AROUND THE HORN CONJECTURE

L. MANIVEL

ABSTRACT. We discuss the problem of determining the possible spectra of a sum of Hermitian
matrices each with known spectrum. We explain how the Horn conjecture, which gives a
complete answer to this question, is related with algebraic geometry, symplectic geometry, and
representation theory. The first lecture is an introduction to Schubert calculus, from which one
direction of Horn’s conjecture can be deduced. The reverse direction follows from an application
of geometric invariant theory: this is treated in the second lecture. Finally, we explain in the
third lecture how a version of Horn’s problem for special unitary matrices is related to the
quantum cohomology of Grassmannians.

Notes for Gael VIII, CIRM, March 2000.

1. EIGENVALUES OF HERMITIAN MATRICES AND SCHUBERT CALCULUS

THE PROBLEM. Let A, B, C be complex Hermitian n by n matrices. Denote the set of eigenvalues,
or spectrum of A by A(A) = (M (A) > --- > A\, (A)), and similarly by A(B) and A\(C) the spectra
of B and C'. The main theme of these notes is the following question:

Suppose that A+ B = C. What can be their spectra \(A), A\(B), A\(C) ?

There are obvious relations, like trace(C) = trace(A) +trace(B) or A1 (C) < A1(A)+ A1 (B). But
a complete answer to this longstanding question was given only recently, and combines works
and ideas from representation theory, symplectic and algebraic geometry.

WEYL’S INEQUALITIES. There are various characterizations of the eigenvalues of Hermitian ma-
trices, many of which are variants of the minimaz principle. Let (|) be the standard Hermitian
product on C". If s = n—r, denote by G, 5 the Grassmannian of r-dimensional linear subspaces
of C". Then

Aj+1(A) = min  max (Az|z).
Gn_jj =€
(z]|z)=1

The idea is to test the values of (Az|z) on subspaces of C*. That’s how Hermann Weyl [24]
proved in 1912 the following inequalities.

PrOpOSitiOl’l 1. )\p+q+1(0) < )\p+1(A) + >\q+1(B)-

Proof. The first point is to understand what happens when you modify a Hermitian matrix by
another one of small rank. To fix notations, let ey, ... , e, be a basis of C" made of eigenvectors
of A for the eigenvalues A\;(A4),...,\,(4).

Lemma 2. Suppose that rank (B) < k. Then A (C) > \xr1(A).

Proof. For reasons of dimensions, the vector space generated by ej,... e+ meets the kernel
of B along a non-zero unitary vector . Then A\ (C) > (Cx|z) = (Az|z) > A\gy1(A). O
After adding if necessary suitable multiples of the identity, we can suppose that the eigenvalues
of A,B,C are all positive. Denote by A® the Hermitian endomorphism of C* defined by
A(p)(ei) = ¢; if i < p, zero if i > p (it depends on the choice of the basis of eigenvectors
when \,(A) = A\p11(A)). The largest eigenvalue of A’ = A — AP) is \;(A") = \p11(A). Let
B'=B—-BWand ¢'= A"+ B' = C — (AP) + B¥). Since A®) + B has rank at most p + ¢,
the lemma implies that
Aptq+1(C) S A (C") < M(A) + Mi(B') = Aps1(4) + A1 (B). O
1
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Note that the main point in the key lemma above was to find a linear subspace in special
position. In general, it is intuitively clear that the eigenvalues of C' = A 4+ B will depend on the
relative position of the eigenspaces of A and B. That’s precisely the kind of information that is
encoded in Schubert varieties of Grassmannians.

SCHUBERT VARIETIES. Let V, denote a complete flag in C?, that is, a sequence of linear subspaces
o=Vc---cV,c---CcV,=0C",

where V; has dimension 4. Let A be a partition inscribed in a r by s = n — r rectangle, that is,
a sequence of integers s > Ay > --- > A, > 0. We define the Schubert cell

M\(Va) ={W € G, dim (W NV;) =ifors+i— X\ <j<s+i— A1},
and the Schubert variety
Xo(Va) ={W € Gy, dim (W N Viyi_y,) >0, 1 <i <7}
For example, when A has a unique non zero part Ay = k, we get a special Schubert variety
X (Vo) ={W € Gy, WN Vi1 # 0}
We will use the notations 2y and X when the reference flag V, does not matter. The following

facts are well-known (see e.g. [10, 8, 19]):

1. The Schubert variety X is a closed subvariety of G, s, defined locally by the vanishing of
minors of the composite maps W C C* — C"/Vj.

2. Let W € G, 5. The sequence dim (W N'Vj) goes from 0 to r, increasing at most by one at
each step. So it increases strictly at exactly r values of j, which we denote by j = s+ — i,
with p a partition inscribed in a r by s rectangle. This proves that

Grs = H Q.

HET XS

Moreover, if dim (W N Vyyi_y,) > i, we clearly have s +¢ — X\; > s + 4 — p;, hence

X, = HQﬂ.

uOA

In particular, we have the incidence relation X, D X, if and only if A C p.
3. Chose a basis v, ... ,v, of C" adapted to the reference flag, i.e. such that V; = (v1,... ,v;).
Then W € Q) admits a unique basis of the form

Wi = Vgpi—); T Z TijVj,
1<j<s+i—A;,
JF#s+k—Xg, k<i

where 1 < i < r. In particular, Qy is affine, isomorphic to C"*~IAl where |X\| = A\; +- - -+ A,..

Moreover, it is easy to check that X, is the Zariski closure of ).
It follows that the Schubert cells define a complex cellular decomposition of the Grassmannian.
An immediate consequence is that the fundamental classes of the Schubert varieties, the Schubert
classes o) = [X,], where X is a partition inscribed in a r by s rectangle, form a basis of the
cohomology with integers coefficients:

H* (G, Z) = (P Zon.

