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Abstract The aim of this paper is to provide some mathematical results for the
discrete problem associated to contact with Coulomb friction, in linear elasticity,
when finite elements and Nitsche method are considered. We consider both static
and dynamic situations. We establish existence and uniqueness results under
appropriate assumptions on physical (friction coefficient) and numerical parameters.
These results are complemented by a numerical assessment of convergence.

Many problems involve frictional contact, and are approximated numerically using
the Finite Element Method. In this paper we deal with the Nitsche method originally
proposed in [18] and that aims at treating the boundary or interface conditions
in a weak sense, thanks to a consistent penalty term. It differs in this aspect
from standard penalization techniques and from mixed methods since no Lagrange
multiplier is needed and no discrete inf sup condition must be fullfilled. A Nitsche-
based FEM has been proposed and analyzed for static frictionless unilateral contact
in [5, 8], and extended to dynamic contact in [6, 7]. Very few works deal with
the adaptation of Nitsche’s method to frictional contact (see [9] where recent
achievements in applying Nitsche’s method to some contact and friction problems
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are summarized): the Tresca’s friction problem is only considered in [4, 11] and
numerical results for Coulomb friction are presented in [17, 20].

In this paper we are interested in some existence and uniqueness results at the
discrete level in statics and dynamics. For the continuous static friction problem,
existence of solutions hold when the friction coefficient is small enough [13]. In
[19], a uniqueness result has been obtained with the assumption that a regular
solution exists and that the friction coefficient is sufficiently small. At the discrete
level, difficulties appear in the numerical analysis of the method [14]. Results of
well-posedness for frictional contact in the dynamic case are presented in [16] for a
normal compliance model, in [1, 3] for discrete systems of particles and in [12, 15]
for the modified mass method.

1 Setting and Discretization

We consider an elastic body £2 in R? with d = 2, 3. Small strain assumptions are
made. The boundary 92 of §2 is polygonal (d = 2) or polyhedral (d = 3). The
outward unit normal vector on 92 is denoted n. We suppose that 92 consists in
three nonoverlapping parts I'p on which the body is clamped, I'y and the contact
boundary I'c, with meas(I'p) > 0 and meas(I¢) > 0. The contact boundary is
supposed to be a straight line segment when d = 2 or a polygon when d = 3 to
simplify. In the reference configuration, the body is in frictional contact on I'¢ with a
rigid foundation and we suppose that the unknown contact zone during deformation
is included into I¢. It is subjected to volume forces f in §2 and to surface loads g
only.

Static Problem We consider the unilateral contact problem with Coulomb friction
in linear elastostatics. It consists in finding the displacement field u : 2 — R¢
verifying the equations and conditions (1)—(2):

divo(u)+f=0 in £2, o(u) =Ae(un) in £2,

u=20 onIp, clun=g on Iy, @))

The conditions defining unilateral contact with Coulomb friction on I'¢c are:

”n 5 07 Un (u) S 05 Un (u) Mn = 0 (l)
w=0 = |ow|<-Fo,) (i)
wW#0 = o) = Fo,u) |zt| (i) @)
t

where .% > 0 stands for the friction coefficient. The notation o = (o; i), 1<i,j=<

d, stands for the stress tensor field, e(v) = (Vv + VVT) /2 represents the linearized
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strain tensor field and A is the fourth order symmetric elasticity tensor having the
usual uniform ellipticity and boundedness property.

Dynamic Problem We consider the unilateral contact problem with Coulomb
friction in linear elastodynamics during a time interval [0, 7)) where T > 0 is the
final time. We denote by 27 := (0, T) x £2 the time-space domain, and similarly
I'pr .= (0,T) x I'p, 'yt :=(0,T) x I'y and I'ct := (0, T) x I'c. We note u
the velocity of the elastic body and ii its acceleration; ug is the initial displacement
and ug is the initial velocity. The density of the elastic material is denoted by p and
is supposed to be a constant. The problem then consists in finding the displacement
fieldu: [0, T) x 2 — R4 verifying the equations and conditions (3)—(4):

oui—divoe(u) =f in 27, ou) =Ae() in 27,

u=20 onIpr, cun=g on 'y,

u@,) =ug in £2, u0,-) =g in £2, 3)
The conditions defining unilateral contact with Coulomb friction on I'ct are:
up <0, o(w) <0, oy(Wu, =0 (@)
ug =0 = |ot(w)| <= —Fou(u) (i)

uw#0 = o) = Fo,(w) (i) “)

uy
[ |

Additionally the initial displacement ug should satisfy the compatibility condition
ug, <0on Ic.

