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Abstract

We give a new geometric proof of a Fulton conjecture about the
Littlewood-Richardson coefficients. This conjecture was firstly proved
by Knutson, Tao and Woodward using the Honeycomb theory (see
[KTW04]). A geometric proof was given by Belkale in [Bel07b]. Our
proof is based on the geometry of the Horn cones.

1 Introduction

1.1 The Horn conjecture

We start by a question first considered by H. Weyl ([Wey12]) in 1912:

What can be said about the eigenvalues of a sum of two Hermitian
matrices, in terms of the eigenvalues of the summands?

Let H(n) denote the set of n by n Hermitian matrices. For A ∈ H(n),
we denote its spectrum by α(A) = (α1, · · · , αn) ∈ R

n repeated according to
multiplicity and ordered such that α1 ≥ · · · ≥ αn. We set

∆(n) := {(α(A), α(B), α(C)) ∈ R
3n : A, B, C ∈ H(n) s.t. A+B+C = 0}.

In 1962, Horn conjectured in [Hor62] an inductive description of ∆(n).
We now introduce notation to state the Horn conjecture. Set E(n) = R

3n,
let E(n)+ denote the set of (αi, βi, γi) ∈ E(n) such that αi ≥ αi+1, βi ≥ βi+1

and γi ≥ γi+1 for all i = 1, · · · , n− 1. Because of trace, the points (α, β, γ)
in ∆(n) satisfy

∑n
i=1(αi + βi + γi) = 0. Let E0(n) denote the hyperplane of

E(n) defined by this condition.
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Let P(r, n) denote the set of subsets of {1, · · · , n} with r elements. To
any I = {i1 < · · · < ir} ∈ P(r, n) we usually associate (see Section 4 for
details) a partition λI = (ir − r ≥ · · · ≥ i1 − 1). Note that λI has (at most)
r parts and its first one is less or equal than n− r.

The Horn conjecture.([Hor62]) The point (αi, βi, γi) ∈ E0(n)∩E(n)+

belongs to ∆(n) if and only if for every r = 1, · · · , n−1, for every (I, J,K) ∈
P(r, n)3 such that

(λI , λJ , λK − (n− r)1r) ∈ ∆(r), (1)

the following inequality holds:
∑

i∈I

αi +
∑

j∈J

βj +
∑

k∈K

γk ≤ 0. (2)

Note that this conjecture implies that ∆(n) is a closed convex polyhedral
cone. This fact is a consequence of convexity results in Hamiltonian geome-
try (see [Kir84]). The combination of a Klyachko theorem ([Kly98]) and of
a Knutson-Tao theorem ([KT99]) implies this conjecture (see Section 2 for
details).

1.2 Littlewood-Richardson coefficients

Recall that the irreducible representations of Glr(C) (or Ur(C) if one wants
to work with a compact Lie group) are indexed by sequences λ = (λ1 ≥ · · · ≥
λr) ∈ Z

r (see for example [FH91, Lecture 6]). Denote the representation
corresponding to λ by Vλ. As any representation of GLr(C), the tensor
product Vλ ⊗ Vµ of two given irreducible representations Vλ and Vµ is a
sum of irreducible representations. We define the Littlewood-Richardson
coefficients cνλ µ ∈ N as the corresponding multiplicities:

Vλ ⊗ Vµ =
∑

ν

cνλµVν . (3)

The Knutson-Tao theorem [KT99] was previously known as the

Saturation conjecture. If, for some n > 0, cnνnλnµ 6= 0 then cνλµ 6= 0.

This note is about another relation between the Horn conjecture and the
stretchered Littlewood-Richardson coefficients; namely the following
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Fulton conjecture. For any n > 0, cνλµ = 1 ⇒ cnνnλnµ = 1.

This conjecture was firstly proved by Knutson, Tao and Woodward
[KTW04] using the Honeycomb theory. A geometric proof was given by
Belkale in [Bel07b]. The aim of this note is to give a short proof of this
conjecture based on the geometry of Horn cones.

