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Abstract. A configuration {v1, v2, · · · , vm} (where m is a positive integer) of vectors
of R2 is said to be uniform and balanced if for any index i ∈ {1, · · · , m} the set with
multiplicities

Di = {det(vi, vj) : j 6= i}
is symmetric around the origin and does not contain it. Solving a conjecture of E.
Cattani and A. Dickenstein, we prove that the linear group GL2(R) acts transitively
on the set of uniform and balanced configurations of m vectors.
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1. Introduction

A configuration {v1, v2, · · · , vm} of vectors of R2 is said to be balanced
if for any index i ∈ {1, · · · ,m} the set with multiplicities

{det(vi, vj) : j 6= i}

is symmetric around the origin. It is said to be uniform if every pair of
vectors is linearly independent.

E. Cattani, A. Dickenstein and B. Sturmfels introduced the notion
of balanced configuration in (CDS99; CD02) for its relationship with
multivariable hypergeometric functions in the sense of Gel’fand, Kapra-
nov and Zelevinsky (see (GKZ89; GKZ90)). These functions include,
as particular example, the classical Gauss hypergeometric functions, as
well as the multivariable generalizations of Appell, Horn, and Lauricella
(see (EMOT81)).

Balanced planar configurations with at most six vectors have been
classified in (CDS99). In a previous version of (CD02), E. Cattani
and A. Dickenstein classified, with the help of a computer calculation,
the balanced planar configurations of seven vectors. Moreover, they
conjectured that any uniform balanced planar configuration is GL2(R)-
equivalent to a regular (2n + 1)-gon (where n is a positive integer). In
this note, we prove this conjecture for all n. In (CD02), our method is
adapted to the case n = 3.

In Section 2, we precisely state our result. The following section is
the proof. To obtain a sketch of proof, one can read the begining of
Paragraphs 3.1 to 3.6.
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2. Statement of the result

We start with giving a precise definition of balanced configurations:

Definition. A planar configuration {v1, · · · , vm} is said to be balanced
if for all i = 1, · · · ,m and for all x in R the cardinality of the set {j 6=
i : det(vi, vj) = x} equals those of the set {j 6= i : det(vi, vj) = −x}.

Remark. Assume {v1, · · · , vm} is balanced and m is even. Then, the
set {det(v1, vj) : j = 2, · · · ,m} is symmetric around 0 and its cardi-
nality (with multiplicities) is odd; so it contains 0. Then, {v1, · · · , vm}
is not uniform. In this note, we are only interested in uniform and
balanced configurations. So, from now on, we assume that m = 2n + 1
for some positive integer n.

Let us identify R2 with the field C of complex numbers. To avoid
any confusion with index-numbers, we denote by

√
−1 the complex

number i. Denote by Um the set of mth-roots of 1. Set ω = e
2
√
−1π
m .

Then, Um = {wk : k = 0, · · · 2n} is uniform and balanced. Indeed, for
all integers k and a, we have

det(ωk, ωk+a) = −det(ωk, ωk−a). (1)

One can notice that the group GL2(R) acts naturally on the set of
balanced (resp. uniform balanced) configurations of m vectors. Indeed,
if g ∈ GL2(R) then det(g.vi, g.vj) = det(g) det(vi, vj). The aim of this
note is to prove the

THEOREM 1. For any odd integer m, GL2(R) acts transitively on the
set of uniform balanced configurations of m vectors.

In other words, modulo GL2(R), Um is the only uniform balanced
configuration of m vectors.

3. The proof

3.1 — The set {0, · · · , 2n} is denoted by I. We denote by P2(I) the
set of pairs of elements of I. Let us fix a uniform planar configuration
C = {v0, · · · , v2n}.
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We now explain the first step of the proof in the case when for all
distinct i, k and l in I det(vi, vk) 6= det(vi, vl). Then, one easily check
that C is balanced if and only if

∀i, k ∈ I ∃l ∈ I det(vi, vk + vl) = 0. (2)

The default of Condition (2) is that the quantifiers does not respect the
symetry in k and l of the equation det(vi, vk + vl) = 0. Then following
lemma show that Condition (2) is equivalent to the better following
one:

∀k, l ∈ I ∃i ∈ I det(vi, vk + vl) = 0.

