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Abstract

This paper deals with a one-dimensional wave equation being subjected to a unilateral
boundary condition. An approximation of this problem combining the finite element and
mass redistribution methods is proposed. The mass redistribution method is based on a
redistribution of the body mass such that there is no inertia at the contact node and the
mass of the contact node is redistributed on the other nodes. The convergence as well as
an error estimate in time are proved. The analytical solution associated with a benchmark
problem is introduced and it is compared to approximate solutions for different choices of
mass redistribution. However some oscillations for the energy associated with approximate
solutions obtained for the second order schemes can be observed after the impact. To over-
come this difficulty, an new unconditionally stable and a very lightly dissipative scheme is
proposed.
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1 Introduction

The present paper highlights some new numerical results obtained for a one-dimensional elas-
todynamic contact problem. Dynamical contact problems play a crucial role in structural me-
chanics as well as in biomechanics and a considerable amount of engineering and mathematical
literature has been dedicated to this topic last decades. One of the main difficulties in the
numerical treatment of such problems is the physically meaningful non-penetration condition
that is usually modeled by using the so-called Signorini boundary condition. Basically, the
lack of well-posedness results mainly originates from the hyperbolic structure of the problem
which gives rise to shocks at the contact interfaces. Then the resulting nonsmooth and non-
linear variational inequalities lead to fundamental difficulties in mathematical analysis as well
as in the development of numerical integration schemes. In view to avoid these difficulties, the
non-penetration condition is quite often relaxed in the numerical integration schemes. We may
also observe that most of unconditionally stable schemes for the linear elastodynamic problems
lose their unconditional stability in the presence of contact conditions. Among them the clas-
sical Newmark method is the most popular one. However, its unsatisfactory handling of the
non-penetration conditions may lead to artificial oscillations at the contact boundary and even
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give rise to an undesirable energy blow-up during the time integration, the reader is referred
to [KLR08, DEP11, DP*13] as well as to the references therein for further details. To overcome
these difficulties, some numerical methods based on the Newmark scheme for solving impact
problems are proposed in [CTK91]. However, these methods lead to some important energy
losses when the contact takes place even if the time step is taken sufficiently small. On the
other hand, the energy conserving time integration schemes of Newmark type are introduced
in [LaL02, LaC97, ChL98] as well as in the monograph [Lau03], but these schemes are unable to
circumvent the undesirable oscillations at the contact boundary. These unphysical oscillations
are avoided by the numerical methods developed in [DKE08] but these methods are still energy
dissipative.

Another approach consists in removing the mass at the contact nodes and it was originally
investigated in [KLR08] and later on used in [HHW08, Hau10, Ren10, CHR14]. This approach
prevents the oscillations at the contact boundary and leads to well-posed and energy conserving
semi-discretization of elastodynamic contact problems (see [LiR11, DP*12]). However, some
numerical experiments, exhibited in [DP*13], highlight a phase shift in time between analytical
and approximate solutions. Note that an analytical piecewise affine and periodic solution to our
problem can be obtained by using the characteristics method while approximate solutions are
exhibited for different time discretizations. This phase shift in time comes from the removed
mass at the contact nodes for approximate problems which is unacceptable for many applications.
Therefore a variant of the mass redistribution method is proposed in this work. More precisely,
this new method consists in transferring the mass of the contact node on the other nodes meaning
that the total mass of the considered material is preserved. Numerical experiments presented
in this work show that the undesirable phase shift between the approximate and analytical
solutions disappears and all the properties of the mass redistribution method mentioned above
are preserved. They highlight that the weighted mass redistribution method is particularly well
adapted to deal with contact problems.

The paper is organized as follows. In Section 2, the mathematical formulation of a one
dimensional elastodynamic contact problem is presented. The contact is modeled by using the
Signorini boundary conditions in displacement, which are based on a linearization of the physi-
cally meaningful non penetrability of the masses. Then a space semi-discretization based on a
variant of the mass redistribution method is presented in Section 3. This variant of the mass
redistribution method consists in transferring the mass of the contact node on the other nodes
while the inertia vanishes at the contact node. The error estimate in time as well as the conver-
gence result are established. A benchmark problem is introduced in Section 4 and its analytical
solution is exhibited. Then numerical experiments for some space-time discretizations like the
Crank-Nicolson or the backward Euler methods are reported. These numerical experiments
highlight that the choice of the nodes where the mass is transferred plays a crucial role to get
a better approximate solution. However some oscillations for the energy associated with ap-
proximate solutions for the second order schemes like Crank-Nicolson scheme can be observed
after the impact. To overcome the difficulty, a hybrid scheme mixing the Crank-Nicolson as well
as the midpoint methods and having the properties to be an unconditionally stable scheme is
proposed in Section 5.

2 Mathematical formulation

The motion of an elastic bar of length L which is free to move as long as it does not hit a
material obstacle is studied, see Figure 1. The assumptions of small deformations are assumed
and the material of the bar is supposed to be homogeneous. Let u(x, t) be the displacement
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at time t ∈ [0, T ] , T > 0 of the material point of spatial coordinate x ∈ [0, L] . Let f(x, t)
denotes a density of external forces, depending on time and space. The mathematical problem
is formulated as follows:

utt(x, t)− uxx(x, t) = f(x, t), (x, t) ∈ (0, L)× (0, T ), (2.1)

with Cauchy initial data

u(x, 0) = u0(x) and ut(x, 0) = v0(x), x ∈ (0, L), (2.2)

and Signorini and Dirichlet boundary conditions at x = 0 and x = L , respectively,

0 ≤ u(0, t) ⊥ ux(0, t) ≤ 0 and u(L, t) = 0, t ∈ [0, T ]. (2.3)

Here ut
def
= ∂u

∂t and ux
def
= ∂u

∂x . The orthogonality has a natural meaning: an appropriate duality
product between two terms of relation vanishes. It can be alternatively stated as the inclusion

ux(0, t) ∈ ∂I[0,∞)(u(0, t)), (2.4)

where I[0,+∞) is the indicator function of the interval [0,+∞) , and ∂I[0,∞) is its subdifferential.