The proof of the Horn conjecture is much more involved than its state-
ment. In Section 2, we give an idea of the history of this proof and the
subjects interplaying with it. Section 3 is concerned by the codimension one
faces of the Horn cones. Sections 2 and 3 are mainly expository; we give
proofs only when elementary linear algebra allows it. The last section is our
proof of Fulton’s conjecture.

2 Schubert calculus and the Horn conjecture

2.1 Schubert calculus

Let Gr(a, b) be the Grassmann variety of a-dimensional subspaces L of Ca+b.
Let F•: {0} = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fa+b = V be a complete flag of
C
a+b (i.e. Fi is a i-dimensional subspace of V ). The relative position of

L ∈ Gr(a, b) and F• defines a partition of Gr(a, b) which is a cellular decom-
position and allows to describe the topology of Gr(a, b). More precisely, for
any subset I = {i1 < · · · < ia} of cardinal a in {1, · · · , a+ b}, we define the
Schubert variety ΩI(F•) in Gr(a, b) by

ΩI(F•) = {L ∈ Gr(a, b) : dim(L ∩ Fij ) ≥ j for 1 ≤ j ≤ r}.

The open subset of ΩI(F•) defined by dim(L∩Fij ) = j for any j is denoted
by Ω◦

I(F•); it is isomorphic to some affine space. The Poincaré dual of the
homology class of ΩI(F•) does not depend on F•; it is denoted by σI . The
σI ’s form a Z-basis for the cohomology group:

H∗(Gr(a, b),Z) =
⊕

I∈P(a,a+b)

σI .

Now, let I, J be in P(a, a+b). By expanding σI .σJ , we define the structure-
coefficients cKIJ of the cup product in the Schubert basis:

σI .σJ =
∑

K

cKIJσK .
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The class [pt] of the point generates H2ab(Gr(a, b),Z). We define K∨ by:
i ∈ K∨ if and only if a + b + 1 − i ∈ K. Then, σK and σK∨ are Poincaré
dual, that is σK .σK∨ = [pt]. So, if the sum of the codimensions of ΩI(F•),
ΩJ(F•) and ΩI(F•) equals the dimension of Gr(a, b), we have

σI .σJ .σK = cK
∨

IJ [pt].

The following result gives a simple interpretation of the integers cK
∨

IJ and in
particular shows that they are nonnegative:

Theorem 1 (Kleiman [Kle74]) We made the above assumption about the
codimensions of ΩI , ΩJ and ΩK . Then for general flags F•, G• and H•, we
have:

ΩI(F•) ∩ ΩJ(G•) ∩ΩK(H•) = Ω◦
I(F•) ∩ Ω◦

J(G•) ∩ Ω◦
K(H•)

consists of cK
∨

IJ points.

2.2 Producing inequalities from Schubert calculus

A spectrum or a partition (α1 ≥ · · · ≥ αn) is said to be regular if the αi’s
are pairwise distinct. Let A be an n × n Hermitian matrix with a regular
spectrum α. Let I ∈ P(r, n). We are going to explain how to express
∑

i∈I αi as an extrema (see inequality (2)).
To A, we associate a complete flag A1 ⊂ · · · ⊂ An−1 ⊂ C

N , where
Ai is the sum of the i eigenlines of A with the i largest eigenvalues (well
defined for α regular). We also consider the following Schubert variety of
the Grassmannian Gr(r, n) of r-dimensional subspaces of Cn:

ΩI(A) := {V ∈ Gr(r, n) : dim(V ∩Ai) ≥ #(I ∩ {1, · · · , i}), 1 ≤ i ≤ n}.

For any linear subspace V of Cn the Rayleigh trace RA(V ) is defined
as the trace of the endomorphism pV ◦ A|V , where pV is the orthogonal
projection onto V .

Theorem 2 [HZ62] If the spectrum of A is regular, we have

min
V ∈ΩI(A)

RA(V ) =
∑

i∈I

αi(A).