Proposition 1 Let y be a positive function defined on Ic.
Static case: The frictional contact conditions (2) can be reformulated as
follows:

op(u) = [Un (w—vy un]ﬂ@f , ot(u) = [at(u) - yut](—ﬂan(u)—yun] )
.

Dynamic case: The frictional contact conditions (4) on I'ct are equivalent
to:

op(u) = [Un(u) -V ”n]Ri , ot(w) = [Gt(u) - yl‘lt](fﬁf\[a,,(u)fyu,,] )
B

1
The notation [-]Rf stands for the projection onto R™ ([x]Rf = ) (x — |x]) for

x € R). Moreover, for any & € R™, we introduce the notation [-], for the orthogonal



842 F. Chouly et al.

projection onto A(0, o) C R~ where Z(0, «) is the closed ball centered at the
1

origin 0 and of radius «. || - ||s.p = (-, -)S2 p denotes the norm of (H* (D).
d
Let Vi c V = {v € (HI(Q)) :v=0o0n FD}, be a family of finite

dimensional vector spaces indexed by 4 coming from a family 77 of triangulations
of the domain £2 supposed to be regular and quasi-uniform. We choose a standard
Lagrange finite element method of degree k with k = 1 or k = 2, i.e.:

Vi = {vh e (@22 V" ke (Pu(K)? VK € T" v =0 on FD} .

We consider in what follows that y = y}, is a positive piecewise constant function
on the contact interface I'c which satisfies y|knr. = Yohk, for every K that has
a non-empty intersection of dimension d — 1 with I'c, and where yy is a positive
given constant.

Let us define the discrete linear operators for a fixed parameter ® € R

Vi —  (L2(Ie))d!
Vi G0, (V1) — yvi

n Vi L2(I7)

9.y PL -
O,y v o @Un(Vh) _ )/UZ, O,y

o' - Vi x VI = (L2(I'¢))4!

: . s L(Vh)Z/f~Vhd.Q+/ -vpdrl,
vV (V) — i 2 e

and the bilinear form:

®
A@y(uh, vh) =/ a(uh) : e(vh) as2 — or(uh)n . a(vh)n dar.
2 IcY

Discrete Static Problem The Nitsche-based formulation for unilateral contact with
Coulomb friction reads :

Find u" € V" such that: Vv € V"

1
A»«' /1’ h +/ n h B l: h dI—v
Oy(“ vY) oy [ 1,y(u )]R (),y(V ) )

1
Pt h . Pt— h dI = h )
+/1:6V [ l,y(u ):I <79[Plf,y(uh)] ) @’V(V )dI' = L(v")
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Semi Discretized Dynamic Problem Our space semi-discretized Nitsche-based
method for frictional unilateral contact problems in elastodynamics then reads:

Findu” : [0, T] — V" such that for ¢ € [0, T]: V V" € V"

(pii" (1), V") + Ag, (" (1), V') + /

I'c

1
y [P}, (" ()], Py, (V) dI

1 .
+ fr L, laeodo) (79[

u"(0,) =wj,  @"0,) =g,

) “PL (V) dI = Lo,

PP (uh UD]R—

(6)

where ug (resp. ﬁg) is an approximation in V" of the initial displacement uy (resp.
the initial velocity wp). The notation (-, -) stands for the L2(£2) inner product.

2 Existence and Well-Posedness Results

The proofs of this section are detailed in [10].

Theorem 2 (Existence of Discrete Solutions for the Static Problem) Let
us suppose that yy is small enough. Then for every ©® € R and h > 0, the
static problem (5) admits at least one solution. Moreover this solution satisfies
the bound

h
lu*]l1,2 < C,

where the constant C > 0 depends only of the constants of V-ellipticity of
a(-, -) and of continuity of L(-), but not on the friction coefficient F and on
the Nitsche’s parameter yy.

Sketch of the Proof We introduce the auxiliary problem involving (Tresca) friction
‘P(g) with a fixed threshold g € L%(I'c), and discretized with Nitsche:

Find u" € V" such that :

Ay @", V" +f

I'c

LW vy dr
P(2) y L ROy

1
+/ [P}, "], - Py, (V) dlr =L(v"), Vv eV
IcV ’ ’
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The solutions to Coulomb discrete problem (5) are the fixed point of the application
¢" : VI — V" defined as follows: w" — u” (w") where u” (w") is the solution to

-7 n h
P( ML )]R>.