L

x = 0

Figure 1: An elastic bar vibrating on impacting obstacle.

Let us describe the weak formulation associated with (2.1)–(2.3). For that purpose, it is

convenient to introduce the following notations: V
def
= {u ∈ H1(0, L) : u(L) = 0} , H def

= L2(0, L) ,

V def
= {u ∈ L2(0, T ; V) : ut ∈ L2(0, T ; H)} and the convex set K def

= {u ∈ V : u(0, ·) ≥ 0 a. e.} .
Thus the weak formulation associated with (2.1)–(2.3) obtained by multiplying (2.1) by v − u

and by integrating formally this result over QT
def
= (0, L)× (0, T ) reads:

Find u ∈ K such that

−
∫ L

0
v0(x)(v(x, 0)−u0(x))dx−

∫
QT

ut(x, t)(vt(x, t)−ut(x, t))dxdt+∫
QT

ux(x, t)(vx(x, t)−ux(x, t))dxdt ≥
∫
QT

f(x, t)(v(x, t)−u(x, t))dxdt

for all v ∈ K for which there exists ζ > 0 with v = u for t ≥ T − ζ.

(2.5)

For Problem (2.5), the following existence and uniqueness result was proved in [LeS84, Theorem
14].
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Theorem 2.1. Let u0 ∈ H3/2(0, L) ∩ V , v0 ∈ H1/2(0, L) , f ∈ H3/2(QT ) be given. Then there
exists a unique solution u ∈ L∞(0, T ; H3/2(0, L) ∩ V ) ∩W1,∞(0, T ; H1/2(0, L)) of Problem (2.5)
and the energy balance equation∫ L

0
(|ut(x, τ)|2 + |ux(x, τ)|2)dx =

∫ L

0
(|v0(x)|2 + |u0x(x)|2)dx+ 2

∫
Qτ

f(x, t)ut(x, t)dxdt (2.6)

holds for all τ ∈ [0, T ] .

Existence and uniqueness results are obtained for a similar situation of a vibrating string
with concave obstacle in one dimensional space in [Sch80] and also for a wave equation with
unilateral constraint at the boundary in a half-space of RN in [LeS84]. An existence result for
a wave equation in a C2 -regular bounded domain constrained by an obstacle at the boundary
in R2 is proven in [Kim89]. The reader is also referred to [DP*12].

3 Finite element discretization and convergence of the mass re-
distribution method

This section is devoted to semi-discrete problems in space associated with (2.5) by using the
mass redistribution method, see [KLR08, DP*12], assuming that the hypotheses of Theorem 2.1
are satisfied. More precisely, the weighted mass redistribution method consists in transferring
the mass of the contact node on the other nodes implying that the node at the contact boundary
evolves in a quasi-static way. To this aim, we choose an integer m > 1, and put h

def
= L

m (mesh

size) with the goal to let m tend to +∞ . We introduce the spaces Vh
def
= {vh ∈ C0([0, L]) :

vh|[ih,(i+1)h] ∈ P1, i = 0, . . . ,m − 1, vh(L) = 0} where P1 is the space of polynomials of degree
less than or equal to 1. We consider the following discretized problem:

(Puh
)



Find uh : [0, T ] → Vh and λh : [0, T ] → R such that for all vh ∈ Vh∫ L

0

(
(uh,tt−f)vh+uh,xvh,x

)
dx = −λhvh(0),

λh(t) ∈ ∂I[0,∞)(uh(0, t)),

uh(·, 0) = u0h and uh,t(·, 0) = v0h,

where u0h and v0h belong to Vh and they are the approximations of the initial displacement and
velocity u0 and v0 , respectively, and λh is the Lagrange multiplier representing the contact
force. The inclusion in (Puh

) (cf. also (2.4)) can be written as a variational inequality in the
form {

λh(t)(uh(0, t)−z) ≥ 0 for all z ≥ 0

uh(0, t) ≥ 0.

The approximation uh are taken in the following form

uh(x, t) =

m−1∑
k=0

uk(t)ϕk(x),

where the basis functions ϕk are assumed piecewise linear, namely we have

ϕ0(x)
def
=

{
1− x

h if x ∈ [0, h)

0 if x ≥ h
and ϕk(x)

def
=


x
h − k + 1 if x ∈ [(k−1)h, kh)

k + 1− x
h if x ∈ [kh, (k+1)h)

0 otherwise



A weighted finite element mass redistribution method for dynamic contact problems 5

for k = 1, . . . ,m − 1. Notice that uk(t) = uh(kh, t) for k = 0, . . . ,m − 1 and t ∈ [0, T ] . The
test functions vh are also considered in the form

vh(x, t) =

m−1∑
k=0

vk(t)ϕk(x).

