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Abstract. It is proved that the wave operators corresponding to Schrödinger
operators with Aharonov-Bohm type magnetic fields can be rewritten in terms
of explicit functions of the generator of dilations and of the Laplacian.

1. Introduction

In some recent works on scattering theory [KR1, KR2, KR3, KR5], it was
conjectured and then proved that, modulo a compact term, the wave operators for
Schrödinger systems can be rewritten as a product of a function of the dilation
operator A and a function of the Laplacian −∆. Furthermore, the functions of
the dilation operator are rather insensitive to a particular choice of the perturbed
operator and depend mainly on the free system and on the space dimension.

In this paper, we obtain a similar result for the five-parameter family of Hamil-
tonians describing the non-relativistic Aharonov-Bohm systems [AT, DS]. More
precisely, we first show that the wave operators for the original Aharonov-Bohm
Hamiltonian [AB, R] can be rewritten as explicit functions of A only. For the
wave operators corresponding to other self-adjoint extensions, we prove that the
additional terms are given by the product of a function of A and a function of −∆.
Let us already stress that the functions of the dilation operator depend on the flux
of the magnetic field, but not on the other parameters of the boundary condition
at 0 ∈ R2.

These new formulae might serve for various further investigations on scattering
theory for systems with less singular magnetic fields. In particular, it would inter-
esting to study the structure of the wave operators for Schrödinger operators with
magnetic fields supported in small sets, see for example [EIO, T1, T2]. These new
expressions also lead to a topological approach of Levinson’s theorem. In this re-
spect, we mention two papers related to Levinson’s for the original Aharonov-Bohm
operator [L, SM]. We intend to address both subjects in forthcoming publications.

The structure of this paper is the following: We first recall the constructions of
the five-parameter family of self-adjoint operators, mainly borrowed from [AT]. Af-
ter a technical interlude on the Fourier transform and on the generator of dilations,
we show in Theorem 4.3 that the wave operators for the original Aharonov-Bohm
system can be rewritten as functions of A only. We then extend the analysis to the
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wave operators for arbitrary self-adjoint extensions, and propose new formulae for
them in Theorem 5.3.

2. The family of self-adjoint extensions

In this section, we recall the construction of [AT] for the family of self-adjoint
extensions corresponding to a Schrödinger operator with a singular magnetic field
located at the origin. We also refer to [DS] for a similar construction, and to
[T1, T2] for more details.

Let us set H for the Hilbert space L2(R2) and denote its norm by ‖ · ‖. For any
α ∈ (0, 1), we define Aα : R2 \ {0} → R2 by

Aα(x1, x2) = −α
( −x2

x2
1 + x2

2

,
x1

x2
1 + x2

2

)

and consider the operator

Hα := (−i∇−Aα)2, D(Hα) = C∞
c

(

R
2 \ {0}

)

,

where C∞
c (Ξ) denotes the set of smooth functions on Ξ with compact support. The

closure Hα of this operator in H is symmetric and has deficiency indices (2, 2).

The deficiency subspace Σ+ := ker(H
∗
α − i) is spanned by the functions (in polar

coordinates)

ψ0
+(r) := c0+Kα(e−iπ/4r) 1√

2π
and ψ−1

+ (r, θ) := c−1
+ K1−α(e−iπ/4r) e−iθ

√
2π

,

and the deficiency subspace Σ− := ker(H
∗
α + i) is spanned by the functions

ψ0
−(r) := c0− e

iπα/2Kα(eiπ/4r) 1√
2π

and

ψ−1
− (r, θ) := c−1

− eiπ(1−α)/2K1−α(eiπ/4r) e−iθ
√

2π
.

Here, Kµ is the modified Bessel function of the second kind and of order µ, and the

real constants c0± and c−1
± are chosen such that ‖ψ0

±‖ = ‖ψ−1
± ‖ = 1.