LEMMA 1. Let us recall that C is uniform. Then, C is balanced if and
only if there exists a map φ : P2(I) −→ I such that

1. ∀{k, l} ∈ P2(I) det(vφ({k,l}), vk + vl) = 0, and

2. ∀{k, l}, {k, l′} ∈ P2(I) (φ({k, l}) = φ({k, l′}) ⇒ l = l′).

Proof. If E is a finite set, we denote its cardinality by |E|. Assume
that there exists φ as in the lemma.

If there exists a pair {i, l} such that φ({i, l}) = i, then det(vi, vl) =
−det(vi, vi) = 0; this contradicts the fact that C is uniform. There-
fore, for all i ∈ I, φ−1({i}) is formed by pairs of elements of I − {i}.
Moreover, by Assertion 2 these pairs are pairwise disjoint. Therefore,
|φ−1({i})| ≤ n. But, |P2(I)| = mn and |I| = m. It follows that for all
i ∈ I, |φ−1({i})| = n. One easily deduces that φ−1({i}) is a partition
of I − {i}. It follows that C is balanced.

Conversely, let us assume that C is balanced. Then, for all i ∈ I,
there exists a (a priori non unique) part P i

2(I) of P2(I) such that:

− I − {i} is the disjoint union of the elements of P i
2(I), and

− ∀{k, l} ∈ P i
2(I) det(vi, vk + vl) = 0.

Let {k, l} ∈ P2(I). Since C is uniform, the set of vectors v ∈ R2 such
that det(v, vk + vl) = 0 is the line generated by vk + vl and there exists
at most one i ∈ I such that det(vi, vk + vl) = 0. This means that for
any i 6= j the set P i

2(I) ∩ Pj
2(I) is empty.

Moreover, |P i
2(I)| = n, for all i ∈ I. Therefore, the cardinality of⋃

i∈I P i
2(I) equals nm, which is the cardinality of P2(I). It follows that⋃

i∈I

P i
2(I) = P2(I).
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Therefore, for all {k, l} ∈ P2(I), there exists a unique φ({k, l}) ∈ I

such that {k, l} ∈ Pφ({k,l})
2 (I). Then, φ satisfies Condition 1. Condition

2 follows from the fact that the elements of P i
2 are pairwise disjoint.

Notation. From now on, we identify I from Z/mZ, by k 7→ k + mZ.
Since m is odd, 2 is invertible in the ring Z/mZ. For example, with this
identification, we have v 1

2
= vn+1 and v−1

2
= vn.

3.2 — We assume that C is uniform and balanced. The second step
of the proof is to show that C has the same combinatorics as Um.
Precisely, we show that by relabeling the vectors, we can assume that
C satisfies the equations det(vk, vk+a + vk−a) = 0 similar to Equalities
(1).

Definition. Each vk has a unique polar form vk = ρke
αk

√
−1 with ρk

in ]0; +∞[ and αk in [0; 2π[. The set C is said to be labeled by increasing
arguments if there exists k ∈ I such that

αk < αk+1 < · · · < α2n < α0 < α1 < · · · < αk−1.

LEMMA 2. If C is labeled by increasing arguments then the unique
map φ satisfying Lemma 1 is φ({k, l}) = k+l

2 for all {k, l} ∈ P2(I).

Proof. By relabeling the vectors, it is sufficient to prove that φ({0, k}) =
k
2 , for all k = −n, · · · ,−1, 1, · · · , n. By symmetry, we may assume that
k = 1, · · · , n. Let us fix such a k.