It is convenient for numerical computations to redistribute the mass and modify the problem
(Puh

) as follows:

(Pmod
uh

)



Find uh : [0, T ] → Vh and λh : [0, T ] → R such that for all vh ∈ Vh∫ L

0

(
(uh,tt−f)vhwh+uh,xvh,x

)
dx = −λhvh(0),

λh(t) ∈ ∂I[0,∞)(uh(0, t)),

uh(·, 0) = u0h and uh,t(·, 0) = v0h,

where wh are weight functions which converge to 1 in suitable sense as h tends to 0. We choose
them to be piecewise constant

wh(x) =
m−1∑
j=0

wjχ[(j−1)h,jh](x),

continuously extended to x = 1, where χA is the characteristic function of the set A , that is
χA(x) = 1 if x ∈ A and χA(x) = 0 if x /∈ A . A function uh is a solution of (Pmod

uh
) if and only

if (Pmod
uh

) is satisfied for vh = ϕi for all i = 0, . . . ,m− 1. Hence, we can rewrite (Pmod
uh

) in the
following form

m−1∑
k=0

ük(t)

∫ L

0
ϕk(x)ϕi(x)wh(x)dx+

m−1∑
k=0

uk(t)

∫ L

0
ϕ′
k(x)ϕ

′
i(x)dx

= −λh(t)ϕi(0) +

∫ L

0
f(x, t)wh(x)ϕi(x)dx,

λh(t) ∈ ∂I[0,∞)(uh(0, t)),

uh(·, 0) = u0h and uh,t(·, 0) = v0h,

for all i = 0, · · · ,m− 1. This is a problem of the type

(Pmod*
uh

)


m−1∑
k=0

Mikük(t) +

m−1∑
k=0

Sikuk(t) = fi(t)− λh(t)δi0,

λh(t) ∈ ∂I[0,∞)(uh(0, t)),

uh(·, 0) = u0h and uh,t(·, 0) = v0h,

where δi0 is the Kronecker symbol, fi(t) =
∫ L
0 f(x, t)wh(x)ϕi(x) dx . The symmetric matrices

M = (Mik) and S = (Sik) can be computed directly from the formulas

Mik =

∫ L

0
ϕk(x)ϕi(x)wh(x)dx and Sik =

∫ L

0
ϕ′
k(x)ϕ

′
i(x)dx,

that is

M00 =
h

3
w0, Mii =

h

3
(wi−1+wi) for i = 1, . . . ,m− 1, Mi,i−1 =

h

6
wi for i = 0, . . . ,m− 2,

S00 =
1

h
, Sii =

2

h
for i = 1, . . . ,m− 1, Si,i+1 = −1

h
for i = 0, . . . ,m− 2.



6 F. Dabaghi, P. Krejč́ı, A. Petrov, J. Pousin, Y. Renard

In matrix representation, we have

M =
h

3



w0
1
2w0 0 · · · · · · 0

1
2w0 w0 + w1

1
2w1

. . .
...

0 1
2w1 w1 + w2

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . . 1

2wm−3 wm−3 + wm−2
1
2wm−2

0 · · · · · · 0 1
2wm−2 wm−2 + wm−1


and

S =
1

h



1 −1 0 · · · · · · 0

−1 2 −1
. . .

...

0 −1 2
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . −1 2 −1
0 · · · · · · 0 −1 1


.

Note that M and S are usually called mass and stiffness matrices, respectively. Consider first
the problem (Pmod*

uh
) for i = 0. We have

h

3
w0

(
ü0+

1

2
ü1

)
+

1

h
(u0−u1) = f0 − λh(t),

λh(t) ∈ ∂I[0,∞)(uh(0, t)).
(3.1)

For w0 > 0, this produces oscillations of u0 which are not observed in the limit. To eliminate
these unphysical oscillations which are purely due to the numerical method, we assume w0 = 0,
so that (3.1) becomes (note that f0 = 0 if w0 = 0)

1

h
(u1−u0) ∈ ∂I[0,∞)(u0), (3.2)

or equivalently,

u0(t) = u+1 (t), (3.3)

where u+1 denotes the positive part of u1 . Then for i = 1, we obtain from (Pmod*
uh

) that

h

3
w1(ü1+

1

2
ü2) +

1

h
(2u1−u0−u2) = f1

and taking (3.2) into account, this yields

h

3
w1

(
ü1+

1

2
ü2

)
+

1

h
(2u1−u2) = f1 +

1

h
u+1 .

We have thus eliminated the singularities and problem (Pmod*
uh

) can be equivalently stated as

(Pmod**
uh

)


m−1∑
k=1

hM∗
ikük +

m−1∑
k=1

1

h
S∗
ikuk = fi +

1

h
u+1 δ1i for all i = 1, . . . ,m− 1,

uh(·, 0) = u0h and uh,t(·, 0) = v0h,
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with a Lipschitz continuous nonlinearity on the right hand side, and with matrices

M∗
ik =

1

h
Mik for i, k = 1, . . . ,m− 1 and S∗

ik = hSik for i, k = 1, . . . ,m− 1.

Note that (Pmod**
uh

) is related to a more general problem of Fuč́ık spectrum (or ‘jumping nonlin-
earity’ in the old terminology); the reader is referred to [Fuc76] for further details. Furthermore,
we may observe that (Pmod**

uh
) can be rewritten as follows:

(Pmod
Uh

)


Find Uh : [0, T ] → Rm−1 such that

hM∗Üh +
1

h
S∗Uh = F +

1

h
u+1 e1,

U0
h = U0 and U̇0

h = V 0,

where e1
def
= (1, 0, . . . , 0)T , Uh

def
= (u1, . . . , um−1)

T , F
def
= (f1, . . . , fm−1)

T , U0 and V 0 approx-
imate the initial position and velocity. Finally, the discrete energy associated with problem
(Pmod

Uh
) is given by

Eh(t)
def
=

(h
2
U̇T
hM

∗U̇h +
1

2h
Uh

TS∗Uh −
1

2h
(u+1 )

2 − Uh
TF

)
(t). (3.4)

We assume that the weights wi are chosen in such a way that M∗ is invertible and the
matrix norm |||(M∗)−1||| of its inverse (M∗)−1 is bounded above by a constant independent of
h . Below, we consider the following situations:

(Mod 1) w1 = . . . = wm−1
def
= 1 (no redistribution);

(Mod 2) w1 = . . . = wm−1
def
= m/(m− 1) (uniform redistribution);

(Mod 3) w1 = 2, w2 = . . . = wm−1
def
= 1 (nearest neighbor redistribution).