By the standard theory of von Neumann, all self-adjoint extensions of Hα are
parameterized by the set of unitary maps from one deficiency subspace to the other
one. Therefore, for η ∈ R and a, b ∈ C satisfying |a|2 + |b|2 = 1, let us set

U = U(η, a, b) = eiη

(

a −b
b a

)

for a general unitary map from Σ+ to Σ−. These spaces are endowed with their
respective bases {ψ0

+, ψ
−1
+ } and {ψ0

−, ψ
−1
− }. Then, for any such U , there exists a

self-adjoint extension HU
α of Hα defined by

D(HU
α ) =

{

f ∈ H | f = g + ψ+ + Uψ+ with g ∈ D(Hα), ψ+ ∈ Σ+

}

and

HU
α f = Hαg + iψ+ − iUψ+ .

In particular, the special choice U(0,−1, 0) coincides with the original operator
HAB

α introduced by Aharonov and Bohm and thoroughly studied in [R].
The generalized eigenfunctions of these operators have been calculated in [AT],

and we shall come back to them subsequently. Some useful tools and notations have
first to be introduced.
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3. Fourier transform and dilation operator

In this section we briefly recall the necessary background on the Fourier trans-
form and the dilation operator.

Let us first decompose the Hilbert space H with respect to polar coordinates:
For any m ∈ Z, let φm be the complex function defined by [0, 2π) ∋ θ 7→ φm(θ) :=
eimθ
√

2π
. Then, by taking the completeness of the family {φm}m∈Z in L2(S1) into

account, one has the canonical decomposition

H =
⊕

m∈Z

Hm ,

where Hm =
{

f ∈ H | f(r, θ) = g(r)φm(θ) a.e. for some g ∈ Hr

}

, Hr stands for

the Hilbert space L2(R+, rdr) and R+ is the open interval (0,∞).
Let F be the usual Fourier transform, explicitly given on any f ∈ H and k ∈ R2

by

[Ff ](k) =
1

2π
l.i.m.

∫

R2

f(x)e−ix·k dx

where l.i.m. denotes the convergence in the mean. Its inverse is denoted by F∗.
Since the Fourier transform maps the subspace Hm of H onto itself, we naturally
set Fm : Hr → Hr by the relation F(gφm) = Fm(g)φm for any g ∈ Hr. More
explicitly, the application Fm is the unitary map from Hr to Hr given on any
g ∈ Hr and κ ∈ R+ by

[Fmg](κ) = (−i)|m| l.i.m.

∫

R+

rJ|m|(rκ)g(r)dr ,

where J|m| denotes the Bessel function of the first kind and of order |m|. The

inverse Fourier transform F∗
m is given by the same formula, with (−i)|m| replaced

by i|m|.
Let us now consider the unitary dilation group {Uτ}τ∈R defined on any f ∈ H

and x ∈ R2 by

[Uτf ](x) = eτf(eτx) .

Its self-adjoint generator A is formally given by 1
2 (X · (−i∇) + (−i∇) ·X), where

X is the position operator and −i∇ is its conjugate operator. All these operators
are essentially self-adjoint on the Schwartz space on R2.

It is easily observed that the formal equality F A F∗ = −A holds. More
precisely, for any essentially bounded function ϕ on R, one has Fϕ(A)F∗ = ϕ(−A).
Furthermore, since A acts only on the radial coordinate, the operator ϕ(A) leaves
each Hm invariant. So, for any m ∈ Z, let ϕm be an essentially bounded function on
R. Assume furthermore that the family {ϕm}m∈Z is bounded. Then the operator
ϕ(A) : H → H defined on Hm by ϕm(A) is a bounded operator.

Let us finally recall a general formula about the Mellin transform.