Notice that the set of i ∈ I such that det(v0, vi) is positive (that is,
such that αi−α0 < π) is of cardinality n. Therefore, since C is labelled
by increasing arguments αn − α0 < π < αn+1 − α0. In the same way,
we have: αn+k − αk < π < αn+k+1 − αk (see Figure 2).

With our convention , we have α 1
2

= αn+1 and α 2k−1
2

= αn+k. Since
vφ({0,k}) belongs to R(v0 + vk), we have:

φ({0, k}) ∈ {1
2
,
2
2
,
3
2
, · · · , 2k − 1

2
}. (3)

This ends the proof when k = 1. We now proceed by induction on
k. Let us assume that φ({i, i + j}) = i + j

2 , for all j = 1, · · · , k − 1.
By Lemma 1, φ({0, k}) 6= φ({0, j}), for all j = 1, · · · , k − 1. There-

fore,

φ({0, k}) 6∈ {1
2
,
2
2
, · · · , k − 1

2
}. (4)
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Figure 1. The positions of α0, αk, αn, αn+1, αn+k and αn+k+1

In the same way, φ({0, k}) 6= φ({k − j, k}), for all j = 1, · · · , k − 1.
Therefore,

φ({0, k}) 6∈ {k + 1
2

,
2
2
, · · · , 2k − 1

2
}. (5)

The lemma follows from (3), (4) and (5).

We will say that C is labeled in respect with Lemma 2 if the function
φ : P2(I) −→ I = Z/mZ, {k, l} 7−→ k+l

2 satisfies Conditions 1 (and
2) of Lemma 1. Lemma 2 shows that if C is labeled by increasing
arguments, then it is labeled in respect with Lemma 2.

3.3 — In this paragraph, we assume that C is labeled in respect with
Lemma 2; and we give a method to construct C starting from vn, v0 and
v−n. Moreover, we have det(v0, vn + v−n) = 0. This leave us at most
one degree of liberty to construct all uniform balanced configurations
labeled in respect with Lemma 2 modulo the action of GL2(R). Let us
start with

LEMMA 3. With above notation, for all k ∈ I we have:

det(vk, vk+1) = det(v0, v1) and det(vk, vk+ 1
2
) = det(v0, vn).

Proof. For all k ∈ I, since φ({k, k+2}) = k+1, we have det(vk, vk+1) =
det(vk+1, vk+2). The first assertion follows immediately. For all k, we
also have det(vk, vk+n) = det(vk+n, vk+2n). Since n is prime with m =
2n + 1, this implies the second assertion.

Set A1 := det(v−1
2

, v 1
2
) and An := det(v0, v−1

2
) (let us recall that

v−1
2

= vn).
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LEMMA 4. For all k ∈ Z/mZ, we have:

v k
2

= −A1

An
v k−1

2
− v k−2

2
.

Proof. Since C is uniform there exist a and b in R such that v k
2

=
av k−1

2
+ bv k−2

2
. But, by Lemma 3, we have: det(v k−2

2
, v k−1

2
) = −An,

det(v k−2
2

, v k
2
) = A1 and det(v k

2
, v k−1

2
) = An. One easily deduces that

a = −A1
An

and b = −1.

3.4 — Any uniform balanced configuration is GL2(R)-equivalent to
one with v−1

2
= (0, 1) and v0 = (1, 0). Then, since det(v0, v−1

2
+v 1

2
) = 0,

v 1
2

= (t,−1) for one t in R. Moreover, by Lemma 4, we have:

v k
2

= tv k−1
2
− v k−2

2
.

Conversely, we define a sequence (wk(t))k≥−1 of vector of R2 with a
parameter t ∈ R as follows. We start with

w−1 =
(

0
1

)
w0 =

(
1
0

)
w1(t) =

(
t
−1

)
,

and define wk(t) by induction:

∀k ≥ 2 wk(t) = twk−1(t)− wk−2(t). (6)

Now, C is any uniform balanced configuration labeled in respect with
Lemma 2. Formally, the above discussion gives

LEMMA 5. There exits a unique gC ∈ GL2(R) such that gC .v k
2

= wk,
for k = −1, 0 and a unique tC ∈ R such that gC .v 1

2
= w1(tC). Moreover,

for all k ≥ −1, we have:

wk(tC) = gC .v k
2
.