In these cases, the condition on (M∗)−1 is satisfied.

Under this hypothesis, (Pmod
Uh

) can be rewritten as follows:

(Pmod
Uh

)


Find Uh : [0, T ] → Rm−1 × Rm−1 such that

Uh,t = G(Uh),

Uh(0) = (U0, V 0)T,

where we put Uh
def
= (Uh, Vh)

T and G(Uh)
def
= ( 1h(M

∗)−1Vh,− 1
hS

∗Uh + F + 1
hu

+
1 e1)

T . Observe
that G : Rm−1×Rm−1 → Rm−1 ×Rm−1 is Lipschitz continuous. More specifically, for U1

h ,U2
h ∈

Rm−1 × Rm−1 we have

‖G(U1
h)−G(U2

h)‖ ≤ C

h
‖U1

h − U2
h‖, (3.5)

with a constant C independent of h , where ‖ · ‖ denotes the canonical norm in Rm−1 ×Rm−1 .
Existence and uniqueness results for the problem (Pmod

Uh
) follow from the Lipschitz continuity

of G(Uh) , for further details the reader is referred to [CrM84]. In particular, we have Uh ∈
C1([0, T ];Rm−1 × Rm−1) .

Lemma 3.1. Let N ∈ N be given and let ∆t = T
N be the time step. Then the time discretization

error for the Crank-Nicolson method to solve the semi-discrete problem (Pmod
Uh

) is of the order
∆t .
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Proof. Keeping h fixed, we define discrete times tn = n∆t for n = 0, . . . , N and define the
Crank-Nicolson discretization of Problem (Pmod

Uh
) by the recurrent formula

Un+1
h − Un

h

∆t
=

1

2
(G(Un+1

h )+G(Un
h )), n = 0, . . . , N − 1, (3.6)

with initial condition U0
h = Uh(0).

We compare the exact solution Uh of (Pmod
Uh

) with the piecewise linear interpolation Ûh of the
discrete sequence Un

h , which is defined by the formula

Ûh(t) = Un
h +

1

∆t
(t− tn)(Un+1

h − Un
h ) for t ∈ [tn, tn+1), n = 0, . . . , N − 1, (3.7)

continuously extended to tN = T . We have by (3.6) that

Ûh,t −G(Ûh) = Dn(t), (3.8)

where for t ∈ (tn, tn+1) we have

‖Dn(t)‖ =

∥∥∥∥12(G(Un+1
h )+G(Un

h ))−G(Ûh)

∥∥∥∥ ≤ C

h
‖Un+1

h − Un
h ‖ =

C∆t

h
‖Ûh,t‖.

We cannot expect to obtain a higher order estimate, since G is not continuously differentiable
because of the presence of the term u+1 . On the other hand, Uh is of class C1 , and we may
denote

Ch = max
t∈[0,T ]

‖Uh,t(t)‖.

We thus have

‖Uh,t − Ûh,t‖ ≤ ‖G(Uh)−G(Ûh)‖+
C∆t

h
‖Uh,t − Ûh,t‖+

ChC∆t

h
(3.9)

for a. e. t ∈ (0, T ) . By virtue of (3.5) we obtain for ∆t < h/C that

‖Uh,t − Ûh,t‖ ≤ C

h− C∆t
‖Uh − Ûh‖+

ChC∆t

h− C∆t
a. e. in (0, T ) , (3.10)

and the assertion follows from the Gronwall argument.

The next goal is to prove the convergence of solutions to Problem (Pmod
uh

) (in the form

(Pmod
Uh

)) as h→ 0. We first observe that (Pmod
uh

) is equivalent to

(Pmod
var )



Find uh : [0, T ] → Vh such that for all vh ∈ K ∩Vh∫
QT

(uh,tt(x, t)−f(x, t))(vh(x, t)−uh(x, t))wh(x)dxdt

+

∫
QT

uh,x(x, t)(vh,x(x, t)−uh,x(x, t))dxdt ≥ 0,

uh(x, 0) = u0h(x) and uh,t(x, 0) = v0h(x).

We assume that the initial data u0h and v0h satisfy

lim
h→0

(
‖u0h−u0‖V + ‖v0h−v0‖H

)
= 0. (3.11)

The convergence of the solution uh of (Pmod
var ) to the solution of (2.5) is proved below. To this

aim, the same techniques detailed in the proof of Theorem 4.3 in [DP*12] are used. Here, we
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allow for general weight functions including the above cases (Mod 1)–(Mod 3), while in [DP*12],
only the case (Mod 1) was considered. The reader is also referred to [ScB89].

Choosing in (Pmod
uh

) the test function vh(x) = uh,t(x, t) , we see that for all τ ∈ [0, T ] the
following energy relation∫ L

0
(|uh,t(x, τ)|2wh(x)+|uh,x(x, τ)|2)dx

=

∫ L

0
(|v0h(x)|2wh(x)+|u0h,x(x)|2)dx+ 2

∫
Qτ

f(x, t)uh,t(x, t)wh(x)dxdt

(3.12)

holds.

Theorem 3.2. Assume that the hypotheses of Theorem 2.1 and condition (3.11) hold. Let there
exist two constants Cw > cw > 0 such that cw ≤ wh(x) ≤ Cw for all h > 0 and a. e. x ∈ (h,L) ,
and let

lim
h→0

∫ L

0
|wh(x)− 1|dx = 0 .

Then the solutions uh of (Pmod
var ) converge in the strong topology of V to the unique solution u

of (2.5) as h tends to 0 .