Lemma 3.1. Let ϕ be an essentially bounded function on R such that its inverse

Fourier transform is a distribution on R. Then, for any f ∈ C∞
c

(

R
2 \ {0}

)

one has

[ϕ(A)f ](r, θ) =
(

1
2π

)1/2
∫ ∞

0

ϕ̌
(

− ln( s
r )
)

f(s, θ) ds
r ,

where the r.h.s. has to be understood in the sense of distributions.
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Proof. The proof is a simple application for n = 2 of the general formulae
developed in [J, p. 439]. Let us however mention that the convention of this ref-
erence on the minus sign for the operator A in its spectral representation has not
been adopted. �

As already mentioned ϕ(A) leaves Hm invariant. More precisely, if f = gφm

for some g ∈ C∞
c (R+), then ϕ(A)gφm = [ϕ(A)g]φm with

(3.1) [ϕ(A)g](r) =
(

1
2π

)1/2
∫ ∞

0

ϕ̌
(

− ln( s
r )
)

g(s) ds
r ,

where the r.h.s. has again to be understood in the sense of distributions.

4. The original Aharonov-Bohm operator

Let us now come back to the original Aharonov-Bohm operator HAB
α . We shall

recall some formulae gathered in the paper [R]. For shortness, the index α will be
omitted in certain expressions. Since the operator HAB

α leaves each subspace Hm

invariant, it gives rise to a sequence of channel operators HAB
α,m acting on Hm. The

usual operator −∆ admitting a similar decomposition, the wave operators

ΩAB
± := s− lim

t→±∞
eiHAB

α t e−i(−∆)t .

can be defined in each channel, i.e. separately for each m ∈ Z. Let us immediately
observe that the angular part does not play any role for defining such operators.
Therefore, we shall omit it as long as it does not lead to any confusion, and consider
the channel wave operators ΩAB

±,m from Hr to Hr. It is proved in [R, Thm. A1]
that these operators exist and are isometric maps from Hr onto Hr. Furthermore,
they are given for any g ∈ Hr and r ∈ R+ by

(4.1) [ΩAB
±,m g](r) = i|m| l.i.m.

∫

R+

κJ|m+α|(κr)e
∓iδα

m [Fmg](κ)dκ ,

where

δα
m = 1

2π
(

|m| − |m+ α|
)

=

{

− 1
2πα if m ≥ 0
1
2πα if m < 0

.

Since the wave operators admit a decomposition into channel wave operators,
so does the scattering operator. The channel scattering operator

SAB
m := (ΩAB

+,m)∗ ΩAB
−,m

acting from Hr to Hr is simply given by [R, eq. 4.6] :

SAB
m = e2iδα

m .

Let us now concentrate on the channel wave operators. Since C∞
c (R+) is con-

tained in Hr, one has for any g ∈ C∞
c (R+) and r ∈ R+:
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[ΩAB
±,mg](r) = s− lim

N→∞
i|m|

∫ N

0

κJ|m+α|(κr)e
∓iδα

m [Fmg](κ)dκ

= s− lim
N→∞

e∓iδα
m

∫ N

0

κJ|m+α|(κr)
[

∫ ∞

0

sJ|m|(sκ)g(s)ds
]

dκ

= s− lim
N→∞

e∓iδα
m

∫ ∞

0

sg(s)
[

∫ N

0

κJ|m|(sκ)J|m+α|(κr)dκ
]

ds

= s− lim
N→∞

e∓iδα
m

∫ ∞

0

s
r g(s)

[

∫ Nr

0

κJ|m|(
s
r κ)J|m+α|(κ)dκ

]

ds
r

= e∓iδα
m

∫ ∞

0

s
r

[

∫ ∞

0

κJ|m|(
s
r κ)J|m+α|(κ)dκ

]

g(s) ds
r ,(4.2)

where the last term has to be understood in the sense of distributions on R+.
Our interest in rewriting the channel wave operators in this form is twofold.

Firstly, by comparing (4.2) with (3.1), one observes that the channel wave operator
ΩAB

±,m is equal, at least on a dense set in Hr, to ϕ±
m(A) for a function ϕ±

m whose
inverse Fourier transform satisfies for y ∈ R:

ϕ̌±
m(y) =

√
2πe∓iδα

m e−y
[

∫ ∞

0

κJ|m|(e
−y κ)J|m+α|(κ)dκ

]

.