Proof. The existence and the uniqueness of gC are obvious; those of
tC is a direct consequence of the equality det(v0, v−1

2
+ v 1

2
) = 0.

The configuration C′ := {gC .vk}k∈I is uniform and balanced and
labeled in respect with Lemma 2, since C be. Then, C′ satisfies Lemma 4
with A1 = det(gC .v−1

2
, gC .v 1

2
) = −t and An = det(gC .v0, gC .v−1

2
) = 1.

The lemma follows.

3.5 — To obtain all the GL2(R)-orbits of uniform balanced config-
urations, it remains to find the tC which occur in Lemma 5. But, this
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lemma shows that w2n+1(tC) = w0. We will deduce that the parameter
tC must be choosen among at most n values:

LEMMA 6. Denote by (x∗, y∗) the coordinate forms of R2.
Then, for all k ≥ 0, the function x∗(wk(t)) (resp. y∗(wk(t))) is a

polynomial function of degree k (resp. k − 1) and of same parity as k
(resp. k − 1). In particular, the equation w2n+1(tC) = w0 has at most
n solutions.

Proof. One easily check the first assertion by induction on k. One
can notice that y∗(w2n+1(0)) 6= 0. Then, the equation y∗(w2n+1(t)) = 0
has 2j solutions: −tj < · · · < −t1 < 0 < t1 < · · · < tj with j ≤ n. Since
x∗(w2n+1(t)) is an odd function, at most one element of a pair ±tk is
a solution of the equation x∗(w2n+1(t)) = 1. This ends the proof of the
lemma.

3.6 — To end the proof, we show that the equation w2n+1(tC) = w0

has indeed n solutions corresponding to various labeling of the regular
d-gons where d runs over the divisors of 2n + 1.

LEMMA 7. We have:

{t ∈ R : w2n+1(t) = w0} = { 1
sin(2kπ/m)

: k = 1, · · ·n}.

Proof. We are going to construct n balanced configurations labeled
in respect with Lemma 2. Each one will give a solution of the equation
w2n+1(t) = w0.

Consider Um = {ωk : k = 0, · · · 2n}. Let us fix k ∈ {1, · · ·n}.
Set ζ = ωk and denote by d the order of ζ in the group Um. Then,
Ck := {ζ l : l = 0, · · · , d − 1} is a uniform balanced configuration.
Moreover, Ck is labeled in respect with Lemma 2.

The integer d divides m and is odd. Let e be the positive integer such
that d = 2e + 1. Denote by gk the unique element of GL2(R) such that
gk.ζ

0 = w0 and gk.ζ
e = w−1. Let tk be the unique real number such

that gk.ζ
−e = w1(tk). One easily checks that tk = (sin(2kπ/m))−1.

But, by Lemma 5, we have for all l ≥ −1, wl(tk) = gk.ζ
l
2 . Since d

divides m = 2n + 1, we deduce that w2n+1(tk) = w0.

3.7 —

Proof. [of Theorem 1] We may assume that C = {v0, · · · , v2n} is
labeled by increasing arguments. We define gC ∈ GL2(R) and tC ∈ R as
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in Lemma 5. Then, by Lemma 7, there exists a unique kC ∈ {1, · · ·n}
such that tC = (sin(2kCπ/m))−1. Set ζ = ωkC . Let gkC ∈ GL2(R) defined
as in the proof of Lemma 7. Then, by Lemma 5, for all k = 0, · · · , 2n,
we have wk(tC) = gC .v k

2
= gkCζ

k
2 . Since C is uniform, it follows that the

order of ζ in Um is m. Theorem 1 is proved.
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