ACTrXs

Note that the Schubert classes do not depend on the reference flag. This is because G L(n, C) acts
transitively on the set of complete flags. And it is a general fact that if Y is a subvariety of some
variety X on which a connected topological group G acts continuously, then the fundamental
class of gY does not depend on g € G.
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Ezercise. Let Py(Gy5) = Y150 ¢*ranky H** (G, 5, Z) be the Poincaré polynomial of the Grass-
mannian. Prove that when ¢ is a power of a prime, P,(G; ;) equals the number of points of the
grassmannian G, ¢ (F,) over the field with ¢ elements. Deduce from this interpretation that

(1-g-¢°)---(1—g™")
(I=q)--1-¢)(1-q)-(1-¢)

Py(Gy5) =

How TO MULTIPLY SCHUBERT CLASSES. Now that we know the additive structure of the coho-
mology ring of the Grassmannian, we need to understand its multiplicative structure. It was
investigated in detail by mathematicians from the last century, in particular from the German
and Italian schools. Here are the main remarkable formulas.

Duality. Let again V4 be our reference flag, with an adapted basis v,. We define the dual flag
Vi by V! = (vp—it1,... ,vn). From our explicit descriptions of a prefered basis of an element
of a given Schubert cell, we easily deduce the following fact: if A and p are partitions such
that |A| + || = rs, then Q5(V4) and Q,(V/) meet transversely in a unique point if u = X,
where \ = (s —Ary... ,8— A1) is the complementary partition of A\, and have empty intersection
otherwise (see [10], p. 198 or [19], 3.2.7). This implies that the cup-product

ON\Oy = 6ﬂ7;\0r><53

where 0, x5 is the class of a point. This means that the basis of the cohomology of the Grassman-
nian given by Schubert classes is, up to complementarity, self-dual relatively to Poincaré duality.
Usually, one represents a partition A by its diagram as below (this diagram has \; boxes of the
i-th row, from top to bottom) and the complementary partition has complementary diagram
(after rotation) in the r by s rectangle.

p
>

S S
Pieri’s formula. Let o be the class of a special Schubert variety. Then

OXNO = E Ov,

vCrxs,
VEARE

where A ® k denotes the space of partitions v such that |v| = |A| + k, and A\; < v; < A\ (see
[10], p. 203 or [19], 3.2.8).

Giambelli’s formula. It is a formal consequence of Pieri’s formula that each Schubert class can
be expressed as a determinant in special classes (see [10], p. 198 or [19], 3.2.10):

op = det(op;—ivj)1<ij<r-
Ezercise. Identifying C* with its dual vector space, there is a natural isomorphism G, ; ~ G ;.
Show that this isomorphism exchanges a Schubert variety X\ C G, ; with X« C G, where \*

is the conjugate partition of A. Deduce from Giambelli’s formula that if 7, = o(;x, then

0y = det(Tu; —itj)1<ij<s-
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T

There are other descriptions of the cohomology ring of the Grassmannian, as a quotient of
a polynomial ring. Indeed, one can deduce from Giambelli’s formula that the special classes
01,... ,05 generate H*(G,5). Let 7(2) = 3, 2 = (1 + 201 +--+ + 2°05) . One can prove
that 75, is the £-th Chern class of the dual of the tautological vector bundle on G, s, which has
rank r, so that 7, = 0 for & > r ([10], p. 410); moreover, this gives a complete set of relations.
More precisely:
H*(Gy5,Z) ~Cloy, ... ,06]/{Trs1,--- , Tn)-

In principle, the previous formulas are enough to compute the product oyo, of any two Schu-
bert classes: you just need to use Giambelli’s formula to express o, in terms of special Schubert
classes, and then apply Pieri’s formula r times. Of course, this is not very satisfactory. Little-
wood and Richardson gave in 1934 a combinatorial algorithm for computing the multiplicities
CK” in the product

4
ON\Oy = E CAuOv-
v

THE LITTLEWOOD-RICHARDSON RULE. First observe that CK” = cz/\ can be non zero only when
v D A\ p. A skew-tableau on pu/v will be a way to fill the complement of the diagram of y inside
that of v by positive integers, which increase on each column from top to bottom, and do not
decrease on each line from left to right. It will have weight X if each integer appears exactly
A; times in the filling. Finally, let w = wy...w)\| be the associated word, obtained by reading
the numbers in the skew-tableau line after line, from right to left. It is a lattice word if in every
subword w;...w;, each integer j appears at least as often as j + 1 (see [18], 1 9).

The Littlewood-Richardson coefficient CKH equals the number of skew-tableauz on p/v,
of weight A\, whose associated word is a lattice word.

Ezample. In computing the product o320911, the following skew-tableaux do contribute and we
get 0320211 = 0531 + 05211 + 0441 + 04311 + 042111 + 03321 + 033111 + 032211

1/1] [1]1]

[a—y

1] 1]

13 2 13
13

[eo]wo

1
13

[cevo] =

L
2
13

[coro—

There exist several other combinatorial descriptions of Littlewood-Richardson coefficients. A
recently discovered one is due to Knutson and Tao, and has been essential in their proof of the
saturation conjecture (see below, and [5] for a very clear exposition of the main ideas). Consider
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a triangular array of vertices (n+1 on each side), and call rhombus a union of two small triangles
with a common side.

Definition. A hive is a labelling of this triangular array, such that for each rhombus, the sum
of the labels at the obtuse vertices is greater than or equal to the sum of the labels at the acute
vertices.

