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Abstract. We prove new and explicit formulas for the wave operators of Schrödinger oper-

ators in R
3. These formulas put into light the very special role played by the generator

of dilations and validate the topological approach of Levinson’s theorem introduced in a

previous publication. Our results hold for general (not spherically symmetric) potentials

decaying fast enough at infinity, without any assumption on the absence of eigenvalue or

resonance at 0-energy.
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1. Introduction and Main Theorem

The purpose of this work was to establish explicit and completely new expressions

for the wave operators of Schrödinger operators in R
3 and as a by-product to val-

idate the use of the topological approach of Levinson’s theorem.

The set-up is the standard one. We consider in the Hilbert space H :=L
2(R3) the

free Schrödinger operator H0 :=−1 and the perturbed Schrödinger operator H :=
−1+V , with V a measurable bounded real function on R

3 decaying fast enough

at infinity. In such a situation, it is well known that the wave operators

W± := s- limt→±∞ e
i t H e−i t H0 (1.1)

exist and are asymptotically complete [2,21,23] and as a consequence that the scat-

tering operator S :=W ∗
+W− is a unitary operator in H. Moreover, it is also well

This work has been done during the stay of S. Richard in Japan and has been supported by the Japan

Society for the Promotion of Science (JSPS) and by “Grants-in-Aid for scientific Research”.

R. Tiedra de Aldecoa was supported by the Chilean Fondecyt Grant 1090008 and by the Inicia-

tiva Cientifica Milenio ICM P07-027-F “Mathematical Theory of Quantum and Classical Magnetic

Systems” from the Chilean Ministry of Economy.

Author's personal copy



1208 S. RICHARD AND R. TIEDRA DE ALDECOA

known that one can write time-independent expressions for W± by using the sta-

tionary formulation of scattering theory (see [3,19,25]).

Among the many features of the wave operators, their mapping properties

between weighted Hilbert spaces, weighted Sobolev spaces and L
p-spaces have

attracted a lot of attention (see for instance the seminal papers [14,27,28,30] and

the preprint [5] which contains an interesting historical overview and many refer-

ences). Also, recent technics developed for the study of the wave operators have

been used to obtain dispersive estimates for Schrödinger operators [6–8,29]. Our

point here, which can be inscribed in this line of general works on wave operators,

is to show that the time-independent expressions for W± can be made completely

explicit, up to a compact term. Namely, if B(H) (resp. K (H)) denotes the set of

bounded (resp. compact) operators in H and if A stands for the generator of the

dilation group {Uτ }τ∈R in L
2(R3) which acts as

(Uτ f )(x) := e3τ/2 f (eτ x), f ∈Cc(R
3), x ∈R

3, τ ∈R,

then we have the following result:

THEOREM 1.1. Let V satisfy |V (x)| ≤ Const.(1+ |x |)−σ with σ > 7 for almost

every x ∈R
3. Then, one has in B(H) the equalities

W−=1+ R(A)(S−1)+ K and W+=1+ (1− R(A))(S∗−1)+ K ′, (1.2)

with R(A) := 1
2
(1+ tanh(π A)− i cosh(π A)−1) and K , K ′∈K (H).

We stress that the absence of eigenvalue or resonance at 0-energy is not assumed.

On the other hand, if such an implicit hypothesis is made, then the same result

holds under a weaker assumption on the decay of V at infinity. We also note that

no spherical symmetry is imposed on V .

Our motivation for proving Theorem 1.1 was the observation made in [16] (and

applied to various situations in [4,10,17,20,24]) that Levinson’s theorem can be

reinterpreted as an index theorem, with a proof based on an explicit expression

for the wave operators. The main idea is to show that the wave operators belong

to a certain C∗-algebra. Once such an affiliation property is settled, the machinery

of non-commutative topology leads naturally to an index theorem. In its original

form, this index theorem corresponds to Levinson’s theorem, that is, the equality

between the number of bound states of the operator H and an expression (trace)

involving the scattering operator S. For more complex scattering systems, other

topological equalities involving higher degree traces can also be derived (see [15]

for more explanations).

For the scattering theory of Schrödinger operators in R
3, the outcomes of this

topological approach have been detailed in [18]: it has been shown how Levinson’s

theorem can be interpreted as an index theorem, and how one can derive from it

various formulas for the number of bound states of H in terms of the scattering
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operator and a second operator related to the 0-energy. However, a technical argu-

ment was missing, and an implicit assumption had to be made accordingly. The-

orem 1.1 makes this implicit assumption no longer necessary and thus allows one

to apply all the results of [18] (see Remark 2.8 for some more comments).

