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_ In order to study this equation and prevent the blow-up, ealegy of f is needed, in the fornfi(t,v) =
The Boltzmann Equation for Granular Gases V(t)g (T(t), V(t)v), wheref is a solution to the homogeneous equation (3) @igisuch that
0<a<1/2 a>1/2
V)= (1+0)% T=log(V), V/(t)=E(Nt) " T =log(V), T(T) = V(T) = +oo,
A granular gas is a rarefied gas composed of “macroscopiditfes (pollen, high altitude atmosphere, Org + V- (vg) =E(9)"Qg, 9), org + V- (vg) = Qg,9)

planetary rings), interactingia energy dissipative binary collisions. In the statistical/gics point of
view, such a gas can be described by a kinetic equationnéhestic Boltzmannequation (also known
as thegranular gasesequation). In absence of exterior forces, it is given by
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Theorem 1(Cooling process)lrhere exist positive constanis, m; M;,: = 1..2 and1,, depending only
ona and f;,, such that

(i) if 0 <a < 1/2 (and theny := Tl—l < 0 — cooling Iin infinite time),
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vVt > 0;

wheref = f(t,z,v); (t,z,v) € Ry x RY x R? s the density of particles at a poifit =, v) andQ(f, g)
IS a dissipative binary collision operator of hard spheyes tlocalised in time and space, and givenina (i) if a > 1/2 (and theno > 0 — cooling in finite time),

weak form for smooth functiog by , ,
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here€( f) denote the kinet £ih I Elements of prooflhe first point is needed in order to prove the second and
where enote the kinetic energy of the gas, name _ e _ . _ _ _
) 2 5 Y (1) Cooling In infinite time: maximum principles on the second &mrd order moments using estimates

on the granular operator due to Bobylev, Gamba and PanférsyH 2004).

(i) Cooling In finite time: use of the cooling process for the edsd distributiony thanks to the first part
of the theorem, and estimates about the time derivativeeoétiergy.

E(f)(t,x) = /Rd 0|2 F(t, 2, v)dv.

The macroscopic energy dissipation is given by a mass andemimimm conservative microscopic colli- _ o _ _ , |
sion mechanics which also involve the dissipation of endtgyan be described by the following process: ~ Theorem 2(Existence of self-similar profileslf 0 < a < 1/2, there exists a profilé < G < L3, called

given two particles of pre-collisional velocitiesandu,, their respective post-collisional velocities, de- ~ S€li-similar profile of the equatior(3), with massl and zero momentum:
noted byy’ andv’, are given by

/ 1+e Vi (0G) = E(G) Qe (G, G) = 0.
v =U- (u-w)w

/ 1+ e Elements of proofStability estimates, propagation 6f norms in self-similar variables and application
Uy = Ux T (- w)w, of Schauder theorem to the evolution semi-group of (3) tedokhe Cauchy theory.

whereu := v—wvy (relative speed, w = ‘—Z‘ (impact direction) ande € [0, 1] is the dissipation parameter
(restitution coefficient) measuring the inelasticity of the collision.

The Spectral Scheme for Granular Gas
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If the distribution functionf is compactly supported, one can show using another expressthe col-
lision mechanics (the so-calledparametrisation) that the collision operator does naapithe support
of f. It allows us to deal with solutions of (3) supported iV, V]d and then periodize them ovEr,

In order to study numerically their truncated Fourier sufRs= Z{L_N f’kezv’“‘” for N € N. By a
direct computation, one can show show that);. verify the following system of ordinary differential

equations:
of al
—E=ein™ >0 (BUm) = Bomom)) fi fm, Yk € [N, N,
% INELASTIC COLLISIONS(RED) AND ELASTIC COLLISIONS (GREEN) y I+m=Fk
[ m=—N

where thekernel Fourier modest?(l, m) are given using the weak form (2) ¢f by

The Anomalous Gas Model B(1,m) = }/ ‘u‘e—ig((z;e)u.m—(%)u.z) (/ 6—¢$(T)Iul(l+m).adg> du.
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In the following, the major assumption of space homogerieitthe gas will be made. The-dependency In this last expression\, = —~ is a periodisation parameter.
will thus be dropped and the equation (1) will read 342
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o~ QU (3) Numerical experiments I

for f = f(t,v). Agasis said to benomalousif its cooling occurs in finite time, that is &( f)(¢) goes to
0 whent — T, with T, < oc. It can be modelled by assuming that the particles’ collig@ie increases
with energy dissipation, which may be written as

We present the evolution of the energy pffor a restitution coefficient: = 0.9 (true inelasticity).
The system of o.d.e. fulfilled by the Fourier modes is solvemgia R K-> schemewith a time step
bal-,E) = b(-) E~, At = 0.01. The initial condition is a reduced and centred Gaussiarelooity for three values of the
parameter: 0 and0.25 areinfinite cooling time, and0.75 Is finite cooling time.
whereb Is a non-negative function of masson the unity sphere ang a non-negative parameter, to
be specified later. Such a problem is well poseaL%m mass and momentum conservative, and has a [~ )

cooling time T, depending or. Using the weak form (2) of) and flux-divergence formula, together 2.0
with Holder and Jensen inequality, one has the macroscagsgdtion of energy:
1.5 .
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—E()(t) < —CES) )T vt < To, (4)

dt 1.0 -
where(C' is an explicit constant. Then, the cooling time is such that 05

Te=+o0if 0 <a<1/2,
and the gas is truly anomalousauit> 1/2. d=1,N =256 d=2,N =32
N TIME EVOLUTION OF THE ENERGY FOR DIFFERENT VALUES OF y

Haff’'s Law The second experiment show the rapid evolution of a far-fequilibrium initial distribution toward the
Dirac mass centred in the mean momentum, foaanmalous gas4 = 0.75). The parameters for the

scheme are now — 0.9, d = 2, N = 32 (there are thefi4? Fourier modes) and\t — 0.01.

Knowing the time of cooling, we now want to determine the lvdar of the energy. This has been first
studied in the Eighties by P.K. Haff, who showed that; # 0, then
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This result is since known asaff’'s Law and we shall generalise it to our anomalous model.
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