Proof. The energy relation (3.12) and the Gronwall lemma imply the existence of a constant
C > 0 independent of h such that

sup
h>0

sup
τ∈[0,T ]

∫ L

0
(|uh,t(x, τ)|2wh(x) + |uh,x(x, τ)|2)dx ≤ C . (3.13)

We have ∫ h

0
|uh,t(x, τ)|2dx =

∫ h

0
|u̇0(τ)ϕ0(x) + u̇1(τ)ϕ1(x)|2dx , (3.14)

hence, by virtue of (3.3),∫ h

0
|uh,t(x, τ)|2dx ≤ C

∫ L

0
|uh,t(x, τ)|2wh(x)dx (3.15)

with a constant C independent of h . We thus have

sup
h>0

sup
τ∈[0,T ]

(‖uh(·, τ)‖V+‖uh,t(·, τ)‖H) ≤ C .

Let us define W def
= {u ∈ L∞(0, T ; V) : ut ∈ L∞(0, T ; H)} endowed with the norm ‖u‖W

def
=

ess supt∈[0,T ]

(
‖u(·, t)‖V + ‖ut(·, t)‖H

)
. We conclude that there exists ū ∈ W and a subsequence,

still denoted by uh , such that

uh ⇀ ū in L∞(0, T ; V) weak-* , (3.16a)

uh,t ⇀ ūt in L∞(0, T ; H) weak-* . (3.16b)

Then, we may deduce from (3.16) that

uh ⇀ ū in W weak-* . (3.17)

Notice that for all α < 1
2 , we have W ↪→ C0, 1

2 (QT ) ↪→↪→ C0,α(QT ) hold (see [ScB89]), where
↪→ and ↪→↪→ denote the continuous and compact embeddings, respectively. Finally we find

uh → ū in C0,α(QT ) (3.18)
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for all α < 1
2 . Furthermore, uh and ū belong to K . Our aim is to establish that ū = u , that is,

the limit ū coincides with the solution u of (2.5). However the elements of K are not smooth
enough in time, then they should be approximated before being projected onto Vh . Indeed
this projection violates the constraint at x = 0, and therefore, the elements of K need another
approximation in order to satisfy the constraint strictly.

Assume that v ∈ K is an admissible test function for (2.5), that is, v = ū for t ≥ T − ζ .
For η ≤ ζ/4 we define an auxiliary function

vη(x, t)
def
=

ū(x, t) +
1

η

∫ t+η

t
(v(x, s)− ū(x, s))ds+ k(η)(L− x)ψ(t) if t ≤ T − η,

ū(x, t) if t > T − η,

where ψ is a smooth and positive function with the property ψ = 1 on [0, T − η/2] and ψ = 0
on [T − η/4, T ] . We precise now how the parameter k(η) to ensure that vη ∈ K ∩ L∞(0, T ; V)

holds. Since ū ∈ C0, 1
2 (QT ) , it follows that there exists a constant C∗ > 0 such that∣∣∣ū(0, t)− 1

η

∫ t+η

t
ū(0, s)ds

∣∣∣ ≤ 1

η

∫ t+η

t
|ū(0, t)− ū(0, s)|ds

≤ C∗‖ū‖W
η

∫ η

0

√
sds =

2

3
C∗‖ū‖W

√
η.

Then for all t ≤ T − η/2, we obtain

vη(0, t) ≥
1

η

∫ t+η

t
v(0, s)ds− 2

3
C∗‖ū‖W

√
η + k(η)Lψ(t).

The choice k(η) = 5
3LC

∗‖ū‖W
√
η ensures that for all t ≤ T − η

2 , we get

vη(0, t) ≥ C∗‖ū‖W
√
η. (3.19)

Let Dh : V → Vh be the piecewise linear interpolation mapping defined by the formula

Dh(z)(x) = z((i− 1)h) +
1

h
(x− (i− 1)h)(z(ih)− z((i− 1)h)) (3.20)

for z ∈ V and x ∈ [(i − 1)h, ih) , continuously extended to x = mh = L . From the Mean
Continuity Theorem it follows that

lim
h→0

‖Dh(z)− z‖H = 0 and lim
h→0

‖Dh(z)− z‖V = 0 . (3.21)

The next step consists in choosing an adequate test function. Let us define

vh(·, t)
def
= uh(·, t) +Dh(vη − ū)(·, t) (3.22)

for all t ∈ [0, T ] . We have vh(0, t) = uh(0, t)+vη(0, t)− ū(0, t) , and from (3.18)–(3.19) it follows
that vh ∈ K ∩Vh , for all t provided h is small enough.

Introducing (3.22) into (Pmod
var ) and integrating by parts, it comes that

−
∫ L

0
ūh,t(x, 0)Dh(vη − ū)(x, 0)wh(x)dx−

∫
QT

ūh,t(x, t)Dh(vη,t − ūt)(x, t)wh(x)dxdt

+

∫
QT

ūh,x(x, t)(Dh(vη − ū)x(x, t)dxdt ≥
∫
QT

f(x, t)Dh(vη − ū)(x, t)wh(x)dxdt.

(3.23)



A weighted finite element mass redistribution method for dynamic contact problems 11

By (3.21), we have for h→ 0 the strong convergences

Dh(vη,t − ūt) → vη,t − ūt in L2(0, T ; H), (3.24a)

Dh(vη,t − ūt) → vη − ū in L2(0, T ; V). (3.24b)

We now use (3.16) and (3.24) to pass to the limit as h→ 0 in (3.23) and find that

−
∫ L

0
v0(vη − ū)(x, 0)dx−

∫
QT

ūt(x, t)(vη,t − ūt)(x, t)dxdt

+

∫
QT

ūx(x, t)(vη,x − ūx)(x, t)dxdt ≥
∫
QT

f(x, t)(vη − ū)(x, t)dxdt .

(3.25)

The passage to the limit in (3.25) as η → 0 is easy, and we conclude that ū = u is the desired
solution of (2.5).