Ifv = (v1,...,vy) is any partition, define vy = (0,v1, 1 +va,... ,|v|). Knutson and Tao proved
that if || = [A| 4 |u|, the Littlewood-Richardson coefficient cf, equals the number of integral
hives with border labels given by A4, |A| + p4, 4. (For example, on the picture above, there is
an integral hive with these border labels for A = (32), p = (211), v = (441).)

SCHUBERT CALCULUS AND HERMITIAN MATRICES. We know enough of Schubert calculus to general-
ize Weyl’s inequalities. The inequalities we will obtain involve partial sums A\;(A) = >, ; Xi(A)
of eigenvalues of a Hermitian matrix A, where [ is an increasing sequence 1 <13 < -+ < i, < n.
To such a sequence, we associate the partition A = A\(I) = (i, —r,... ,i; — 1).

The relation between the partial sums A\;(A) and Schubert varieties is as follows. If W € G,
let Ty : C* — W be the hermitian projection, and define the Rayleigh trace

r
RA(W) = trace(A o) = Z(Aui,ui)
i=1
for any orthonormal basis (u1,... ,u,) of W. Let A, be a complete flag in C", compatible with
the eigenspaces of A, which means that A; = (ay,... ,q;), with A(a;) = \j(A)a;. Let A, be the
opposite flag. It is an exercise to check that
Ar(A) = max R (W).
Wen () (4s)

Proposition 3. Let A, B,C be Hermitian matrices such that A+ B = C. Let r < n, and
1,J, K be increasing subsequences of length r, with associated partitions X\, u,v. Suppose that
the Littlewood-Richardson coefficient cKﬂ 1s non zero. Then

Ar(A) + A (B) = A (C).

Proof. 1f ciﬂ # 0, the duality properties of Schubert classes implies that the intersection of the
Schubert varieties Q) (4,), ,(B,) and ©;(C,) must be non empty. Let W be an intersection

point. Denote by K the increasing sequence corresponding to 7, so that ki=n— kri1-4: we
have A (—C) = —Ak(C). Using the linearity of the Rayleigh trace, we get

A1(A) + X (B) S Ra(W) + Rg(W) = Re(W) = —R_¢(W) < =A;(=C) = Ak (C). O

This proposition, due to Helmke-Rosenthal and Klyachko (see [15], Theorem 1.2), raises a
number of questions. Are these inequalities sufficient for the existence of Hermitian matrices
A+ B = C with the corresponding eigenvalues ? If it is the case, why is it enough to consider
linear inequalities in the eigenvalues ? And how can we characterize the triplets (X, u,v) of
partitions such that the corresponding Littlewood-Richardson coefficient ciu is non zero 7 We
will answer to the first two questions in the next lecture. The answer to the last stems from a
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unexpected relation of Littlewood-Richardson coefficients with the representation theory of the
linear group.

REPRESENTATIONS OF GL(n,C). Let V be a complex vector space of dimension n. The linear
group GL(V) is (linearly) reductive, which means that any of its finite dimensional rational
representation is a direct sum of irreducible ones (i.e. without any stable proper subspace).
Moreover, these irreducible representations are classified by non-increasing sequences of integers
A= (A >+ > X\;). Among these are the partitions, corresponding to polynomial represen-
tations. For simplicity, let us suppose that A is indeed a partition. Then the corresponding
irreducible representation S\ V', can be defined in the following way: choose any numbering N of
the diagram of X by integers from 1 to [ = |A|; denote by (A],... ,Af,) the lenghs of the columns
of this diagram. Then we have a composite map

N ANV @ @ AV o VO 5 SNV . @ SV,

defined as follows: the inclusions A* V < VO are the usual ones, but they involve in V% the
factors V in the positions prescribed by the numbers in the i-th column of N; the projections
VO — SNV are the usual symmetrizations, but they involve in V® the factors V in the
positions prescribed by the numbers in the j-th line of N. These maps are obviously compatible
with the diagonal action of GL(V'), thus the image of py is a GL(V')-module: this is SyV. For
example, if X\ has only one non zero part, say A; = k, then we get the symmetric power S*V; if
A has & non zero parts, all equal to one, we get the skew-symmetric power AFV.

The representation theory of the linear group was developped in the first decades of the
century, in particular by I. Schur. Schur knew how to decompose the tensor product of any
Schur module S\V with a symmetric power. But it was only in 1947 that Lesieur realized that
the answer is formally identical with Pieri’s formula (up to the fact that in each case we consider
partitions with slightly different restrictions: inscribed in a r by s rectangle for the Grassmannian
Gy,s, with at most n parts for GL(n,C)). But as we have seen, because of Giambelli’s formula
(which is a formal consequence of it), Pieri’s formula is enough to determine the multiplication
of Schubert classes, hence also of Schur modules. In particular, the multiplicity of S,V inside
the tensor product S}V ® 5,V is equal to the Littlewood-Richardson coefficient c5,.

There is a more geometric way to define Schur modules as spaces of sections of line bundles.
Consider the variety of partial flags 0 C V; C --- C V;;, C V, where dim V; = A} (repetitions are
allowed when A has several columns of the same size). Using a Plucker embedding for each V;,
then a Segre embedding, we obtain a subvariety Fy (V) of PW, where W = AMV®--- @ AM V.
The Borel-Weil theorem (see [4]) then asserts that

[(Ex(V),0(1)) = S)V.

2. PRINCIPLES OF GEOMETRIC INVARIANT THEORY

THE GENERAL PROBLEM. Let X be an algebraic variety, defined over an algebraically closed field
k, with an action of an affine algebraic group G. Can we construct an orbit space for this action,
that is, an algebraic variety Y with a surjective morphism f : X — Y, such that the fibers of
f are exactly the G-orbits in X 7 The answer is scarcely yes (this would imply, for example,
that all orbits are closed, i.e. the action would be closed), but we can ask for “quotients” with
weaker properties. An important notion is the following:

Definition. A categorical quotient of X by G is a pair (Y, f) such that f is constant on G-orbits,
and such that every morphism g : X — Z with the same property factors through f.

