Nom :
Fonctions de variables complexes (UCBL, L3)
Questionnaire du 12 avril 2011 – Durée 1 heure
Question 1. Soit U un ouvert de \mathbb{C} et $f: U \to \mathbb{C}$.
On dit que f est $holomorphe$ dans U si (compléter la définition)
On dit que f est analytique dans U si (compléter la définition)
Vrai ou faux ? f holomorphe $\Rightarrow f$ analytique dans U
Question 2. Soit $f(z) = \sum_{n=0}^{\infty} a_n z^n$ une série entière de rayon de convergence $0 < R < \infty$.
Exprimer les dérivées de f en zéro en fonction des coefficients de la série
Établir si (répondre par $Vrai$ ou $Faux$ en $général$) :
$1/R = \lim_{n \to \infty} \frac{ a_{n+1} }{ a_n } \dots$
$1/R = \lim_{n \to \infty} a_n ^{1/n} \dots$
$R = \sup\{r \ge 0 \colon a_n r^n \text{ est une suite born\'ee}\}$
$1/R = \lim \sup_{n \to \infty} a_n ^{1/n} \dots$
Donner un contrexemple pour chacune des réponses fausses (ne pas justifier)
T.S.V.P.

Question 3. Soit U un ouvert de \mathbb{C} , $f:U\to\mathbb{C}$ une fonction holomorphe dans U . Écrire le système différentiel vérifié par les parties réelle et imaginaire de f (préciser soigneusement les notations)
Démontrer que si U est non vide la fonction $f(v)$, \bar{v} n'est non helemouphe dans U
Démontrer que si U est non vide, la fonction $f(z) = \bar{z}$ n'est pas holomorphe dans U .
Question 4. Soit γ le cercle centré en 0 et de rayon 1, parcouru dans le sens direct. Soit $a \in \mathbb{C}$, $ a < 1$ Quelle est la valeur de $\int_{\gamma} \frac{1}{z-a} dz$? Détailler votre réponse.
Question 5. Démontrer qu'il n'y a pas de détermination holomorphe du logarithme dans C*.

Université Claude Bernard Lyon 1

Licence 3^{ème} année Fonctions de variables complexe

Partiel du 12 avril 2011 – Durée 2 heures

EXERCICE 1

Soient f et g les deux fonctions de variable complexe $f(z) = |z|^2$ et $g(z) = z^2$. On note par σ le segment orienté de -1 + i à 1 + i.

- 1. Calculer $\int_{\sigma} f(z) dz$ et $\int_{\sigma} g(z) dz$.
- 2. Chercher un chemin γ de -1+i à 1+i tel que $\int_{\gamma} f(z) dz \neq \int_{\sigma} f(z) dz$. La fonction f admet-elle de primitive dans $\mathbb C$?
- 3. Calculer $\int_{\gamma} g(z) dz$.

EXERCICE 2

Soit $\sum a_n(z-a)^n$ une série entière de rayon de convergence $0 < R < +\infty$. On note f sa somme. Soit b un point dans son disque de convergence.

- 1. Montrer que f admet un developpement en série entière autour de b avec rayon de convergence R' > 0.
- 2. Montrer qu'on a

$$R - |a - b| \le R' \le R + |a - b|.$$

- 3. Donner un exemple avec $a \neq b$ pour lequel on a R' = R |a b| avec dessin des deux disques de convergence.
- 4. Donner un exemple avec $a \neq b$ pour lequel on a R' = R + |a b|. avec dessin des deux disques de convergence.

EXERCICE 3 (Racines p-ièmes)

Soit U un ouvert de \mathbb{C} et p un entier, $p \geq 2$. On appelle détermination holomorphe de $z \mapsto z^{1/p}$ sur U toute fonction holomorphe $f: U \to \mathbb{C}$ telle que pour tout $z \in U$ on ait $(f(z))^p = z$.

- a) Montrer que s'il existe une détermination holomorphe de $z \mapsto \log(z)$ sur U, alors il existe une détermination holomorphe de $z \mapsto z^{1/p}$ sur U.
- b) Soit f une détermination holomorphe de $z\mapsto z^{1/p}$ sur U. Montrer que pour tout $z\in U$ on a $f(z)\neq 0$. En déduire que $0\not\in U$.
- c) On suppose U connexe et on note f_1 , f_2 deux déterminations holomorphes de $z \mapsto z^{1/p}$ sur U. Montrer qu'il existe $\lambda \in \mathbb{C}^*$ tel que $f_1 = \lambda f_2$.
- d) En déduire que s'il existe une détermination holomorphe de $z\mapsto z^{1/p}$ sur U, alors il en existe exactement p distinctes. Quelles sont-elles ?
- e) Montrer qu'il existe une unique détermination holomorphe f de $z \mapsto z^{1/3}$ sur $U = \mathbb{C} \setminus \mathbb{R}^-$ telle que $f(1) = e^{4i\pi/3}$. Calculer f(i) et déterminer f(U).