Let us now present a more detailed description of our results. As mentioned

above, our goal was to obtain an explicit formula for the wave operators as

required by the C∗-algebras framework. However, neither the time-dependant for-

mula (1.1), nor the stationary approach as presented for instance in [25], provided

us with a sufficiently precise answer. This motivated us to show in Theorem 2.6 of

Section 2 that the difference W−− 1 is unitarily equivalent to a product of three
explicit bounded operators. The result is exact and no compact operator as in the

statement of Theorem 1.1 has to be added. In addition, each of the three oper-

ators is either an operator of multiplication by an operator-valued function, or a

simple function of the generator of dilation in L
2(R+). For these reasons, we expect

that the formula of Theorem 2.6 might have various applications, as for example

for the mapping properties of W−. Finally, the commutation of two of the three

operators reveals the presence of the scattering operator up to a compact term, as

stated in Theorem 1.1. One deduces from this new expression for W− the corre-

sponding expression for W+.

As a conclusion, we emphasize once more that the present work validates the

use of the topological approach of Levinson’s theorem, as presented in [18]. It also

implicitly shows that this C∗-algebraic approach of scattering theory leads to new

questions and new results, as exemplified by the explicit formula presented in The-

orem 1.1.

Notations: N := {0,1,2, . . .} is the set of natural numbers, R+ := (0,∞), and S

is the Schwartz space on R
3. The sets Hs

t are the weighted Sobolev spaces over

R
3 with index s ∈R associated with derivatives and index t ∈R associated with

decay at infinity [1, Sec. 4.1] (with the convention that Hs :=Hs
0 and Ht :=H0

t ).

The three-dimensional Fourier transform F is a topological isomorphism of Hs
t

onto Ht
s for any s, t ∈R. Given two Banach spaces G1 and G2,B(G1,G2) (resp.

K (G1,G2)) stands for the set of bounded (resp. compact) operators from G1 to G2.

Finally, ⊗ (resp. ⊙) stands for the closed (resp. algebraic) tensor product of Hilbert
spaces or of operators.

2. New Expressions for the Wave Operators

We start by introducing the Hilbert spaces we use throughout the paper, namely

H :=L
2(R3),h :=L

2(S2) and H :=L
2(R+;h) with respective scalar product 〈·, ·〉 and

norm ‖ ·‖ indexed accordingly. The Hilbert space H hosts the spectral representa-

tion of the operator H0=−1 with domain D(H0)=H2, i.e. there exists a unitary

operator F0 :H→H satisfying
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1210 S. RICHARD AND R. TIEDRA DE ALDECOA

(F0H0 f )(λ)=λ(F0 f )(λ)≡ (LF0 f )(λ), f ∈D(H0), a.e. λ∈R+,

with L the maximal multiplication operator in H by the variable in R+. The

explicit formula for F0 is

((F0 f )(λ))(ω)=
(

λ

4

)1/4

(F f )(
√
λω)=

(

λ

4

)1/4

(γ (
√
λ)F f )(ω),

f ∈S , λ∈R+, ω∈S
2, (2.1)

with γ (λ) :S →h the trace operator given by (γ (λ) f )(ω) := f (λω).

The potential V ∈L
∞(R3;R) of the perturbed Hamiltonian H :=H0+V satisfies

for some σ >0 the condition

|V (x)|≤Const. 〈x〉−σ , a.e. x ∈R
3, (2.2)

with 〈x〉 :=
√

1+ x2. Since V is bounded, H is self-adjoint with domain D(H)=
D(H0). Also, it is well known [21, Thm. 12.1] that the wave operators defined by

(1.1) exist and are asymptotically complete if σ >1. In stationary scattering theory

one defines the wave operators in terms of suitable limits of the resolvents of H0

and H on the real axis. We shall mainly use this second approach, noting that for

this model both definitions for the wave operators do coincide (see [25, Sec. 5.3]).

Now, we recall from [25, Eq. 2.7.5] that for suitable f, g ∈H the stationary

expressions for the wave operators are given by

〈W± f, g〉H=
∫

R

dλ lim
εց0

ε

π
〈R0(λ± iε) f, R(λ± iε)g〉H,

where R0(z) := (H0 − z)−1 and R(z) := (H − z)−1, z ∈ C \ R, are the resolvents

of the operators H0 and H . We also recall from [25, Sec. 1.4] that the limit

limεց0
〈

δε(H0−λ) f, g
〉

H
with δε(H0−λ) := ε

π
R0(λ∓ iε)R0(λ± iε) exists for a.e. λ∈

R and that

〈 f, g〉H=
∫

R

dλ lim
εց0
〈δε(H0−λ) f, g〉H.

Thus, taking into account the second resolvent equation, one infers that

〈(W±−1) f, g〉H=−
∫

R

dλ lim
εց0
〈δε(H0−λ) f, (1+V R0(λ± iε))−1V R0(λ± iε)g〉H.