THE AFFINE CASE. Let X = SpecA, where G acts rationally on the finitely generated k-algebra
A. This is a particularly nice case when G is a reductive group (in the sense of the first lecture
if char k = 0, in general the definition is different): indeed, it was proved by Weyl for char k = 0,
and by Nagata in general, that the algebra A% of G-invariants is finitely generated ([23], Theorem
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3.4). One can then define the affine variety Y = SpecAY, and the natural morphism f : X — Y
has the following nice properties ([23], Theorem 3.5):

1. Oy >~ (f*OX)G;
2. the image by f of any closed invariant subset is closed;
3. f separates disjoint closed invariant subsets.

In particular, two points in X have the same image iff their orbit closures meet. A consequence
of these properties is that (Y, f) is a categorical quotient. Moreover, if U is an open subset of
Y such that the action of G on f!(U) is closed, then U is an orbit space.

THE PROJECTIVE CASE. For simplicity, let us consider the case where V is a G-module, and
X C PV a G-invariant closed subvariety.

Definition. A good quotient of X by G is a pair (Y, f), where f is surjective, affine, constant
on G-orbits, and satisfies properties 1-3 above. It is a geometric quotient if it’s also an orbit
space.

In general, such quotients will not exist. But they will if we restrict ourselves to suitable open
subsets of X. The first observation is that we need G-invariant forms to reduce the problem to
the affine case. This motivates the following important definition, for which we follow [23].

Definition. A point x € X is semi-stable if there exists a non constant G-invariant homogeneous
form P on V' such that P(x) # 0. It is stable if, moreover, its stabilizer G, is finite, and one
can find P as above such that the action of G on Xp = {y € X, P(y) # 0} is closed.

Denote by X*° and X° the open subsets of X consisting of semi-stable and stable points.
(Note that they may very well be empty.)

Fundamental theorem. There exists a good quotient (Y, f) of X*5 by G, and Y is projective.
Moreover, there ewists an open subset Y° of Y such that f~1(Y®) = X*, and (Y°,f) is a
geometric quotient of X°.

THE HILBERT-MUMFORD CRITERION. Except for very simple cases, it is extremely difficult from
the definition above to determine which are the stable or semi-stable points of a given action.
Indeed, this would imply to compute all the G-invariant polynomials, which is intractable in
general. Let z € X C PV, and v € V lying over z. One can prove ([23], Proposition 4.7):

x is semi-stable iff the closure of Gv does not contain the origin;
x s stable iff the morphism from G to V given by g — gv is proper.

From this it is possible to derive a numerical criterion for stability. Recall that a one pa-
rameter subgroup of G is a homomorphism A : k* — G. The induced action of £* on V can be
diagonalized: we can find a basis e, ... ,e, of V, and integers ki,... , ky, such that

n n
At)v = Ztkiviei for tek*, v= Zviei evV.
i=1 1=1

Define p(z,\) = —min{k;, v; # 0}. Note that when ¢ tends to zero, A\(¢)z has a limit z,
corresponding to vo = 7, . _oviei. Moreover, pu(z,A) = p(zg,A). The Hilbert-Mumford
criterion states that a point is (semi-)stable iff it is (semi-)stable with respect to every one
parameter subgroup ([23], Theorem 4.9):

x is (semi-)stable iff pu(x,\) > 0(> 0) for every one parameter subgroup X of G.

AppLicATION TO FLAGS. We will apply the Hilbert-Mumford criterion on two examples, the first
being a simple version of the second one.

1. Let U, E be vector spaces. The action of G = SL(U) on W = U ® E induces, for each
integer r, an action on A"W, and on the Grassmannian G(r, W) C P(A"W).
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Proposition 4. A point L € G(r, W) is semi-stable iff for every proper subspace V' of U, the
subspace M = LN (VQE) of W is such that

dim M dim L

M) = < u(L) = .

wM) = G S = G
Proof. Let A be a one parameter subgroup of G: we choose a basis uq, ... ,u, of U such that
At )u; = thug, with my > -+ > 7, and let U; = (uq,... ,u;) and L; = LN (U; @ E). Let
L, C---CLp, = Lbethose L; # L;_1, and denote their dimensions by l1,... ,l;. Choose an

adapted basis f; of L. If [;_; < j <;, we have f; = E,Kpi u @ v, j for some vg ; € V. Then
Lo = lim; -, g A(t)L is the space generated by the u, ® vy, j, and a simple computation shows
that

n
(L, A) = (Lo, N) = =Yy, dim Ly, /Ly, ==Y ridim L;/Li_y.
j i=1
If the criterion given by the proposition is fulfilled, then dim L; < im/n, and using the identity
r1+---+7r, =0, which follows from the fact that A is a subgroup of SL(U), we get u(L,\) > 0.
Hence L is semi-stable. The reverse statement is an exercise. [l

2. Let now V, be a m-filtration of V', that is a family of m filtrations V.(Z) of V' (the dimensions
of each subspace is fixed). Each such filtration defines a point of some flag manifold, and through
a Segre product a m-filtration thus defines a point in the projectivization of a tensor product
of wedge powers of V' (or of Schur modules), which is endowed with a natural SL(V')-action.
Applying the Hilbert-Mumford criterion as in the proof of the previous proposition, we find:

Proposition 5. A m-filtration Vs is semi-stable iff for every proper subspace L of V,

1
L) =
W) = Gt

S dim (LnVY) < p(v).
i

HERMITIAN MATRICES AGAIN. We have seen in our first lecture that each non zero Littlewood-
Richardson coefficient gives restrictions on the set of eigenvalues of triplets of Hermitian matrices
with sum zero. We now want to prove the reverse statement, and its obvious extension to a
greater number of matrices. This is due to A. Klyachko [15].