Secondly, the distribution between brackets has been explicitly computed in [KR4,
Prop. 2]. We recall here the general result (the notation δ is used for the Dirac
measure centered at 0, Pv denotes the principal value integral and 2F1 stands for
the hypergeometric function).

Proposition 4.1. For µ, ν ∈ R satisfying ν + 2 > |µ| and µ+ 2 > |ν|, and for

s ∈ R+ one has
∫∞
0
κJµ(sκ)Jν(κ)dκ

= cos(π(ν − µ)/2)δ(s− 1) + 2
π sin(π(ν − µ)/2)s−1 Pv

(

1
1
s
−s

)

+























2
π sin

(π(ν−µ)
2

)

s−1

1
s
−s

[

sµ Γ( µ+ν
2

+1)Γ( µ−ν
2

+1)

Γ(µ+1) 2F1

(

µ+ν
2 , µ−ν

2 ;µ+ 1; s2
)

− 1
]

if s < 1,
2
π sin

(π(ν−µ)
2

)

s−1

1
s
−s

[

s−ν Γ( ν+µ
2

+1)Γ( ν−µ
2

+1)

Γ(ν+1) 2F1

(

ν+µ
2 , ν−µ

2 ; ν + 1; s−2
)

− 1
]

if s > 1,

as an equality between two distributions on R+. Furthermore, the last term belongs

to L1
loc(R+).

Thus, let us define the following distributions for y ∈ R:

ϕ̌±
m,1(y) =

√
2πe∓iδα

m cos(δα
m)δ(y) ,

ϕ̌±
m,2(y) = −

√

2
π e

∓iδα
m sin(δα

m)Pv
(

1
sinh(y)

)

.

For y < 0 let us also define ϕ̌±
m,3(y) by

−
√

2
π e

∓iδα
m sin(δα

m) 1
sinh(y)

[

eνy Γ( ν+µ
2

+1)Γ( ν−µ
2

+1)

Γ(ν+1) 2F1

(

ν+µ
2 , ν−µ

2 ; ν + 1; e2y
)

− 1
]
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and for y > 0 by

−
√

2
π e

∓iδα
m sin(δα

m) 1
sinh(y)

[

e−µy Γ( µ+ν
2

+1)Γ( µ−ν
2

+1)

Γ(µ+1) 2F1

(

µ+ν
2 , µ−ν

2 ;µ+1; e−2y
)

−1
]

,

where the notation µ = |m| and ν = |m+α| has been used for shortness. The sum
of these distributions is clearly equal to ϕ̌±

m. These distributions are the inverse
Fourier transforms of continuous functions, as proved in the next lemma. We use
the notation T for the set of complex numbers of modulus 1.

Lemma 4.2. One has:

(1) ϕ±
m,1 = e∓iδα

m cos(δα
m),

(2) ϕ±
m,2 = ie∓iδα

m sin(δα
m) tanh

(

π
2 ·
)

,

(3) ϕ±
m,3 ∈ C0(R) with supy∈R

|ϕ±
m,3(y)| ≤ 2 independently of m ∈ Z.

In particular, one has ϕ±
m := ϕ±

m,1 + ϕ±
m,2 + ϕ±

m,3 ∈ C
(

[−∞,+∞],T
)

, with the

asymptotic values ϕ±
m(±∞) = 1 and ϕ±

m(∓∞) = e∓2iδα
m .