We now derive new expressions for the wave operators in the spectral representa-

tion of H0, that is, for the operators F0(W±− 1)F ∗
0 . So, let ϕ,ψ be suitable ele-

ments of H (precise conditions will be specified in Theorem 2.6 below); then one

obtains that
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〈F0(W±−1)F ∗
0 ϕ,ψ〉H

=−
∫

R

dλ lim
εց0
〈V (1+ R0(λ∓ iε)V )−1F ∗

0 δε(L−λ)ϕ,F
∗
0 (L−λ∓ iε)−1ψ〉H

=−
∫

R

dλ lim
εց0

∞
∫

0

dµ〈{F0V (1+R0(λ∓ iε)V )−1F ∗
0 δε(L−λ)ϕ}(µ), (µ−λ∓ iε)−1ψ(µ)〉h.

Using the short-hand notation T (z) :=V (1+ R0(z)V )
−1, z∈C\R, one thus gets the

equality

〈F0(W±−1)F ∗
0 ϕ,ψ〉H

=−
∫

R

dλ lim
εց0

∞
∫

0

dµ〈{F0T (λ∓ iε)F ∗
0 δε(L−λ)ϕ}(µ), (µ−λ∓ iε)−1ψ(µ)〉h. (2.3)

The next step is to exchange the integral over µ and the limit εց0 in the pre-
vious expression. To do it properly, we need a series of preparatory lemmas. First

of all, we recall that for λ> 0 the trace operator γ (λ) extends to an element of

B(Hs
t ,h) for each s > 1/2 and t ∈R and that the map R+ ∋ λ 7→ γ (λ)∈B(Hs

t ,h)

is continuous [12, Sec. 3]. As a consequence, the operator F0(λ) :S →h given by

F0(λ) f := (F0 f )(λ) extends to an element of B(Hs
t ,h) for each s ∈R and t>1/2,

and the map R+ ∋λ 7→F0(λ)∈B(Hs
t ,h) is continuous.

We shall now strengthen these standard results.

LEMMA 2.1. Let s≥0 and t>3/2. Then, the functions

(0,∞)∋λ 7→λ±1/4F0(λ)∈B(Hs
t ,h)

are continuous and bounded.

Proof. The continuity of the functions (0,∞)∋ λ 7→ λ±1/4F0(λ)∈B(Hs
t ,h) fol-

lows from what has been said before. For the boundedness, it is sufficient to show

that the map λ 7→λ−1/4‖F0(λ)‖B(Hs
t ,h)

is bounded in a neighbourhood of 0 and

that the map λ 7→λ1/4‖F0(λ)‖B(Hs
t ,h)

is bounded in a neighbourhood of +∞. The
first bound follows from the asymptotic development for small λ>0 of the opera-

tor γ (
√
λ)F ∈B(Hs

t ,h) (see [13, Sec. 5]) and the second bound follows from [26,

Thm. 1.1.4] which implies that the map λ 7→ λ1/4‖F0(λ)‖B(Hs
t ,h)

is bounded on

R+. Note that only the case s= 0 is presented in [26, Thm. 1.1.4], but the exten-
sion to the case s≥0 is trivial since Hs

t ⊂H0
t for any s>0.

One infers from Lemma 2.1 that the function R+ ∋ λ 7→ ‖F0(λ)‖B(Hs
t ,h)

∈R is

continuous and bounded for any s ≥ 0 and t > 3/2. Also, one can strengthen the

statement of Lemma 2.1 in the case of the minus sign:
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LEMMA 2.2. Let s>−1 and t>3/2. Then, F0(λ)∈K (Hs
t ,h) for each λ∈R+, and

the function R+∋λ 7→λ−1/4F0(λ)∈K (Hs
t ,h) is continuous, admits a limit as λց0

and vanishes as λ→∞.

Proof. The inclusion F0(λ) ∈K (Hs
t ,h) follows from the compact embedding

Hs
t ⊂Hs′

t ′ for any s′< s and t ′< t (see for instance [1, Prop. 4.1.5]).

For the continuity and the existence of the limit as λց 0 one can use the

same argument as the one used in the proof of Lemma 2.1. For the limit as

λ→∞, we define the regularizing operator 〈P〉−s := (1−1)−s/2 and then observe

that λ−1/4F0(λ)〈P〉−s = λ−1/4(1 + λ)−s/2F0(λ) for each λ ∈ R+ (see (2.1)). It

follows that limλ→∞ ‖λ−1/4F0(λ)‖B(Hs
t ,h)

= 0 if and only if limλ→∞ ‖λ−1/4(1 +
λ)−s/2F0(λ)‖B(Ht ,h)=0. So, the claim follows from Lemma 2.1 (with the positive

sign) as long as −1/4− s/2<1/4, which is equivalent to the condition s>−1.