Moreover, the minimum is achieved when V is the sum of the corresponding
eigenlines.
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Let ∆◦(n) denote the set of triples of regular elements in ∆(n). We now
state the first relation between Schubert calculus and the Horn cone.

Theorem 3 ([Tot94, HR95]) Let I, J and K be such that cK
∨

IJ 6= 0.
Then, inequality (2) holds for any point in Horn(n).

Proof. We admit that ∆(n) spans E0(n). This implies that ∆◦(n) is dense
in ∆(n); in particular, it is sufficient to prove the theorem for points in
∆◦(n). Let A, B and C be three Hermitian matrices such that A+B+C = 0
that have regular spectrum. Since σI .σJ .σK 6= 0, Theorem 1 implies that

ΩI(A) ∩ΩJ(B) ∩ ΩK(C)

is not empty. Let V0 belong to this intersection. Theorem 2 implies that

ϕIJK(A,B,C) :=
∑

i∈I

αi(A) +
∑

j∈J

βj(B) +
∑

k∈K

γk(C) (4)

≤ min
V ∈ΩI (A)

RA(V ) + min
V ∈ΩJ (B)

RB(V ) + min
V ∈ΩK(C)

RC(V )(5)

≤ RA(V0) +RB(V0) +RC(V0) (6)

≤ RA+B+C(V0) = 0. (7)

�

2.3 A complete set of inequalities from semistability

In 1998, Klyachko proved that the inequalities given by Theorem 3 are
sufficient to characterize ∆(n):

Theorem 4 ([Kly98]) The point (αi, βi, γi) ∈ E0(n) ∩ E(n)+ belongs to
∆(n) if and only if for every r = 1, · · · , n− 1, for every (I, J,K) ∈ P(r, n)3

such that

cK
∨

IJ 6= 0, (8)

the following inequality holds:

∑

i∈I

αi +
∑

j∈J

βj +
∑

k∈K

γk ≤ 0. (9)

We are going to explain one ingredient used by Klyachko. Consider the
following basic question
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Given two irreducible representations Vλ and Vµ of GLn, what are the
irreducible subrepresentations of Vλ ⊗ Vµ ?

Let Λ+
n be the set of λ = (λ ≥ · · · ≥ λn) ∈ Z

n. We set

LR(GLn) = {(λ, µ, ν) ∈ (Λ+
n )

3 : (Vλ ⊗ Vµ ⊗ Vν)
GLn 6= {0}}.

Note that (Vλ ⊗ Vµ ⊗ V ∗
ν )

GLn 6= {0} if and only if cνλ µ 6= 0.
Let F l(n) denote the variety of complete flags in C

n acting on by Gln.
The Borel-Weil Theorem shows that Vλ can be obtain as the module of reg-
ular sections of some Gln-linearized line bundle Lλ. In particular, (Vλ ⊗
Vµ ⊗ Vν)

GLn 6= {0} if and only if some line bundle on F l(n)3 admits
nonzero G-invariant sections. Now, the existence of some positive k such
that (kλ, kµ, kν) ∈ LR(GLn) can be interpreted as the existence of semistable
points for some action of GLn. This existence can be checked by linear in-
equalities using either slopes of vector bundles or the Hilbert-Mumford the-
orem. In Klyachko’s paper, inequalities (9) are understood as inequalities
between slopes of toric vector bundles. The Kempf-Ness Theorem ([KN79])
shows that this existence is equivalent to the fact the 0 belongs to the image
of a moment map for some Hamiltonian action of Un. Making this discussion
more precise, we finally obtain the following

Theorem 5 Let (λ, µ, ν) be a triple of nonincreasing sequences of n rational
numbers. Then, (λ, µ, ν) ∈ Horn(n) if and only if (kλ, kµ, kν) ∈ LR(GLn)
for some positive integer k.

