence curves in 2D frictional case for the method θ = −1, with γ0 = 1/100
with P1 finite elements for the relative H1-norm of the error (a) for the L2(ΓC)-norm of the
error(b).
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Figure 11: Convergence curves in 2D frictional case for the method θ = −1, with γ0 = 1/100
with P2 finite elements for the relative H1-norm of the error (a) for the L2(ΓC)-norm of the
error(b).

3.3 Convergence in the three dimensional case

The three-dimensional tests are similar to the two-dimensional ones. The error curves with
θ = −1 and P1 Lagrange elements are presented in Fig. 12. Very similar conclusions can be
drawn compared with the two-dimensional case.
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(a) (b)

Figure 12: Convergence curves in 3D for the method θ = −1, with γ0 = 1/100 for the relative
H1-norm of the error with P1 finite elements (a) and P2 finite elements(b) .

As expected the optimal convergence is obtained in H1 and L2(ΓC)-norm for all methods in
good accordance with Theorem 2.5.

3.4 Comparison with other methods

To better compare the proposed method with other methods we present in the following the
convergence curves of our test case with the convergence curves of the biased Nitsche’s formu-
lation and the augmented Lagrangian method ( [7, 15]).
The curves are exactly the same for P1 elements and very similar for P2 ones and the convergence
rate of the unbiased Nitsche’s method is equal to other formulations’ rate. We note that, for
different values of θ the convergence is obtained for Nitsche’s method (biased and unbiased) and
the augmented Lagrangian method generally with a close number of iterations of the Newton
algorithm.
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Figure 13: Comparison of convergence curves in 2D frictionless case for the method θ = −1,
with γ0 = 1/100 and P1 finite elements for the relative H1-norm of the error on Ω1 (a) and on
Ω2 (b) for different formulations of contact.
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Figure 14: Comparison of convergence curves in 2D frictionless case for the method θ = −1,
with γ0 = 1/100 and P2 finite elements for the relative H1-norm of the error on Ω1 (a) and on
Ω2 (b) for different formulations of contact.

3.5 Influence of the parameter γ0

The influence of γ0 on the H1-norm of the error for P2 elements is plotted in Figure 15 in the
frictionless case and on Figure 16 with a friction coefficient s1 = 0.1. It is remarkable that the
error curves for the smallest value of γ0 are rather the same for the three values of θ.
The variant θ = 1 is the most influenced by the value of γ0. It converges only for γ0 very small
(≤ 10−1). The method for θ = 0 gives a much large window of choice of γ0 though it has to
remain small to keep a good solution. In agreement with the theoretical result of Theorem 2.5,
the influence of γ0 on the method θ = −1 is limited.

(a) (b)

Figure 15: Influence of γ0 on the H1-norm error for different values of θ in the 2D frictionless
case and with P2 finite elements on Ω1 (a) and on Ω2 (b).
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(a) (b)

Figure 16: Influence of γ0 on the H1-norm error for different values of θ in the 2D frictional case
and with P2 finite elements on Ω1 (a) and on Ω2 (b).

A strategy to guarantee an optimal convergence is of course to consider a sufficiently small
γ0. However, the price to pay is an ill-conditioned discrete problem. The study presented in [21]
shows that Newton’s method has important difficulties to converge when γ0 is very small because
the nonlinear discrete system (20) becomes very stiff in this case.

The accuracy of the method was discussed for the different cases with respect to the finite
element used, the mesh size, the value of the parameters θ and γ0 and the friction coefficient in
the two and three dimension cases. The theoretical results are, generally, confirmed by numerical
tests, especially the optimal convergence and the influence of the parameter γ0.
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