From now on, we use the notation Cc(R+;G) for the set of compactly supported
and continuous functions from R+ to some Hilbert space G. With this notation

and what precedes, we note that the multiplication operator M :Cc(R+;Hs
t )→H

given by

(Mξ)(λ) :=λ−1/4F0(λ)ξ(λ), ξ ∈Cc(R+;Hs
t ), λ∈R+, (2.4)

extends for s>−1 and t>3/2 to an element of B(L2(R+;Hs
t ),H ).

The next step is to deal with the limit εց0 of the operator δε(L−λ) in Equa-
tion (2.3). For that purpose, we shall use the continuous extension of the scalar

product 〈·, ·〉H to a duality 〈·, ·〉
H

s
t ,H

−s
−t
between Hs

t and H
−s
−t .

LEMMA 2.3. Take s≥0, t>3/2, λ∈R+ and ϕ ∈Cc(R+;h). Then, we have

lim
εց0

‖F ∗
0 δε(L−λ)ϕ−F0(λ)

∗ϕ(λ)‖
H
−s
−t
=0.

Proof. By definition of the norm of H
−s
−t , one has

‖F ∗
0 δε(L−λ)ϕ−F0(λ)

∗ϕ(λ)‖
H
−s
−t

= sup
f ∈S ,‖ f ‖

H
s
t =1

∣

∣

∣
〈 f,F ∗

0 δε(L−λ)ϕ−F0(λ)
∗ϕ(λ)〉

H
s
t ,H

−s
−t

∣

∣

∣

= sup
f ∈S ,‖ f ‖

H
s
t
=1

∣

∣

∣

∣

∣

∣

1

π

∞
∫

0

dµ

〈

F0(µ) f,
ε

(µ−λ)2+ ε2
ϕ(µ)

〉

h

−〈F0(λ) f, ϕ(λ)〉h

∣

∣

∣

∣

∣

∣

≤ sup
f ∈S ,‖ f ‖

H
s
t
=1

∣

∣

∣

∣

∣

∣

1

π

∞
∫

0

dµ

〈

(F0(µ)−F0(λ)) f,
ε

(µ−λ)2+ ε2
ϕ(µ)

〉

h

∣

∣

∣

∣

∣

∣

(2.5)
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+ sup
f ∈S ,‖ f ‖

H
s
t
=1

∣

∣

∣

∣

∣

∣

1

π

∞
∫

0

dµ

〈

F0(λ) f,
ε

(µ−λ)2+ ε2
(ϕ(µ)−ϕ(λ))

〉

h

∣

∣

∣

∣

∣

∣

(2.6)

+ sup
f ∈S ,‖ f ‖

H
s
t
=1

∣

∣

∣

∣

∣

∣

1

π

∞
∫

0

dµ

〈

F0(λ) f,
ε

(µ−λ)2+ ε2
ϕ(λ)

〉

h

−〈F0(λ) f, ϕ(λ)〉h

∣

∣

∣

∣

∣

∣

(2.7)

Clearly, the term (2.7) converges to 0 as εց0, as expected. Furthermore, the term
(2.5) converges to 0 as εց0 because of the continuity and the boundedness of the
function λ 7→‖F0(λ)‖B(Hs

t ,h)
(mentioned just after Lemma 2.1) together with the

boundedness of the map λ 7→‖ϕ(λ)‖h. Finally, the term (2.6) also converges to 0 as

εց0 because of the continuity and the boundedness of the function λ 7→ϕ(λ)∈h

together with the boundedness of the function λ 7→‖F0(λ)‖B(Hs
t ,h)
.

The next necessary result concerns the limits T (λ± i0) := limεց0 T (λ± iε), λ∈
R+. Fortunately, it is already known (see for example [13, Lemma 9.1]) that if

σ >1 in (2.2) then the limit (1+ R0(λ+ i0)V )−1 := limεց0(1+ R0(λ+ iε)V )−1 exists

in B(H−t ,H−t ) for any t ∈ (1/2, σ − 1/2) and that the map R+ ∋λ 7→ (1+ R0(λ+
i0)V )−1 ∈B(H−t ,H−t ) is continuous. Corresponding results for T (λ+ iε) follow

immediately. Note that only the limits from the upper half-plane have been com-

puted in [13], even though similar results for T (λ− i0) could have been derived.

Due to this lack of information in the literature and for the simplicity of the expo-

sition, we consider from now on only the wave operator W−.