Proposition 6. There exists Hermitian matrices A(1),... ,A(m) of size n, having for spectra
the weakly decreasing sequences X(1),... ,A(m), and such that A(1) + ---+ A(m) is scalar, iff

1 m 1 m n
- D Ay (k) < - D) Xilk)
k=1 k=1 i=1
for all v < n, and all m-tuples I(1),... ,I(m) of increasing sequences of r positive integers, such
that the product of the corresponding Schubert classes is non zero.

Proof. The necessity of these conditions is checked as in Proposition 1.3. To prove the reverse

statement, we can use a density argument to make a few additional assumptions: first, we

suppose that the spectra A(i) are strictly decreasing rational sequences, that they are positive

(after adding, if necessary, suitable scalar operators), and even, after multiplying by some integer,

that they are partitions with distinct parts; second, we suppose that all the inequalities above

are strict. _

Then we choose generic flags F.(l) in C", from which we construct a m-filtration by letting

Vp(i) =W where (i, p) = A\(i)

*
a(i,p)’ P

We let A(i) be the sum of the Hermitian projections on the Vp(i), which has the required spectrum.
There remains to prove that A(1) 4 --- + A(m) must be scalar.
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For this we choose a Hermitian metric on V', and for each i, a Hermitian basis v(i,e) of V'
adapted to the flag F.(i). We consider our m-filtration as a point in PW, where W = ®Z~,p/\a(i’p)V,
and a point above it is

v=Q;pv(i,1) A--- Av(i,ai,p)) € W.
Because of the previous proposition and the hypothesis, our m-filtration is stable, hence the
SL(V)-orbit of v is closed and does not contain the origin. There is therefore a point in this

orbit, say v itself, which minimizes the distance to the origin (for the induced norm on W). This
implies that for all X € End(V) with trace (X) = 0, we have

0 = Re(Xw,v) = ReZRX(FS()i p)) = ReZtrace (X A(1)).
@D %

Since the A(i) are Hermitian, this implies our claim. O

Corollary 7. Let \(A),\(B), \(C) be weakly decreasing sequences of n real numbers, such that
Yo N(A) D0 X(B) =2, Mi(C). Suppose that for every r < n, and every increasing sequences
1,J, K of length r with associated partitions X, i, v, such that cxu # 0, one has

Ar(A) + A5 (B) =2 Ak (C).
Then there exists Hermitian matrices A+ B = C' of size n, with spectra A(A), \(B), A(C).

THE SATURATION CONJECTURE. By the very definition, a m-filtration is semi-stable if and only if
there exists a SL(V')-invariant form on W which does not vanish at the corresponding point in
the product X of flag varieties. This product has a natural projective embedding (use a Plucker
embedding for each subspace, and compose with a Segre embedding), corresponding to a very
ample line bundle O(1). By the Borel-Weil theorem, we have

(X, 0(N)) = Syaaap)V® -+ ® Snaamy) V-

If the condition of Proposition 6 are fulfilled, there exists a semi-stable point in X, and this
implies that for some N > 0, the above tensor product must contain some trivial factor (trivial
as a representation of SL(V)).

A priori, one has no control on the integer N, but the saturation theorem of Knutson and
Tao says that we can always take N = 1!

Theorem 8. There is an integer N > 0 such that Sya)V® -+ ® Snam)V contains a trivial
factor, iff SqyV® -+ @ Sum)V itself contains a trivial factor.

We will not explain the proof of this theorem, which follows from a careful study of the com-
binatorics of hives [17, 5]. Let us simply notice that for m =3, S,V ® SgV ® S,V contains a
trivial SL(V')-factor iff |a| x |B| = v x w for some integer w, where v = dim V', and c‘;ﬂ # 0 for
0 the complementary partition of v in the v by w rectangle. A consequence of all this is that
the non-vanishing of Littlewood-Richardson coefficients can be checked recursively.

HORN’S CONJECTURE. We can now state the original conjecture of Horn, which goes back to 1962
[11] and is also recursive in nature. Define the sets of triples of increasing sequences of r integers
in{1,...,n}:

Ur = ALK, |1 +17] = K] + 75,

T = {(,JK) €U}, Ilp+1Jle < K|y + 22 vp <r, V(F,G,H) € T)}.

Theorem 9. There exists Hermitian matrices (A, B,C) of size n, such that A+ B = C, iff
trace (A) + trace (B) = trace (C), and

A(A) + As(B) > Ag(C)  Vr<m, V(I,J,K) €T
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Proof. One checks, using induction, that this is just a reformulation of Proposition 3 and Corol-
lary 7. For more details, see [7], Theorem 12. O
For n =2 we get 71 < a1 + B1, 72 < as + B1, a1 + B2. For n = 3, we obtain twelve inequalities:

oy + B3, + Bo,a3+ 1 < m oy + B,
ay + B3, a3 + [ V2 a1 + B2,z + B,
as + (3 V3 a1 + B3, a2 + B2, a3 + [r.

ININIA

<
<

WHY POoLYTOPES? There seems to be no reason a priori why the set of eigenvalues of Hermitian
matrices whose sum is zero, should be described by linear inequalities, that is, should be a convez
polytope. Tt turns out that such polytopes do appear in the general context of torus actions on
symplectic varieties, of which our problem is a special case.

Definition. Let M be a manifold, with an action of a connected Lie group K preserving a
symplectic form w. Differentiating this action, we associate to each X € t (the Lie algebra of
K), a vector field nx on M. A map p : M — € is then o moment map for the action of K
in M if it is K-equivariant (with respect to the coadjoint action of K on the dual € of its Lie
algebra), and for all X € ¢, du(X) = w(nx,e) (equality of 1-forms on M ).