2.4 The role of the saturation conjecture

Note that the only difference between the Horn conjecture and Theorem 4
is that condition (1) was replaced by condition (8). The inductive nature of
condition (1) is mainly explained by Theorem 5 and the following classical
Lesieur’s result (see [Les47])

cKIJ = cλK

λI λJ
, (10)

where λI is defined in the introduction. Putting all these remarks together,
the missing piece to obtain the Horn conjecture is precisely the satura-
tion conjecture as stated in the introduction. In 1999, Knutson-Tao proved
this conjecture using a new model of the Berenzentein-Zelevinski polytope
(namely, the Honeycomb model) to compute the Littlewood-Richardson co-
efficients. Then, Belkale gave a geometric proof in [Bel06] using mainly
the interpretation of the Littlewood-Richardson in terms of the cohomology
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of the Grassmmannians. Derksen-Weyman gave a proof in [DW00] using
an interpretation of the problem in terms of representations of quivers. In
[KM08], Kapovich-Millson gave a proof using the Littelmann path model to
translate the problem in geometric terms in some Bruhat-Tits buildings.

3 Faces of ∆(n)

3.1 Removing inequalities

For n = 3, 4, 5 and 6, the Horn conjecture describes ∆(n) by respectively
18(= 6+12), 50(= 9+41), 154(= 12+142) and 537(= 15+522) inequalities.
In the sums, the first term corresponds to the inequalities of E(n)+ and
the second one to inequalities (2). Using a computer software on convex
geometry, one can check that for n = 3, 4, 5 and 6, the cone ∆(n) by
respectively 18, 50, 154 and 536 faces of codimension one. So, the Horn
conjecture gives one redundant inequality for n = 6. It is

α2 + α4 + α6 + β2 + β4 + β6 + γ2 + γ4 + γ6 ≤ 0.

This inequality corresponds to the coefficient cI
∨

II with I = {2, 4, 6} equals
to 2. In 2000, Belkale improved Theorem 4 is the following way

Theorem 6 ([Bel01]) The point (αi, βi, γi) ∈ E0(n) ∩ E(n)+ belongs to
∆(n) if and only if for every r = 1, · · · , n− 1, for every (I, J,K) ∈ P(r, n)3

such that

cK
∨

IJ = 1, (11)

the following inequality holds:

∑

i∈I

αi +
∑

j∈J

βj +
∑

k∈K

γk ≤ 0. (12)

We are now going to explain with the material already introduced why
Theorem 6 should be true. Let I, J andK such that cK

∨

IJ 6= 0. In Theorem 4,
we can forget inequality (9) when you saturate it you obtain no point in
∆◦(n). So, let us assume that there exists three Hermitian matrices A, B

and C with regular spectrum such that A+B + C = 0 and

∑

i∈I

αi(A) +
∑

j∈J

βj(B) +
∑

k∈K

γk(C) = 0.
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Arguing as in the proof of Theorem 3, we obtain that any point V in the
intersection ΩI(A) ∩ ΩJ(B) ∩ ΩK(C) satisfies

∑

i∈I αi(A) = RA(V ). Now,
Theorem 2 implies that V is the sum of the eigenlines corresponding to I.
This proves that ΩI(A)∩ΩJ (B)∩ΩK(C) is reduced to one point. To obtain
Theorem 6, it remains to prove that the intersection is transverse. . .

3.2 The Knutson-Tao-Woodward Theorem

In 2004, Knutson-Tao-Woodward proved that Theorem 6 is optimal, in the
sense that no inequality can be removed.

Theorem 7 The hyperplanes αi = αi+1, βi = βi+1 and γi = γi+1 spanned
by the codimension one faces of E(n)+ intersects ∆(n) along faces of codi-
mension one.

For any I, J and K in P(r, n) (for some 1 ≤ r ≤ n − 1) such that
cK

∨

IJ = 1, the hyperplane
∑

i∈I αi +
∑

j∈J βj +
∑

k∈K γk = 0 intersects ∆(n)
along a face FIJK of codimension one intersecting ∆◦(n).