LEMMA 2.4. Take σ >5 in (2.2) and let t ∈ (5/2, σ −5/2). Then, the function

R+ ∋λ 7→λ1/4T (λ+ i0)F0(λ)
∗∈B(h,Hσ−t )

is continuous and bounded, and the multiplication operator B :Cc(R+;h)→ L
2(R+;

Hσ−t ) given by

(Bϕ)(λ) :=λ1/4T (λ+ i0)F0(λ)
∗ϕ(λ)∈Hσ−t , ϕ ∈Cc(R+;h), λ∈R+, (2.8)

extends to an element of B(H ,L2(R+;Hσ−t )).

Proof. The continuity of the function λ 7→λ1/4T (λ+ i0)F0(λ)
∗∈B(h,Hσ−t ) fol-

lows from what has been said before. For the boundedness, it is sufficient to show

that the function

R+ ∋λ 7→λ1/4‖T (λ+ i0)F0(λ)
∗‖B(h,Hσ−t ) (2.9)

is bounded in a neighbourhood of 0 and in a neighbourhood of +∞.
For λ > 1, we know from [13, Lemma 9.1] that the function λ 7→

‖T (λ + i0)‖B(H−t ,Hσ−t ) is bounded. We also know from Lemma 2.1 that the
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1214 S. RICHARD AND R. TIEDRA DE ALDECOA

function R+∋λ 7→λ1/4‖F0(λ)
∗‖B(h,H−t ) is bounded. Thus, the function (2.9) stays

bounded in a neighbourhood of +∞.
For λ in a neighbourhood of 0, we use asymptotic developments for T (λ+ i0)

and F0(λ)
∗. The development for F0(λ)

∗ (to be found in [13, Sec. 5]) can be writ-

ten as follows: for each s ∈R, there exist γ ∗0 , γ
∗
1 ∈B(h,Hs

−t ) such that

F0(λ)
∗=

(

λ

4

)1/4

(γ ∗0 − iλ1/2γ ∗1 +o(λ1/2)) in B(h,Hs
−t ) as λց0.

The development for T (λ + i0) as λց 0 has been computed in [13, Lemmas

4.1 to 4.5]. It varies drastically depending on the presence of 0-energy eigenvalue

and/or 0-energy resonance. We reproduce here the most singular behaviour possi-

ble (cf. [13, Lemma 4.5]):

T (λ+ i0)=λ−1V P0V − iλ−1/2C+O(1) in B(H1
−t ;Hσ−t ) as λց0,

with P0 the orthogonal projection onto ker(H) and C ∈B(H1
−t ;Hσ−t ). Now, using

these expressions for F0(λ)
∗ and T (λ+ i0), one can write λ1/4T (λ+ i0)F0(λ)

∗ as a

sum of terms bounded in B(h,Hσ−t ) as λց0 plus a term 1√
2
λ−1/2V P0V γ ∗0 which

is apparently unbounded. However, we know from the proof of [13, Thm. 5.3]

that P0V γ ∗0 = 0. Thus, all the terms in the asymptotic development of λ
1/4T (λ+

i0)F0(λ)
∗ are effectively bounded in B(h,Hσ−t ) as λց 0, and thus the claim

about boundedness is proved. The claim on the operator B is then a simple con-

sequence of what precedes.

Remark 2.5. If one assumes that H has no 0-energy eigenvalue and/or no 0-energy

resonance, then one can prove Lemma 2.4 under a weaker assumption on the

decay of V at infinity. However, even if the absence of 0-energy eigenvalue and 0-

energy resonance is generic, we do not want to make such an implicit assumption

in the sequel. The condition on V is thus imposed adequately.

Before deriving our main result, we recall the action of the dilation group

{U+
τ }τ∈R in L

2(R+), namely

(U+
τ ϕ)(λ) := e

τ/2 ϕ(eτ λ), ϕ ∈Cc(R+), λ∈R+, τ ∈R,

and denote its self-adjoint generator by A+. We also introduce the function ϑ ∈
C(R)∩L

∞(R) given by

ϑ(ν) :=
1

2
(1− tanh(2πν)− i cosh(2πν)−1), ν ∈R. (2.10)

Finally, we recall that the Hilbert spaces L
2(R+;Hs

t ) and H can be naturally iden-

tified with the Hilbert spaces L
2(R+)⊗Hs

t and L
2(R+)⊗h.
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THEOREM 2.6. Take σ > 7 in (2.2) and let t ∈ (7/2, σ − 7/2). Then, one has in

B(H ) the equality

F0(W−−1)F ∗
0 =−2π i M{ϑ(A+)⊗1Hσ−t }B,

with M and B defined in (2.4) and (2.8).

The proof below consists in two parts. First, we show that the expression (2.3)

is well defined for ϕ and ψ in dense subsets of H (and thus equal to 〈F0(W±−
1)F ∗

0 ϕ,ψ〉H due to the computations presented at the beginning of the sec-

tion). Second, we show that the expression (2.3) is equal to 〈−2π i M{ϑ(A+)⊗
1Hσ−t }Bϕ,ψ〉H .