This is equivalent to the existence of a Hamiltonian H : ¢ — O(M), the space of regular
functions on M, which is a Lie algebra homomorphism and lifts the natural map n : ¢ — T (M)
induced by the action. Here 7 (M) is the space of vector fields on M; if f € O(M), its differential
df can be identified via the symplectic form with a vector field {;. The moment map and the
Hamiltonian are related by the identity H(X)(m) = p(m)(X) for m € M, X € &.

Moment maps have good functorial properties: if N is a K-invariant submanifold of M, the
restriction 4y is a moment map for the restricted action. Also, if we restrict the action to a
subgroup L of K, we get a moment map for this new action by composing with the projection
e — [

Example 1. The action of the unitary group U(n + 1) on P" (endowed with the symplectic
structure given by the Fubini-Study metric) is Hamiltonian: the moment map associates to each
point of P" the Hermitian projection on the corresponding line in C**!. Therefore the action
of any subgroup K of U(n + 1) preserving a subvariety X of P" is also Hamiltonian.

Example 2. Let M be any coadjoint orbit in ¢*. Let €, be the stabilizer of a point m € M.
Then T, M =~ /¢, and the identity w(X,Y) = ([X, Y], m) defines a symplectic form on M.
One checks that the inclusion M — £* is a moment map for the action of K on M.

Example 3. Take in particular K = U(n), so that € is the space of skew-Hermitian matrices.
Then £* can be identified, in a K-equivariant way, with the space H,, of Hermitian matrices via
the trace form H + trace (¢H.). This identifies the coadjoint orbits in £ with the K-orbits
in H,, which are just the spaces O, of Hermitian matrices with fixed spectrum A, a weakly
decreasing sequence of real numbers.

The following theorem is due to Atiyah and Guillemin-Sternberg (see [13], 3.4):

Theorem 10. Let M be a compact connected symplectic manifold. Suppose that a torus T acts
on M with a moment map v : M — t*. Then u(M) is a convex polytope. More precisely, the
image under u of the fized point set of T in M is finite, and uw(M) is the convex hull of this
finite set.

In the example above, we can restrict the action on Oy to the subgroup 7' of K counsisting
of diagonal matrices, which is a torus group. The induced moment map u : Oy — t* takes a
Hermitian matrices to its diagonal entries. The theorem then asserts that the diagonal entries of
the matrices with spectrum A describe the convex hull of the permutations of A. This is known
as the Schur-Horn theorem.
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For a Hamiltonian action of a Lie group which is not a torus group, the image of the moment
map needs not be convex, but still a part of it must be convex. Suppose that K is compact, let
T be a maximal torus in K, and 7 C t* a positive Weyl chamber; when K = U(n), the main
case of interest to us, T' is the torus group of diagonal matrices in K and t* can be chosen to
be the cone of weakly decreasing sequences.

Theorem 11. Let M be a compact connected symplectic manifold with a Hamiltonian action
of K. Then u(M) Nt} is a convexr polytope.

To state this theorem, which is due to F. Kirwan ([14], Theorem 2.1), in a slightly different
way, consider the map p : & — 7 which (for K = U(n)) takes a Hermitian matrix to its
spectrum. Then p o u(M) C ty is a convex polytope. This holds for any compact group, the
map p being defined through the property that each K-orbit in £* meets t at a single point.

Example 4. Consider the diagonal action of K = U(n) on Oy x O,. This action is Hamiltonian,
its moment map takes a pair of Hermitian matrices to their sum. Composing with the map
p above, we get that the spectrum of the sum of two Hermitian matricies with given spectra,
describes a convex polytope. This justifies qualitatively the Horn conjecture. (See [16] for a
quantitative discussion along the same lines.)

3. THE QUANTUM CASE

THE MULTIPLICATIVE PROBLEM. Let A € SU(n). Its eigenvalues are complex numbers of norm
one, which we can write in a unique way as exp(2im)\;), with A\; > --- > X\, > A\ — 1 and
A1 + -+ Ay = 0. These inequalities define the fundamental alcove U, and we denote by
A(A) € U the spectrum of A. The multiplicative analogue of Horn’s problem is then: how can
we describe the set

Aq(l) = {()\(Al), ,)\(Al)), A,... A€ SU(’I’L), Ay - A= I} ?

A GEOMETRIC INTERPRETATION. For { € U, denote by O¢ the space of special unitary matrices
with spectrum ¢. Consider the open curve P! minus [ points py, ... ,p;: its fundamental group
is generated by [ small loops 71,... ,7; around py,... ,p;, with the single relation vy --- vy, = 1.
Thererefore, there is an identification between

N(fl,... ,fl) = {(Al,... ,Al) S O& X oee X Oﬁl’ Ay A :I}/SU(H)

and the moduli space M(&,... &) of unitary n-dimensional representations (up to global con-
jugacy) of m (P* — {p1,... ,pi}), such that the image of v; is in O,. In particular (£1,... ,&) €
Ag(l) it M(&,...,&) is non empty.

There is another interpretation of this moduli space, due to Mehta and Seshadri. This involves
the concept of stable vector bundles, which is of course closely related with the stability concept
of Geometric Invariant Theory (see [23], Chapter 5). On a smooth complete curve C, a vector
bundle £ is (semi-)stable if, for every proper sub-bundle F of £, we have

deg(F)

u(F) = rank(F) < p(€).

Suppose that the genus of C is at least two, and that C' ~ H/I", where H denotes the Poincaré
half-plane and I' >~ 7, (C) is a discrete subgroup of Aut(H) ~ PSL(2, R) acting freely on H. Then
it is a classical theorem of Narasimhan and Seshadri that the space of isomorphism classes of
unitary representations of I' is in bijection with the moduli space of semi-stable vector bundles of
degree zero on C [22]. The definition of this correspondance is the following: to a representation
m: ' — U(n), one associates the vector bundle E; = H x, C" on C.