The Knutson-Tao-Woodward’s proof uses their Honeycomb model. In
[Res10], we give an alternative proof using the Geometric Invariant The-
ory viewpoint. To prove this result, we have to produce points in ∆(n)
which satisfy the equality. In [Res10], these points are interpreted as line
bundles on some product of manifolds that have nonzero invariant sections
(see Section 2.3). We produce such line bundles by methods of algebraic
geometry.

3.3 Description of the faces of ∆(n)

Let I, J and K in P(r, n). Define the linear isomorphism ρIJK by:

E(n) −→ E(r)⊕ E(n − r)
(αi, βi, γi) 7−→ ((αi)i∈I , (βi)i∈J , (γi)i∈K) + ((αi)i/∈I , (βi)i/∈J , (γi)i/∈K).

This isomorphism put together the eigenvalues (αi)i∈I . We assume that
cK

∨

IJ 6= 0. Then, by Theorem 3 inequality (2) holds for any point in ∆(n).
Consider the associated face (eventually of small dimension):

FIJK = {(α, β, γ) ∈ ∆(n) :
∑

i∈I

αi +
∑

j∈J

βj +
∑

k∈K

γk = 0}. (13)

We can now describe FIJK in terms of smaller Horn cones. Indeed,
we will prove that the points of FIJK correspond to simultaneously block
diagonal matrices as in equation (14).
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Proposition 1 Recall that cK
∨

IJ 6= 0. Let (α, β, γ) ∈ E(n)+. Then, (α, β, γ) ∈
FIJK if and only if ρIJK(α, β, γ) ∈ ∆(r)×∆(n− r).

Proof. Assume that ρIJK(α, β, γ) ∈ ∆(r)×∆(n−r). Let A′, B′, C ′ ∈ H(r)
and A′′, B′′, C ′′ ∈ H(n−r) such that A′+B′+C ′ = 0 and A′′+B′′+C ′′ = 0
whose spectrums correspond to ρIJK(α, β, γ). Consider the three following
matrices of H(n)

A =

(

A′ 0
0 A′′

)

, B =

(

B′ 0
0 B′′

)

, C =

(

C ′ 0
0 C ′′

)

. (14)

By construction, α is the spectrum of A and
∑

I αi = tr(A′), and similarly
for B and C. We deduce that (α, β, γ) ∈ FIJK .

Conversely, let (α, β, γ) ∈ FIJK . It remains to prove that ρIJK(α, β, γ) ∈
∆(r)×∆(n−r). By Theorem 7, FIJK contains regular triples; in particular,
we may assume the α, β and γ are regular.

Let now choose three Hermitian matrices A, B and C with spectrum α,
β and γ and such that A + B + C = 0. We use notation of the proof of
Theorem 3. By assumption, ϕIJK(A,B,C) = 0 and inequality (6) becomes
an equality. Thus, RA(V0) = minV ∈ΩI (A)RA(V0). Now, Theorem 2 implies
that V0 is the sum of the eigenlines of A corresponding to I. Similarly, V0

is stable by B and C and the spectrum of the restrictions are respectively
(βj)j∈J and (γk)k∈K . We deduce that ((αi)i∈I , (βi)i∈J , (γi)i∈K) belongs to
∆(r). By considering the restrictions of A, B and C to the orthogonal
subspace of V0, we obtain similarly that ((αi)i/∈I , (βi)i/∈J , (γi)i/∈K) belongs to
∆(n− r). �

Let E(n)++ denote the open convex cone in E(n) consisting of regular
triples in E(n)+.

Corollary 1 Let I, J and K be as in the proposition. Then, if FIJK con-
tains regular triples, it has codimension one. In particular, cK

∨

IJ = 1.

Proof. By Proposition 1, FIJK ∩ E(n)++ is isomorphic to an open subset
of ∆(r)×∆(n−r). So, FIJK has codimension 2 in E(n) and so codimension
one in ∆(n). Now, Theorem 6 implies that cK

∨

IJ = 1. �

Remark. Corollary 1 is proved in [Res10, Theorem 8] by purely Geometric
Invariant Theoretic methods.
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4 Proof of the Fulton conjecture

Let λ, µ and ν be three partitions (with at most r parts) such that cνλµ = 1

and N be a positive integer. We have to prove that cNν
NλNµ = 1.