Proof. Take ϕ ∈ Cc(R+;h) and ψ ∈ C∞c (R+)⊙ C(S2), and set s := σ − t > 7/2.

Then, we have for each ε>0 and λ∈R+ the inclusions

gε(λ) :=λ1/4T (λ+ iε)F ∗
0 δε(L−λ)ϕ∈Hs and f (λ) :=λ−1/4F0(λ)

∗ψ(λ)∈H−s .

It follows that the expression (2.3) is equal to

−
∫

R

dλ lim
εց0

∞
∫

0

dµ〈T (λ+ iε)F ∗
0 δε(L−λ)ϕ, (µ−λ+ iε)−1F0(µ)

∗ψ(µ)〉Hs ,H−s

=−
∫

R+

dλ lim
εց0

∞
∫

0

dµ

〈

gε(λ),
λ−1/4µ1/4

µ−λ+ iε
f (µ)

〉

Hs ,H−s

.

Now, using the formula (µ−λ+ iε)−1=−i
∫∞
0 dz ei(µ−λ)z e−εz and then applying

Fubini’s theorem, one obtains that

lim
εց0

∞
∫

0

dµ

〈

gε(λ),
λ−1/4µ1/4

µ−λ+ iε
f (µ)

〉

Hs ,H−s

=−i lim
εց0

∞
∫

0

dz e−εz

〈

gε(λ),

∞
∫

0

dµ ei(µ−λ)z λ−1/4µ1/4 f (µ)

〉

Hs ,H−s

=−i lim
εց0

∞
∫

0

dz e−εz

〈

gε(λ),

∞
∫

−λ

dν eiνz

(

ν+λ
λ

)1/4

f (ν+λ)

〉

Hs ,H−s

. (2.11)

Furthermore, the integrant in (2.11) can be bounded independently of ε ∈ (0,1).
Indeed, one has
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∣

∣

∣

∣

∣

∣

∣

e−εz

〈

gε(λ),

∞
∫

−λ

dν eiνz

(

ν+λ
λ

)1/4

f (ν+λ)

〉

Hs ,H−s

∣

∣

∣

∣

∣

∣

∣

≤‖gε(λ)‖Hs

∥

∥

∥

∥

∥

∥

∞
∫

−λ

dν eiνz

(

ν+λ
λ

)1/4

f (ν+λ)

∥

∥

∥

∥

∥

∥

H−s

, (2.12)

and we know from Lemma 2.3 and the paragraph following it that gε(λ) con-

verges to g0(λ) := λ1/4T (λ+ i0)F ∗
0 (λ)ϕ(λ) in Hs as εց 0. Therefore, the family

‖gε(λ)‖Hs (and thus the r.h.s. of (2.12)) is bounded by a constant independent of

ε∈ (0,1).
In order to exchange the integral over z and the limit εց0 in (2.11), it remains

to show that the second factor in (2.12) belongs to L
1(R+,dz). For that purpose,

we denote by hλ the trivial extension of the function (−λ,∞)∋ν 7→ ( ν+λ
λ
)1/4 f (ν+

λ)∈H−s to all of R, and then note that the second factor in (2.12) can be rewrit-

ten as (2π)1/2‖(F ∗
1 hλ)(z)‖H−s , with F1 the one-dimensional Fourier transform. To

estimate this factor, observe that if P1 denotes the self-adjoint operator −i∇ on R,

then

‖(F ∗
1 hλ)(z)‖H−s =〈z〉−2‖(F ∗

1 〈P1〉
2hλ)(z)‖H−s , z∈R+.

Consequently, one would have that z 7→ ‖(F ∗
1 hλ)(z)‖H−s ∈ L

1(R+,dz) if the norm

‖(F ∗
1 〈P1〉

2hλ)(z)‖H−s were bounded independently of z. Now, if ψ=η⊗ξ with η∈
C∞c (R+) and ξ ∈C(S2), then one has for any x ∈R

3

( f (ν+λ))(x)=
1

4π3/2
η(ν+λ)

∫

S2

dω ei
√
ν+λω·x ξ(ω).