The application ¢ is well defined [4]. Using standard bounds and arguments, we
show that ¢" is bounded and continuous in (V”, || - ||1.). Thus we apply Brouwer’s
fixed point theorem to prove the existence of, at least, one solution to Problem (5).

O

Proposition 3 (Well-Posedness)
Static case:

1. If0 < .% < 1, assume there exists C such that

2\2 T 2
ﬁfch, (1+0) —i—/(l—l—()))S
Yo Y0

C.

2. orif F > 1, assume there exists C such that

o2 2 ;
(1+o)(1+4ﬁ‘)5a 95c<h>2,
Yo Yo
then Problem (5) admits one unique solution.

Semi discretized dynamic case:
For every value of ©® € R and yy > 0, Problem (6) admits one unique solution
u" e 420, T1, VM.

Sketch of the Proof We introduce the following mesh- and parameter-dependent
scalar product in V"

hoh hoh B T ey “Yon =1
V5 wWh)y = whHre (0 2uL, v 2wy)ore + (YT 2V YT 2WE)o,re-

— Static case: we define the (non-linear) operator B" : V# — V.

1
BV, W), = Aoy (v, wh) + / P2 (VI (wh)dT
rcY
1
of o]
rey (-ﬂ[pq{y W]

) PG, (whdr

R—
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for all v, w" € V". Then we prove that B” is a one-to-one operator using

Brezis’ theorem [2].

— Semi Discretized Dynamic Case Nitsche’s formulation leads to a system of
(non-linear) second-order differential equations

Find u” : [0, T] — V" such that for ¢ € [0, T] :
M"i" (1) + B" (" (1), 0" (1) = £ @),

u"(0,) =uf,  @"0.)=u.

with (£"(r), wh), = L(t)(w"), the mass operator M" : V" — V" defined by
(Mivh why, = (pv", wh) and with B" : (V!)2 — Vh,

. 1
B" "V, wWh, = A, (v wh) + fr )L TtV P (Whdr
C

1 t, h =h pt "
+/Fc)’ [QV(V Y ):|<9[Plf,y(uh)} ) 0, W) dr,

R—

The operator B” is Lipschitz-continuous and we conclude with the Cauchy-
Lipschitz theorem. O

3 Numerical Results

In what follows, we study an example where the three different zones character-
izing friction (stick, slip and separation) exist. We consider the geometry Q =
10, 2[x]0, 1[ and we adopt symmetry conditions (i.e., u, = 0,0:;(w) = 0) on
I's = {1}x]0, 1[. We achieve the computations on the square 2 =]0, 1[x]0, 1[.
We set I'c =]0, 1[x{0} and I'y = (O, 1[x{1}) U ({0}x]O0, 1[). We suppose that the
body is homogeneous isotropic material and a Poisson ratio of v = 0.2, a Young
modulus of E = 10* and a friction coefficient .# = 0.5 are chosen. A density
of surfaces forces F of magnitude (0.5 — y, 0) is applied on {0}x]0.5, 1[ and one
of magnitude (0, x — 0.5) is applied on ]0.5, 1[x{1}. The Nitsche parameter yy is
fixed to 100E and we consider the skew-symmetric case ® = —1. We achieve the
numerical implementation with uniform meshes with the open source finite element
library GetFEM++ (see http://getfem.org/download.html).
111 1 1

4’8716 32" 64
reference solution on a very fine mesh (&4 = 1/128) and P> Lagrange elements.
Moreover, the reference solution is computed with a different discretization of the
friction problem (Lagrange multipliers and Alart-Curnier augmented lagrangian).

The solution for mesh sizes h = |: i| are compared with a
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Figure 1 depicts the Von Mises stress and we can note a transition point on /¢
between a contact part and a separation part. Figure 2 shows the rates of convergence
for the H! and L? relative norms with P; finite elements. For the H! norm we
obtain the quasi optimality of the convergence rate whereas the suboptimality of the
L? norm may come from the lack of adjoint consistency when ® = —1.

Fig. 1 Von Mises stress with displacement amplified by 2000

10° T
—-O— H1 norm P1(slope=0.95794)
= L2normP1 (slope=1.1206)

€errors

10 4
10
h

-1

Fig. 2 H' and L? norms on the displacement uy, for Pj finite elements
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