
In order to study this equation and prevent the blow-up, a rescaling off is needed, in the formf (t, v) =
V (t)dg (T (t), V (t)v), wheref is a solution to the homogeneous equation (3) andg is such that

0 ≤ a < 1/2 a > 1/2
V (t) = (1 + t)−α, T = log(V ), V ′(t) = E(f )(t)−a, T = log(V ), T (Tc) = V (Tc) = +∞,
∂tg + ∇v · (vg) = E(g)−aQ(g, g), ∂tg + ∇v · (vg) = Q(g, g).

Theorem 1(Cooling process). There exist positive constantsµa,mi Mi, i = 1..2 andTc, depending only
ona andfin such that

(i) if 0 ≤ a < 1/2 (and thenα := 1
2a−1 < 0 → cooling in infinite time),

m1

(1 + µat)−2α
≤ E (ft) ≤

M1

(1 + µat)−2α
, ∀t > 0;

(ii) if a > 1/2 (and thenα > 0 → cooling in finite time),

m2

(

1 − t

Tc

)2α

≤ E (ft) ≤M2

(

1 − t

Tc

)2α

, ∀t < Tc.

Elements of proof.The first point is needed in order to prove the second and

(i) Cooling in infinite time: maximum principles on the second and third order moments using estimates
on the granular operator due to Bobylev, Gamba and Panferov (J.S.P., 2004).

(ii) Cooling in finite time: use of the cooling process for the rescaled distributiong thanks to the first part
of the theorem, and estimates about the time derivative of the energy.

Theorem 2(Existence of self-similar profiles). If 0 ≤ a < 1/2, there exists a profile0 ≤ G ∈ L1
3, called

self-similar profileof the equation(3), with mass1 and zero momentum:

∇v · (vG) − E(G)−aQe0
(G,G) = 0.

Elements of proof.Stability estimates, propagation ofLp norms in self-similar variables and application
of Schauder theorem to the evolution semi-group of (3) thanks to the Cauchy theory.

The Spectral Scheme for Granular Gas

If the distribution functionf is compactly supported, one can show using another expression of the col-
lision mechanics (the so-calledσ-parametrisation) that the collision operator does not spread the support
of f . It allows us to deal with solutions of (3) supported in[−V, V ]d and then periodize them overR

d,
in order to study numerically their truncated Fourier sumsfN =

∑N
k=−N f̂ke

i π
V
k·v for N ∈ N. By a

direct computation, one can show show that(fk)k verify the following system of ordinary differential
equations:

∂f̂k
∂t

= E(fN )−a
N

∑

l+m=k
l,m=−N

(

B̂(l,m) − B̂(m,m)
)

f̂l f̂m, ∀k ∈ [−N,N ]d,

where thekernel Fourier modesB̂(l,m) are given using the weak form (2) ofQ by

B̂(l,m) =
1

2

∫

B(0,2λV )
|u|e−i πV ((3−e

4
)u·m−(1+e

4
)u·l)

(
∫

Sd−1

e−i
π
V (1+e

4
)|u|(l+m)·σdσ

)

du.

In this last expression,λ = 2
3+

√
2

is a periodisation parameter.

Numerical experiments

We present the evolution of the energy off for a restitution coefficiente = 0.9 (true inelasticity).
The system of o.d.e. fulfilled by the Fourier modes is solved using aRK2 schemewith a time step
∆t = 0.01. The initial condition is a reduced and centred Gaussian in velocity for three values of the
parametera: 0 and0.25 areinfinite cooling time, and0.75 is finite cooling time.

d = 1, N = 256 d = 2, N = 32
TIME EVOLUTION OF THE ENERGY FOR DIFFERENT VALUES OFa

The second experiment show the rapid evolution of a far-from-equilibrium initial distribution toward the
Dirac mass centred in the mean momentum, for ananomalous gas (a = 0.75). The parameters for the
scheme are nowe = 0.9, d = 2, N = 32 (there are then642 Fourier modes) and∆t = 0.01.

t = 0 t = 0.5 t = 4.5
TIME EVOLUTION OF A 2d DISTRIBUTION TOWARD THE DIRAC MASS

The Boltzmann Equation for Granular Gases

A granular gas is a rarefied gas composed of “macroscopic” particles (pollen, high altitude atmosphere,
planetary rings), interactingvia energy dissipative binary collisions. In the statistical physics point of
view, such a gas can be described by a kinetic equation: theinelastic Boltzmannequation (also known
as thegranular gasesequation). In absence of exterior forces, it is given by

∂f

∂t
+ v · ∇xf = Q(f, f ), (1)

wheref = f (t, x, v); (t, x, v) ∈ R+ × R
d × R

d is the density of particles at a point(t, x, v) andQ(f, g)
is a dissipative binary collision operator of hard spheres type, localised in time and space, and given in a
weak form for smooth functionψ by

〈Q(f, g), ψ〉 :=
1

2

∫

Rd×Rd×Sd−1

|u|f∗ g
(

ψ′ + ψ′∗ − ψ − ψ∗
)

ba (u · ω, E(f )) dω dv dv∗, (2)

whereE(f ) denote the kinetic energy of the gas, namely

E(f )(t, x) :=

∫

Rd
|v|2f (t, x, v)dv.

The macroscopic energy dissipation is given by a mass and momentum conservative microscopic colli-
sion mechanics which also involve the dissipation of energy. It can be described by the following process:
given two particles of pre-collisional velocitiesv andv∗, their respective post-collisional velocities, de-
noted byv′ andv′∗, are given by











v′ = v − 1 + e

2
(u · ω)ω

v′∗ = v∗ +
1 + e

2
(u · ω)ω,

whereu := v−v∗ (relative speed),ω := u
|u| (impact direction) ande ∈ [0, 1] is the dissipation parameter

(restitution coefficient) measuring the inelasticity of the collision.

ω

v

v∗

v′∗

v′

INELASTIC COLLISIONS (RED) AND ELASTIC COLLISIONS (GREEN)

The Anomalous Gas Model

In the following, the major assumption of space homogeneityfor the gas will be made. Thex-dependency
will thus be dropped and the equation (1) will read

∂f

∂t
= Q(f, f ), (3)

for f = f (t, v). A gas is said to beanomalousif its cooling occurs in finite time, that is ifE(f )(t) goes to
0 whent → Tc with Tc < ∞. It can be modelled by assuming that the particles’ collision rate increases
with energy dissipation, which may be written as

ba(·, E) = b(·) E−a,

whereb is a non-negative function of mass1 on the unity sphere anda a non-negative parameter, to
be specified later. Such a problem is well posed inL1

3, mass and momentum conservative, and has a
cooling time Tc depending ona. Using the weak form (2) ofQ and flux-divergence formula, together
with Hölder and Jensen inequality, one has the macroscopic dissipation of energy:

d

dt
E(f )(t) ≤ −CE(f )(t)−a+3/2, ∀t < Tc, (4)

whereC is an explicit constant. Then, the cooling time is such that
{

Tc = +∞ if 0 ≤ a < 1/2,

Tc < +∞ if a > 1/2,

and the gas is truly anomalous ifa > 1/2.

Haff’s Law

Knowing the time of cooling, we now want to determine the behaviour of the energy. This has been first
studied in the Eighties by P.K. Haff, who showed that, ifa = 0, then

E(f )(t) ∼ 1

1 + t2
.

This result is since known asHaff’s Law and we shall generalise it to our anomalous model.
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