Therefore, one has

(hλ(ν))(x)=

{

1
4π3/2

(

ν+λ
λ

)1/4
η(ν+λ)

∫

S2
dω ei

√
ν+λω·x ξ(ω) ν >−λ

0 ν≤−λ,

which in turns implies that

|{(F ∗
1 〈P1〉

2hλ)(z)}(x)|≤Const.〈x〉2,

with a constant independent of x ∈R
3 and z∈R+. Since the r.h.s. belongs to H−s

for s>7/2, one concludes that ‖(F ∗
1 〈P1〉

2hλ)(z)‖H−s is bounded independently of

z for each ψ=η⊗ξ and thus for each ψ ∈C∞c (R+)⊙C(S2) by linearity. As a con-

sequence, one can apply Lebesgue dominated convergence theorem and obtain that

(2.11) is equal to

−i

〈

g0(λ),

∞
∫

0

dz

∫

R

dν eiνz hλ(ν)

〉

Hs ,H−s

.
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With this equality, one has concluded the first part of the proof, that is, one has

justified the equality between the expression (2.3) and 〈F0(W±−1)F ∗
0 ϕ,ψ〉H on

the dense sets of vectors introduced at the beginning of the proof.

We now show that 〈F0(W± − 1)F ∗
0 ϕ,ψ〉H is equal to 〈−2π i M{ϑ(A+) ⊗

1Hs }Bϕ,ψ〉H . For that purpose, we write χ+ for the characteristic function for

R+. Since hλ has compact support, we obtain the following equalities in the sense

of distributions (with values in H−s):

∞
∫

0

dz

∫

R

dν eiνz hλ(ν)=
√
2π

∫

R

dν(F ∗
1 χ+)(ν)hλ(ν)

=
√
2π

∞
∫

−λ

dν(F ∗
1 χ+)(ν)

(

ν+λ
λ

)1/4

f (ν+λ)

=
√
2π

∫

R

dµ(F ∗
1 χ+)(λ(e

µ−1))λ e5µ/4 f (eµ λ) (eµ λ :=ν+λ)

=
√
2π

∫

R

dµ(F ∗
1 χ+)(λ(e

µ−1))λ e3µ/4{(U+
µ ⊗1H−s ) f }(λ).

Then, using the fact that F ∗
1 χ+=

√

π
2 δ0+

i√
2π
Pv 1

(·) with δ0 the Dirac delta distri-

bution and Pv the principal value, one gets that

∞
∫

0

dz

∫

R

dν eiνz hλ(ν)=
∫

R

dµ

(

πδ0(e
µ−1)+ iPv

e3µ/4

eµ−1

)

{(U+
µ ⊗1H−s ) f }(λ).

So, by considering the identity

e3µ/4

eµ−1
=
1

4

(

1

sinh(µ/4)
+

1

cosh(µ/4)

)

and the equality [11, Table 20.1]

(F1ϑ̄)(µ)=
√

π

2
δ0(e

µ−1)+
i

4
√
2π
Pv

(

1

sinh(µ/4)
+

1

cosh(µ/4)

)

,

with ϑ defined in (2.10), one infers that

〈F0(W−−1)F ∗
0 ϕ,ψ〉H

= i

∫

R+

dλ

〈

g0(λ),

∫

R

dµ

{

πδ0(e
µ−1)
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+
i

4
Pv

(

1

sinh(µ/4)
+

1

cosh(µ/4)

)}

{(U+
µ ⊗1H−s ) f }(λ)

〉

Hs ,H−s

= i
√
2π

∫

R+

dλ

〈

g0(λ),

∫

R

dµ(F1ϑ̄)(µ){(U+
µ ⊗1H−s ) f }(λ)

〉

Hs ,H−s

.

Finally, by recalling that {ϑ(A+) ⊗ 1Hs }∗ f = 1√
2π

∫

R
dµ(F1ϑ̄)(µ)(U

+
µ ⊗ 1H−s ) f ,

that g0(λ)= (Bϕ)(λ) and that f =M∗ψ , one obtains

〈F0(W−−1)F ∗
0 ϕ,ψ〉H =2π i

∫

R+

dλ〈(Bϕ)(λ), {(ϑ(A+)∗⊗1H−s )M
∗ψ}(λ)〉Hs ,H−s

=〈−2π i M{ϑ(A+)⊗1Hs }Bϕ,ψ〉H .

This concludes the proof since the sets of vectors ϕ∈Cc(R+;h) and ψ ∈C∞c (R+)⊙
C(S2) are dense in H .

We now derive a technical lemma which will be essential for the proof of The-

orem 1.1:

LEMMA 2.7. Take s>−1 and t>3/2. Then, the difference

{ϑ(A+)⊗1h}M−M{ϑ(A+)⊗1Hs
t
}

belongs to K (L2(R+;Hs
t ),H ).

Proof. (i) The unitary operator G :L2(R)→L
2(R+) given by

(G f )(λ) :=λ−1/2 f (ln(λ)), f ∈C∞c (R), λ∈R+,

satisfies (G ∗U+
τ G f )(x)= f (x+τ) and (G ∗ eiτ ln(L) G f )(x)=eiτ x f (x) for each x, τ ∈

R, with L the maximal multiplication operator in L
2(R+) by the variable in R+. It

follows that G ∗A+G = P1 on D(P1) and that G ∗ ln(L)G = X1 on D(X1), with P1

and X1 the self-adjoint operators of momentum and position in L
2(R).