Proof. The Fourier transform of ϕ̌±
m,1 and ϕ̌±

m,2 are well known. For ϕ̌±
m,3,

let us first recall that the two hypergeometric functions appearing in its definition
are bounded functions for y < 0 and y > 0, respectively. Thus, the function
y → ϕ̌±

m,3(y) goes exponentially rapidly to 0 as |y| → ∞. Finally, it follows from

the L1
loc-property mentioned in the above proposition that ϕ̌±

m,3 is also locally L1

in a neighbourhood of y = 0. Altogether one has obtained that ϕ̌±
m,3 belongs to

L1(R), and thus its Fourier transform belongs to C0(R).
The L∞-norm of ϕ±

m,3 and the remaining statements follow from the unitarity
of the channel wave operators and some straightforward computations. �

By the density of C∞
c (R+) in Hr, one has thus obtained:

Theorem 4.3. For each m ∈ Z, one has

ΩAB
±,m = ϕ±

m(A) ,

with ϕ±
m ∈ C

(

[−∞,+∞],T
)

. These functions are explicitly defined in Lemma 4.2

and above.

5. Stationary scattering theory

In this section, we shall be concerned with the wave operators ΩU
± for any pair

(HU
α ,−∆). For simplicity, we shall treat in details only the operator ΩU

−.
Similarly to (4.1), the wave operators are expressed in terms of the generalized

eigenfunctions ΨU
α of HU

α through the following formula, for f ∈ H, r ∈ R+ and
θ ∈ [0, 2π):

[ΩU
−f ](r, θ) := l.i.m. 1

2π

∫

R+

∫ 2π

0

κΨU
α (r, θ, κ, ω) [Ff ](κ, ω)dωdκ .

Furthermore, the functions ΨU
α have been calculated explicitly in [AT]. But before

writing the rather complicated formulae obtained in this reference, let us introduce
a new decomposition of H.

We set Hint := H0 ⊕ H−1 which is clearly isomorphic to G := Hr ⊗ C2, and
consider the decomposition H = Hint ⊕ H⊥

int
. It easily follows from [AT] that for

any U , the operator ΩU
− is reduced by this decomposition, and that the restriction of

the wave operator ΩU
− to H⊥

int
is equal to ΩAB

− . More generally, this is a consequence
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to the fact that the functions ψ0
± and ψ−1

± introduced in Section 2 belong to Hint.

Since ΩAB
− has already been analyzed in the previous section, we shall concentrate

only on the restriction of ΩU
− to Hint.

For that purpose, let us recall the explicit form of ΨU
α restricted to Hint. It is

proved in [AT] that, modulo our rearrangement, one has:

1
2π ΨU

α (r, θ, κ, ω)
∣

∣

∣

Hint

=
∑

m∈{0,−1}
i|m| eiδα

m J|m+α|(κr)φm(θ)φm(ω)

+
[

1
2 i

αH(1)
α (κr)

]

4 i cos
(

π
2α
)

p00(κ)(−κ2)αφ0(θ)φ0(ω)

+
[

1
2 i

αH(1)
α (κr)

]

2e2iπα
√

2 sin(πα)p−10(κ)κφ0(θ)φ−1(ω)

−
[

1
2 i

1−αH
(1)
1−α(κr)

]

2e−2iπα
√

2 sin(πα)p0−1(κ)κφ−1(θ)φ0(ω)

−
[

1
2 i

1−αH
(1)
1−α(κr)

]

4 i sin
(

π
2α
)

p−1−1(κ)(−κ2)1−αφ−1(θ)φ−1(ω) ,

where pjk are functions explicitly calculated in [AT], and H
(1)
ν is the Hankel func-

tion of the first kind and of order ν. We mention that the functions pjk depend on
α and U . In order to rewrite this expression and the wave operator ΩU

− in a more
friendly form, let us introduce a matrical notation: We set for κ and r in R+:

Tα(κr) =

(

1
2 i

αH
(1)
α (κr) 0

0 1
2 i

1−αH
(1)
1−α(κr)

)

,

and

S
U
α (κ) =

(

4i cos
(

π
2α
)

p00(κ)(−κ2)α 2e2iπα
√

2 sin(πα)p−10(κ)κ

−2e−2iπα
√

2 sin(πα)p0−1(κ)κ −4i sin
(

π
2α
)

p−1−1(κ)(−κ2)1−α

)

.