It remains to prove that uh converge strongly in V . Passing to the limit as h→ 0 in (3.12)
we obtain for a. e. τ ∈ (0, T ) that

lim
h→0

∫ L

0
(|uh,t(x, τ)|2wh(x)+|uh,x(x, τ)|2)dx

=

∫ L

0
(|v0(x)|2+|u0x(x)|2)dx+

∫
Qτ

f(x, t)ut(x, t)dxdt

=

∫ L

0
(|ut(x, τ)|2+|ux(x, τ)|2)dx.

(3.26)

Since uh ⇀ u weakly-* in W and wh → 1 strongly in every Lp with p <∞ , we conclude that
uh,t

√
wh converge weakly to ut in L2(0, T ; H). Since the norms of (uh,t

√
wh, uh,x) in L2(0, T ; H)

converge to the norm of (ut, ux) in L2(0, T ; H), we see that uh converge strongly to u in V .
The limit solution u is unique, hence the whole system {uh : h > 0} converges to u as h→ 0,
which completes the proof.

4 The wave equation with Signorini and Dirichlet boundary
conditions

We consider a bar of length L = 1 clamped at one end and compressed at t = 0. The bar
elongates under the elasticity effect; as soon as it reaches a rigid obstacle at time t1 then it
stays in contact during the time t2 − t1 and it takes off at time t2 , see Figure 2. This problem
can be described mathematically by (2.1)–(2.3) with the density of external forces f(x, t) = 0.
We first describe how an analytical piecewise affine and periodic solution to our problem can be
obtained by using the characteristics method, the reader is referred to [DP*13] for a detailed
explanation. Then approximate solutions for some time-space discretizations and for several
mass redistributions are exhibited and their efficiency are discussed.

4.1 Analytical solution

The domains considered here are defined by (0, L)× (ti, ti+1) , i = 0, 1, 2, corresponding to the
phases before, during and after the impact, respectively. Each of them are divided into four
regions as it is represented on Figure 2. We choose below ti = i , i = 0, . . . , 3.
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u = 0
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v = 0

u =
1−x

2

t3 = 3

Figure 2: The regions allowing to determine the value of u.

The domain (0, 1)× (0, 1) corresponding to the phase before the impact is split into four regions
according to the characteristics lines x+ t and x− t . Therefore

u(x, t) =

{
1−x
2 in the regions I, III,

1−t
2 in the regions II, IV.

(4.1)

The domain (1, 2)× (0, 1) corresponding to the phase during the impact is also divided into four
regions. Then the solution (4.1) evaluated in the region IV allows us to infer that ut(·, 1) = −1

2
and we conclude that

u(x, t) =


t−t1
2 in the region I,−x

2 in the region II,
x−1
2 in the region III,

t−t1−1
2 in the region IV.

(4.2)

The domain (2, 3)× (0, 1) corresponding to the phase after the impact is split into four regions.
By using (4.2), we get u(·, 2) = 0 and ut(·, 2) = 1

2 which leads to

u(x, t) =

{
t−t2
2 in the regions I, II,

1−x
2 in the regions III, IV.

Since u(·, 3) = u0 and ut(·, 3) = v0 , the solution u(x, t) is periodic of period 3. Finally, note
that λ = ux(0, ·) .

4.2 Comparisons between different mass redistributions for some time-space
discretizations

The time discretization is introduced in this section. To this aim, we divide the time interval
[0, T ] by n + 1 discrete time-points such that 0 = t0 < t1 < . . . < tn = T . Let Un

h , U̇n
h , Ün

h

and λn be the approximations of the displacement Uh(tn) , the velocity U̇h(tn) , the accelera-
tion Üh(tn) and the Lagrange multiplier λ(tn) , respectively. We deal with some approximate
solutions to Problem (2.1)–(2.3) obtained by using several time-stepping methods like the New-
mark, backward Euler and Paoli-Schatzman methods. For each of these time-stepping methods,
approximate solutions (Un

h , λ
n) are exhibited for several mass redistributions and they are com-

pared to the analytical solution (u, λ) introduced in Section 4.1. In the numerical experiments
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presented below, we distinguish the cases that the mass of the contact node that is not redis-
tributed (Mod 1), or uniformly redistributed on all the other nodes (Mod 2), or redistributed
only on the nearest neighbor (Mod 3), according to the classification given in the previous sec-
tion. We show that the efficiency of the mass redistribution method depends on the position
of the nodes where the mass is redistributed. Indeed, the numerical experiments highlight that
the closer from the contact node the mass is transferred better the approximate solutions are
obtained. Then, it is not surprising that the best approximate solution can be expected and
indeed it is obtained in the case (Mod 3), where all the mass of the contact node is transferred
on the node preceding the contact node, see Figures 3, 5 and 7. Note that the numerical simu-
lations presented below were performed by employing the finite element library Getfem++ (see
[ReP]).

4.2.1 The Newmark methods

The Taylor expansions of displacements and velocities neglecting terms of higher order are
the underlying concept of the family of Newmark methods, see [New59]. These methods are
unconditionally stable for linear elastodynamic problem for γ ≥ 1

2 and β ≥ 1
4(

1
2+γ)

2 , see
[Hug87, Kre06], but they are also the most popular time-stepping schemes used to solve contact
problems. The discrete evolution for the contact problem (2.1)–(2.3) is described by the following
finite difference equations:

find Un+1
h : [0, T ] → Rm and λn : [0, T ] → R such that:

Un+1
h = Un

h +∆tU̇n
h +

(
1
2−β

)
∆t2Ün

h + β∆t2Ün+1
h ,

U̇n+1
h = U̇n

h + (1−γ)∆tÜn
h + γ∆tÜn+1

h ,

MÜn+1
h + SUn+1

h = −λn+1e0 + Fn+1,

0 ≤ un+1
0 ⊥ λn+1 ≤ 0,

(4.3)

where ∆t is a given times step and (β, γ) are the algorithmic parameters, see [Hug87, Lau03].
Note that U0

h , U̇
0
h and λ0 are given and Ü0

h is evaluated by using the third identity in (4.3). We
are particularly interested in the case where (β, γ) = (14 ,