Now, take f1, f2 two complex-valued continuous functions on R having limits

at ±∞, that is, f1, f2 ∈ C([−∞,∞]). Then, a standard result of Cordes implies
the inclusion [ f1(P1), f2(X1)] ∈ K

(

L
2(R)

)

(see for instance [1, Thm. 4.1.10]).

Conjugating this inclusion with the unitary operator G , one thus infers that

[ f1(A+), f3(L)]∈K (L2(R+)) with f3 := f2 ◦ ln∈C([0,∞]).
(ii) We know from Lemma 2.2 and definition (2.4) that

(Mξ)(λ)=m(λ)ξ(λ), ξ ∈Cc(R+;Hs
t ), λ∈R+,

with m ∈ C([0,∞];K (Hs
t ,h)). We also know that the algebraic tensor product

C([0,∞]) ⊙ K (Hs
t ,h) is dense in C([0,∞];K (Hs

t ,h)), when C([0,∞];
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K (Hs
t ,h)) is equipped with the uniform topology (see [22, Thm. 1.15]). So,

for each ε > 0 there exist n ∈ N
∗, a j ∈ C([0,∞]) and b j ∈K (Hs

t ,h) such that

‖M−
∑n

j=1 a j (L)⊗b j‖B(L2(R+;Hs
t ),H )<ε. Therefore, to prove the claim, it is suffi-

cient to show that the operator

{ϑ(A+)⊗1h}







n
∑

j=1
a j (L)⊗b j







−







n
∑

j=1
a j (L)⊗b j







{ϑ(A+)⊗1Hs
t
}

=
n
∑

j=1
[ϑ(A+),a j (L)]⊗b j (2.13)

is compact. But, we know that b j ∈K (Hs
t ,h) and that [ϑ(A+),a j (L)]∈K (L2(R+))

due to point (i). So, it immediately follows that the operator (2.13) is compact

since finite sums and tensor products of compact operators are compact operators

(see [9, Thm. 2]).

Before giving the proof of Theorem 1.1, we recall the action of the dilation

group {Uτ }τ∈R in H, namely

(Uτ f )(x) := e3τ/2 f (eτ x), f ∈Cc(R
3), x ∈R

3, τ ∈R,

and denote its self-adjoint generator by A. The image F0R(A)F ∗
0 of R(A) :=

1
2
(1+ tanh(π A)− i cosh(π A)−1) in B(H ) can be easily computed. Indeed, one

has the decomposition F0 =U F , with U :H→H given by ((U f )(λ))(ω) :=
(λ
4
)1/4 f (

√
λω) for each f ∈S , λ∈R+ and ω∈S

2. Furthermore, one has the identi-

ties F AF ∗=−A on D(A) and U AU ∗=2A+⊗1h on D(A+⊗1h). Therefore, one
obtains that

F0R(A)F ∗
0 =ϑ(A+)⊗1h.

Proof of Theorem 1.1. Set s = 0 and t ∈ (7/2, σ − 7/2). Then, we deduce from
Theorem 2.6, Lemma 2.7 and the above paragraph that

W−−1=−2π iF ∗
0 M{ϑ(A+)⊗1Hσ−t }BF0

=−2π iF ∗
0 {ϑ(A+)⊗1h}M BF0+ K

= R(A)F ∗
0 (−2π i M B)F0+ K ,

with K ∈K (H). Comparing −2π i M B with the usual expression for the scatter-

ing matrix S(λ) (see for example [13, Eq. (5.1)]), one observes that −2π i M B =
∫⊕

R+
dλ(S(λ)− 1). Since F0 defines the spectral representation of H0, one obtains

that

W−−1= R(A)(S−1)+ K . (2.14)

The formula for W+−1 follows then from (2.14) and the relation W+=W−S∗.
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Remark 2.8. Formulas (1.2) were already obtained in [18] under an implicit

assumption. The only difference is that the operator R(A) is replaced in [18] by

an operator ϕ(A) slightly more complicated. The resulting formulas for the wave

operators differ by a compact term, but compact operators do not play any role in

the algebraic construction (both expressions for the wave operators belong to the

C∗-algebra constructed in [18, Sec. 4] and thus coincide after taking the quotient

by the ideal of compact operators). Consequently, the topological approach of

Levinson’s theorem presented in [18] also applies here, with the implicit assump-

tion no longer necessary.

References

1. Amrein, W.O., Boutet de Monvel, A., Georgescu, V.: C0-groups, commutator meth-

ods and spectral theory of N -body Hamiltonians. Progress in Mathematics, vol. 135.
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