The theorem of Mehta and Seshadri [20] is an extension of this result to non-compact Riemann
surfaces with finite volume. Such a surface can be seen as the complement of a finite set in a
complete curve (P! in the case of interest to us).
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Definition. A parabolic ! vector bundle £ on P! is a vector bundle of rank n plus additional
data: a complete flag £,, o of subspaces of each fiber &, ; weights &; j, which are real numbers
such that &1 > -+ > & > &1 — 1. Its parabolic degree is

pardeg(€) = deg(€) + Z &ij
2

Actually, the weights will only play a role in the definition of semi-stability. Consider a sub-
bundle F of £. It can be endowed with a parabolic structure in the following way: each fiber
Fp; has an induced complete flag, given by taking the distinct terms in the sequence F,, N &, ;,
and we associate to each of these subspaces the maximum of the corresponding weights. Then

& is semi-stable iff deg(F)
pardeg
=—=< .
VF - 57 H’P(]:) I‘&Ilk(]:) — H’P(g)
Theorem 12. Suppose that &1, ... & are rational sequences. Then the space M(&1,... &) is
homeomorphic to the moduli space of semi-stable parabolic vector bundles on P, of degree zero

and parabolic weights &; ; at p;.

Moreover, one can show that the generic point £ of this moduli space must be semi-stable
as an ordinary vector bundle ([1], Lemma 5.2). On P!, a vector bundle is a direct sum of line
bundles, and is semi-stable iff all these line bundles have the same degree. Here, £ has degree
zero and is therefore trivial.

THE QUANTUM COHOMOLOGY OF THE GRASSMANNIAN. A sub-bundle F of the trivial bundle & is

simply given by a map ¢r : P! — G5, such that F = ¢%-5, where S is the tautological vector
bundle on G, 5. Since det F = ¢%O(—1), we have

pardeg(F) = —deg(¢F) + Z §1j+-+ Z €155
jeh(orF) JEL(éF)

where the sequence I;(¢r) encodes the relative position of ¢r(p;) C &, with respect to the
complete flag &,, .. We get:

Theorem 13. The set Ay (1) CU' is the polytope defined by the inequalities
DA -+ D) N(A) <4,

JE€nL JEL
where I,... , I} are increasing sequences of r < n elements in {1,... ,n} such that there exists a
degree d map ¢ : P! — Gy,s sending p1,... ,p; to Schubert cells Qp,, ... , 8y, in general position.

Now the question is to find necessary and sufficient conditions for such maps to exist. A
major discovery of the last ten years has been that these maps can be used to construct cer-
tain g-deformations of cohomology rings, whose very striking properties have had spectacular
applications, specially in enumerative geometry. This is the theory of quantum cohomology, for
which we refer to [9].

We will be primarily interested in the small quantum cohomology ring QH*(G) of the Grass-
mannian G = G;. ;. This ring can be defined as the space H*(G, C)[q], where ¢ is an indetermi-
nate, endowed with the following commutative and associative product:

O\ ¥ 0y = Z CKM(d)qday,
d>0
where the quantum Littlewood-Richardson number CKM(d) is defined as follows 2. It is equal to
the number of degree d maps ¢ : P! — G sending three given points to Schubert cells Qy,$,,,;

!The word “parabolic” comes from the uniformization theory of non-compact Riemann surfaces.

In a more general setting, one can define quantum cohomology in terms of Gromov-Witten invariants, which
are defined through moduli spaces of stable maps from a pointed curve to a variety with certain properties. The
miracle is that this product is associative([9], Theorem 4).
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in general position when this number is finite, and zero otherwise. A dimension count shows
that ¢ ,(d) can be non-zero only when |v| + nd = [A| + |u| (as follows from [9], Theorem 2(i)).

Note that CKM(O) = cj,, 1s the usual Littlewood-Richardson coefficient, and that the quantum
cohomology ring is a g-deformation of the ordinary cohomology. In the case of the Grassmannian
one can give a simple description of this ring.

Theorem 14. Let 7(z) = (1 — zoy + -+ + (—1)°2%0) " = 3, 2F7p,. Then
QH*(G) = QH:,S = C[Ula' -+ 0s, q]/<7—7‘+1a coe s Tn—1,Tp + (_1)sq>.

Proof. We first check that the relations 7,41,... ,7,-1,7, + (—1)°q do hold in QH*(G). First
recall that if ¢, (d) # 0, we must have [v| + nd = [A| + |p[, which implies that d = 0 when
|A| + |#| < m: upto degree n — 1, the quantum and the classical products coincide. Since the
relations 7,41,... ,7,—1 do hold in H*(G) (see the first lecture), they hold in QH*(G) as well.

For the remaining relation, note that the formal identity 7, — o17,—1 + -+ + (—=1)°0s7 = 0
reduces in QH*(G) to 7, + (—1)°0s7; = 0. Therefore, all we need to check is that c§ (1) =1 for
A= (s),u=(1") and v = (s"). The corresponding Schubert varieties are respectively {W C H},
{W D1} and {Wy}, where H is some hyperplane and [ a is line. Note that a line in G must
be of the form {A C W C B}, the dimensions of A and B being r — 1 and r + 1. In general,
there is a unique such line meeting the three Schubert varieties above, given by A = Wy N H
and B = (Wy,[), and our claim follows.

This is enough to prove the theorem: indeed, we proved that there is a ring homomorphism
QH,; ; — QH*(G), which is an isomorphism modulo ¢. But these two Z[g]-modules are free of
the same rank, hence they must be isomorphic. O

Corollary 15. The quantum cohomology ring of the projective space is
QH*(P") = Z[t, q)/ (1" — q).