1
2) . This method is called the Crank-

Nicolson method, it is second-order consistent and unconditionally stable in the unconstrained
case. However the situation is quite different in the case of contact constraints, indeed the order
of accuracy is degraded; for further details, the reader is referred to [Hug87, Kre06, GrH07].
The analytical solution (u, λ) exhibited in Section 4.1 and the approximate solutions (Un

h , λ
n)

obtained for different mass redistributions are represented on Figure 3. The approximate solution
obtained for the nearest neighbor redistribution (Mod 3 on Figure 3) gives much better accuracy
than the mass redistribution on all the nodes preceding the contact node (see Mod 2 on Figure 3)
and no mass redistribution. This highlighted that the choice for the mass redistribution plays a
crucial role.
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Figure 3: Comparison of analytical (u, λ) and approximate (Un
h , λ

n) solutions for some modified
mass matrices in the contact node with Crank-Nicolson method (∆x = 1

6 and ∆t = 1
100 ).
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Figure 4: Comparison of the energy associated with analytical solution and the energy associated
with approximate solutions for some modified mass matrices with Crank-Nicolson method (∆x =
1
6 and ∆t = 1

100 ). The figure on the right hand side represents a zoom of the figure on the left
hand side.

4.2.2 The backward Euler method

We are concerned here with backward Euler’s method which for the contact problem (2.1)–(2.3)
is described by the following finite difference equations:

find Un+1
h : [0, T ] → Rm and λn : [0, T ] → R such that:

Un+1
h = Un

h +∆tU̇n+1
h ,

U̇n+1
h = U̇n

h +∆tÜn+1
h ,

MÜn+1
h + SUn+1

h = −λn+1e0 + Fn+1,

0 ≤ un+1
0 ⊥ λn+1 ≤ 0.

(4.4)
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Note that U0
h , U̇

0
h and λ0 are given and Ü0

h is evaluated by using the third equality in (4.4).
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Figure 5: Comparison of analytical (u, λ) and approximate (Un
h , λ

n) solutions for some modified
mass matrices in the contact node with backward Euler method (∆x = 1

6 and ∆t = 1
100 ).
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Figure 6: Comparison of energy associated with analytical solution and energy associated with
approximate solutions for modified mass matrices with backward Euler method (∆x = 1

6 and
∆t = 1

100 ).

4.2.3 The Paoli-Schatzman methods

We focus on the so-called Paoli–Schatzman method that consists to fix the contact constraint at
an intermediate time step. Indeed the method proposed below is a slight modification of Paoli-
Schatzman method (see [Pao01, PaS02]) which takes into account the kernel of the modified
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mass matrix. A simple application of Paoli-Schatzman method based on Newmark scheme to
our problem with γ = 1

2 leads to

find Un+1
h : [0, T ] → Rm and λn : [0, T ] → R such that:

M(Un+1
h −2Un

h+U
n−1
h )

∆t2
+ S(βUn+1

h +(1−2β)Un
h+βU

n−1
h ) = −λne0 for all n ≥ 2,

0 ≤ un,e0 =
un+1
0 + eun−1

0

1 + e
⊥ λn ≤ 0,

U0 and U1 given.

(4.5)

Here e belongs to [0, 1] and is aimed to be interpreted as a restitution coefficient. Note that
U0
h and U1

h are given data and U1
h can be evaluated by a one step scheme. We may observe

that taking M =Mmod in (4.5), we are not able to resolve the problem on the kernel of Mmod .
That is the reason why, SUn−1

h as well as SUn
h are projected on the orthogonal of the kernel

of M . We are interested here in Paoli-Schatzman’s method with (β, e) = (14 , 1). Note that the
stability result immediately follows from [DuP06].
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Figure 7: Comparison of analytical (u, λ) and approximate (Un
h , λ

n) solutions for some modified
mass matrices in the contact node with Paoli-Schatzman method (∆x = 1

6 and ∆t = 1
100 ).
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Figure 8: Comparison of energy associated with analytical solution and energy associated with
approximate solutions for some modified mass matrices with Paoli-Schatzman method (∆x = 1

6
and ∆t = 1

100 ).

5 A hybrid time integration scheme

Generally, the second order schemes illustrate one of the difficulties when solving contact prob-
lems, namely some oscillations for energy associated with approximate solutions obtained for
different choices of mass redistribution can be observed after each impact takes place, for in-
stance see Figure 4. To overcome this problem, a hybrid time integration scheme is introduced
in this section. More precisely, the scheme (Pmod

Uh
) is modified to be an unconditionally stable

and a second order in time scheme; the linear part of (Pmod
Uh

) is discretized by using the midpoint
method while the non-linear part is discretized by using the Crank-Nicolson as well as the mid-
point methods. Observe that the midpoint method for the linear problem is energy conserving.
The proposed hybrid time integration scheme inspired from [CHR14] reads as follows:

(Phyb
Uh

)


Find Uh : [0, T ] → Rm−1 such that

Un+1
h = Un

h + ∆t
2

(
U̇n+1
h + U̇n

h

)
U̇n+1
h = U̇n

h + ∆t
2

(
Ün+1
h + Ün

h

)
M∗Ü

n+ 1
2

h + S∗U
n+ 1

2
h = F +

H(−un
1 )

2h (un1 + un+1
1 )+e1 +

H(un
1 )

2h ((un1 )
+ + (un+1

1 )+)e1,

where V n+ 1
2

def
= V n+1+V n

2 and H is defined by

H(s)
def
=


1 if s > 0,
1
2 if s = 0,

0 otherwise.