Strategy of the proof. The fact that cNν
NλNµ 6= 0 is a direct consequence of

the Borel-Weil Theorem. By the Lesieur Theorem (see equation (10)) and
Theorem 7, the coefficient cνλ µ equal to one corresponds to a face F of some

Horn cone. By interpreting the conclusion cNν
NλNµ = 1 in similar terms, we

have to prove that a certain face of some Horn cone has also codimension
one. To produce points on this face becomes a game with block diagonal
matrices.

In the paragraph just before Theorem 5, we already mentioned that by
the Borel-Weil Theorem, if cνλµ = 1 then there exists some Glr-invariant

section σ of some line bundle L on F l(r)3. The fact that σ⊗N is a Glr-
invariant section of L⊗N implies that cNν

NλNµ 6= 0.
We draw the three partitions λ, µ and ν in a same rectangle: we fix

an integer n such that n − r is greater or equal to λ1, µ1 and ν1. Set
I = {n − r + i− λi : i = 1, · · · , a} ∈ P(r, n) in such a way λI = λ with the
notation of the introduction. Similarly, we associate J and K to µ and ν.
By equality (10), we have cKIJ = 1.

By Theorem 7, FIJK∨ is a face of codimension one of ∆(n). Let (A,B,C)
(resp. (A′, B′, C ′)) be three Hermitian matrices of size r (resp. n− r) such
that A+B + C = 0 and A′ +B′ +C ′ = 0. We assume that their spectrum
belong to the relative interior of ρIJK∨(FIJK∨).

Let now I ′′, J ′′ and K ′′ be the three subsets of r +N(n− r) of cardinal
r corresponding to the three partitions Nλ, Nµ and Nν whose the Young
diagram is contained is the rectangle with r lines and N(n − r) columns.
Since cNν

NλNµ 6= 0, we can consider the face FI′′J ′′K ′′∨ of ∆(r+N(n−r)) as in
Proposition 1. By Corollary 1, it remains to prove that FI′′J ′′K ′′∨ intersects
E(r +N(n− r))++.

Consider N generic perturbations (A′
i, B

′
i, C

′
i) of (A′, B′, C ′) satisfying

A′
i + B′

i + C ′
i = 0. Consider now the block diagonal matrix A′′ of size

r+N(n− r) with blocks A, A′
1, · · · , A

′
N ; and similarly B′′ and C ′′. We have

A′′ +B′′ + C ′′ = 0.
It remains to prove that the point of ∆(r +N(n − r)) corresponding to

(A′′, B′′, C ′′) belongs to FI′′J ′′K ′′∨. By Proposition 1, it is sufficient to prove
that the spectrum of A (resp. B and C) consists of the eigenvalues of A′′
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λI = (5 ≤ 3 ≤ 3 ≤ 1)

χI = 010011001

I = {2, 5, 6, 9}.

Figure 1: From λI to I

(resp. B′′ and C ′′) indexed by I ′′ (resp. J ′′ and K ′′∨).
Let us explain more how to recover I from λI . First, draw the Young

diagram of λI . Look the path from WS to EN ; its has length n. Mark
each horizontal step by 0 and each vertical step by 1. We just obtained a
word of length n containing r 1’s: its is the characteristic function χI of I.
We illustrate this remark by Figure 1. This description of the map λI 7→ I

implies that χI′′ is obtained from χI by replacing each 0 by N ones.
Now, the spectrum of A′′ is obtained from the spectrum of A by re-

placing each eigenvalue between two ones indexed by I by N closed eigen-
values. We deduce that (α(A′′)i)i∈I′′ = (α(A)i)i∈I . This implies that
(α(A′′), α(B′′), α(C ′′)) belongs to FI′′J ′′K ′′∨ , ending the proof of Fulton’s
conjecture.

Remark. As pointed out by P. Belkale the construction of A′′ is closed to
the construction of W(N) in [Bel07a, p11].
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