QUANTUM SCHUBERT CALCULUS. What does remain of the formulas of Pieri and Giambelli in
quantum cohomology? A quite surprising result, due to A. Bertram [2], is that Giambelli’s
formula holds without any quantum correction:

Proposition 16. For every partition \ inscribed in the r by s rectangle, one has in QH*(G)
oy = det(oy, —iyj)1<ij<r

The proof uses a generalization of Giambelli’s formula, due to Kempf and Laksov, which applies

to the “relative” situation where one has a morphism v : £ — F between vector bundles on
some variety X, and a flag of subbundles of £. One then looks at the points of X above which
the kernel of u has a given relative position with respect to these subbundles. Under genericity
assumptions, this defines a subvariety of X whose fundamental class is given by a Giambelli type
formula in terms of Chern classes of £ and F' (see [19], 3.5.17). Such a description can precisely
be used in the context of quantum cohomology, by defining generalized Schubert varieties on
the so-called Quot-scheme, and the Kempf-Laksov formula proves the proposition.

For any partition A = (A1,..., ), we can define the class oy = det(ox, —it+j)1<i,j<i in QH*(G).
This class is obviously zero if \; > r, but not necessarily when A] > s. We will give an
algorithm to express such classes in terms of those corresponding to partitions contained in the
r by s rectangle, and show how this leads to a formula for quantum Littlewood-Richardson
coefficients.

Definition. Choose a box on the border of the diagram of A, and make n—1 steps on this border
in the north-east direction to cover a n-rim of A\. This n-rim is legal if its complement in X is
again o partition, illegal otherwise. The width of a n-rim is the number of columns it occupies.

In the picture below you see an illegal and a legal 4-rim in the partition A = (5531).



14 L. MANIVEL

Lemma 17. If A contains an illegal n-rim, or if A\r11 > 0 and X\ contains no n-rim, then oy = 0.
If X contains a legal n-rim of width w and complement p, then oy = (—1)"""qoy.

Proof. The key observation is that the relation 7, + (—1)"¢ = 0 implies, by induction, that for
all j >0, 7,45 + (=1)"qr; = 0. Let @ = A\*: we have oy = det(7q, i+j)1<ij<r,- If A contains no
n-rim, then A\; + a1 < n, and if moreover A, ; > 0, which means that «; > r, then the first line
of this determinant is identically zero.

Now consider some n-rim of A, beginning on column ¢ and ending in column b. This n-rim is
illegal precisely when o, —a —n = a1 — (b + 1). Using the relations 7,4 ; + (—1)"¢7; = 0. on
the a-th line of the determinant above, we obtain a new line that is proportional to the b+ 1-th
line, hence o) = 0.

If the n-rim is legal, we pass this new line to the b-th row to obtain, up to the sign, a
determinant of the same kind which is precisely o,,. O

This lemma gives the algorithm we were looking for: beginning with a partition A\, one can
remove legal n-rims until there is no more in the remaining partition v. (This partition does not
depend on the choice of the n-rims removed: it is known as the n-core of A. Nor does the sign
e(Mv) = (=1)"™""" where w is the sum of the widths of the n-rims removed, and m is their
number (see [12], Th. 2.7.16).) Then o) = 0 if v is not contained in the r by s rectangle, and
otherwise

oy =e(Nv)q"o,.

Ezample. The partition A\ = (55541) has (321) for 2-core, and the pictures below show different
ways of removing legal 2-rims.

We are now able to compute quantum Littlewood-Richardson numbers:

Proposition 18. The quantum Littlewood-Richardson numbers can be expressed in terms of
ordinary Littlewood-Richardson numbers in the following way:

&u(d) = Y o),
p

where the sum is over partitions p with p1 < r that can be obtained from v by adding d n-rims
(but p needs not be contained inside the r by s rectangle).

Proof. If we forget the relations 7y, ... , 7,, the Littlewood-Richardson rule tells that
oNOy = Zciﬁop in Cloy,...,o04.
p
In QH*(G), we express the right hand side in terms of partitions inscribed in the r by s rectangle,
and the algorithm above gives the claim. U

Ezample. Let A = (32211), p = (432), v = (2211), and let us compute c5,(1) for r = s = 6,
n = 12. We first add a 12-rim; there are only two such rims that can contribute, corresponding
to p = (6332211) and p’ = (53322111). Applying the Littlewood-Richardson rule one checks

that Ciu =3 and ciu =2, hence ¢§ (1) =3 -2=1.
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Ezxercise. Check that QH*(Gy4) has the following multiplication table:

01 o2 011 021 022
oy |og+011 021 0921 022 qoi
2P 021 022 q qo1 qo11
011 021 q 022 qo1 qo?2
021 092 qo1 Q01 Qo2 + Qo011 Qo921
022 qo1 qoi1 4o2 qo21 q2

Ezercise. Deduce from the previous proposition the quantum Pieri formula:

O\ % Of = Z oy +(q Z Op,

vCrxs, pCrxs,
VEAREK pEAkEk
where the quantum contribution A * k is the set of partitions p of size |p| = |\| + k — n, such

that Ay = 12> p1 2 A —12--2 X1 —-12ps >20.

This is enough, in principle, to list a complete set of conditions in Theorem 13. Indeed, if
their exists a map ¢ : P! — G of degree d hiting a collection of Schubert cells in general position,
one can show that for some e < d, there exists a finite non-zero number of maps of degree e with
the same property ([1], Lemma 5.5). This means that the corresponding quantum Littlewood-
Richardson coefficient is non-zero, and this can be checked with the help of Proposition 17.
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