We assume that the density of external forces F does not depend on time. Observe that
1
2h((u

n
1 )

++(un+1
1 )+)e1 and 1

2h(u
n
1 +u

n+1
1 )+e1 correspond to the contribution of Crank-Nicolson

and midpoint methods, respectively.
The discrete evolution of the total energy is preserved in the purely elastic case when the

density of external forces vanishes, see [Lau03]. However, the situation quite different in the case
of contact constraints, the order of accuracy is degraded and , for further details see [Hug87,

Kre06, GrH07]. Let us define now the energy evolution by ∆En
h

def
= En+1

h − En
h , where En

h is
assumed to be given by an algorithmic approximation of the energy Eh(tn) defined in (3.4). We
evaluate now ∆En

h by using the midpoint scheme. More precisely, we get

∆En
h = (U̇

n+ 1
2

h )TM∗(∆tÜ
n+ 1

2
h ) + (U

n+ 1
2

h )TS∗(∆tU̇
n+ 1

2
h )− (∆tU̇

n+ 1
2

h )TF +
((un

1 )
+)2−((un+1

1 )+)2

2h .
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Since M∗ is symmetric matrix, it comes that

∆En
h = ∆t(U̇n+

1
2 )T

(H(−un
1 )

2h (un1 + un+1
1 )+e1 +

H(un
1 )

2h ((un1 )
+ + (un+1

1 )+)e1
)
+

((un
1 )

+)2−((un+1
1 )+)2

2h ,

which implies that

∆En
h = (un+1

1 −un1 )
(H(−un

1 )
2h (un1 + un+1

1 )+e1 +
H(un

1 )
2h ((un1 )

+ + (un+1
1 )+)e1

)
+

((un
1 )

+)2−((un+1
1 )+)2

2h .

We establish below that the energy evolution by ∆En
h is nonpositive, namely the energy asso-

ciated with the hybrid scheme decreases in time. This result is summarized in the following
lemma:

Lemma 5.1. Assume that the density of external forces F does not depend on time. Then the
energy evolution ∆En

h is nonpositive for all n > 0 .

Proof. We distinguish five cases depending on the values taken by un1 and un+1
1 . More precisely,

we get

1. If un1 < 0 and un+1
1 ≤ 0 then

∆En
h = 1

2h(u
n+1
1 − un1 )(u

n
1 + un+1

1 )+ − 1
2h((u

n+1
1 )+)2 = 0.

2. If un1 < 0 and un+1
1 > 0 then

∆En
h = 1

2h(u
n+1
1 − un1 )(u

n
1 + un+1

1 )+ − 1
2h((u

n+1
1 )+)2 < 0.

3. If un1 > 0 and un+1
1 ≤ 0 then

∆En
h = 1

2h(u
n+1
1 − un1 )(u

n
1 )

+ + 1
2h((u

n
1 )

+)2 < 0.

4. If un1 > 0 and un+1
1 > 0 then

∆En
h = 1

2h(u
n+1
1 − un1 )((u

n+1
1 )+ + (un1 )

+)− 1
2h((u

n+1
1 )+)2 + 1

2h((u
n
1 )

+)2 = 0.

5. If un1 = 0 then

∆En
h = 1

2h(u
n+1
1 )(un+1

1 )+ − 1
2h((u

n+1
1 )+)2 = 0.

This proves the lemma.

The numerical experiments presented on Figures 9 and 10 are obtained by using a new hybrid
scheme where the mass of the contact node is redistributed on the node preceding the contact.
This scheme circumvents the undesirable oscillations at the contact boundary and it prevents
as well the small oscillations of the evolution of total energy occurring for Newmark methods
(see Figures 4 and 8). Finally, the energy evolution ∆En

h is nonpositive for all n > 0 and it is
much smaller than the energy evolution obtained by using implicit Euler method (compare with
Figure 6).
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Figure 9: Comparison of analytical (u, λ) and approximate (Un
h , λ

n) solutions for the modified
mass matrix (Mod 3), in the contact node with hybrid scheme (∆x = 1

6 and ∆t = 1
100 ).
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Figure 10: Comparison of the energy associated with analytical solution and the energy asso-
ciated with approximate solutions for the modified mass matrix (Mod 3) with hybrid scheme
(∆x = 1

6 and ∆t = 1
100 ). The figure on the right hand side represents a zoom of the figure on

the left hand side.

6 Conclusion

This manuscript focuses on the weighted mass redistribution method which is particularly well
adapted to approximate elastodynamic contact problems. This method leads to well-posed
and energy conserving semi-discretization of elastodynamic contact problems. Furthermore,
it prevents some undesirable oscillations at the contact boundary as well as some phase shift
between approximate and analytical solutions. The efficiency of the weighted mass redistribution
method depends on the position of the nodes where the mass is redistributed; the closer the
mass of the contact node is transferred, the better are the approximate solutions. These results
seem also valid in higher space dimensions, and in particular in 2D space (see Table 1). Indeed
the weight mass redistribution on the nodes before the contact (Mod 3) gives much better
absolute error than in the cases where any redistribution is done (Mod 1) or where the mass
is just eliminated from the contact nodes (Mod 2). The total error rates are evaluated for
the space steps ∆x1 = ∆x2 = 0.05. However the energy associated with the Newmark and
Paoli-Schatzman methods in time have small oscillations, (see for instance Figure 4), which is
unacceptable from a mechanical view point. Then a new hybrid scheme having the properties
to be an unconditionally stable has been developed giving some promising numerical results. It
allow to have a far better approximation compared to existing unconditionally stable scheme on
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the implicit Euler scheme (compare Figures 6 and 10).

Method employed Mod 1 Mod 2 Mod 3

‖Un
h−U‖L∞(0,T ;L2((0,1)×(0,1))) 0.0104 0.0046 0.0038

Table 1: Total error rates for the displacement
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