By using this notation and the isomorphism between Hint and G, the restriction
of wave operator to Hint, seen as a map from G to G, can be rewritten for f ≡
( f0

f
−1

)

∈ G and r ∈ R+ as:

(5.1) [ΩU
−f ](r) = [ΩAB

− f ](r) + l.i.m.

∫

R+

κ Tα(κr)S U
α (κ) [Ff ](κ)dκ ,

where Ff =
(

F0f0

F
−1f

−1

)

.

In the remaining part of this section, we shall show that the second term can
be rewritten as a product of a function of A and a function of −∆.

5.1. The operator Tm. We consider first the function of the dilation group.
The construction is very similar to the one already encountered in Section 4 for
the original Aharonov-Bohm operator. For that purpose, let us consider for m ∈
{0,−1}, g ∈ C∞

c (R+) and r ∈ R+ the following equalities:
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[Tmg](r) := s− lim
N→∞

1
2 i

|m+α|
∫ N

1/N

κH
(1)
|m+α|(κr) [Fmg](κ)dκ

= s− lim
N→∞

1
2 e

−iδα
m

∫ N

1/N

κH
(1)
|m+α|(κr)

[

∫ ∞

0

sJ|m|(sκ)g(s)ds
]

dκ

= s− lim
N→∞

1
2 e

−iδα
m

∫ ∞

0

s
[

∫ N

1/N

κH
(1)
|m+α|(κr)J|m|(sκ)dκ

]

g(s)ds

= s− lim
N→∞

1
2 e

−iδα
m

∫ ∞

0

s
r

[

∫ Nr

r/N

κH
(1)
|m+α|(κ)J|m|(

s
r κ)dκ

]

g(s) ds
r

= 1
2 e

−iδα
m

∫ ∞

0

s
r

[

∫ ∞

0

κH
(1)
|m+α|(κ)J|m|(

s
r κ)dκ

]

g(s) ds
r(5.2)

where the last term has to be understood in the sense of distributions on R+.
As in the previous section, by comparing (5.2) with (3.1), one observes that

this operator is equal, at least on a dense set in Hr, to ϕ̃m(A) for a function ϕ̃m

whose inverse Fourier transform satisfies for y ∈ R:

ˇ̃ϕm(y) = 1
2

√
2πe−iδα

m e−y
[

∫ ∞

0

κH
(1)
|m+α|(κ)J|m|(e

−y κ)dκ
]

= 1
2

√
2πe−iδα

m ey
[

∫ ∞

0

κH
(1)
|m+α|(e

y κ)J|m|(κ)dκ
]

.

And again, the distribution between brackets has been explicitly computed in
[KR4, Prop. 1]. We recall first the general result.

Proposition 5.1. For any µ, ν ∈ R satisfying ν + 2 > |µ| and s ∈ R+ one has
∫∞
0 κH

(1)
µ (sκ)Jν(κ)dκ = eiπ(ν−µ)/2 δ(s− 1) + 2

iπ e
iπ(ν−µ)/2 s−1 Pv

(

1
1
s
−s

)

+ 2
iπ e

iπ(ν−µ)/2
(

s−1

1
s
−s

)

[

s−ν Γ( ν+µ
2

+1)Γ( ν−µ
2

+1)

Γ(ν+1) 2F1

(

ν+µ
2 , ν−µ

2 ; ν + 1; s−2
)

− 1
]

as an equality between two distributions on R+. The last term belongs to L1
loc(R+).

We now state the main properties of the operator Tm:

Proposition 5.2. For m ∈ {0,−1}, one has Tm = ϕ̃m(A) with ϕ̃m which

belongs to C
(

[−∞,+∞],C
)

. Furthermore these functions satisfy ϕ̃m(−∞) = 0 and

ϕ̃m(+∞) = 1.

Proof. Let us define the following distributions for y ∈ R:

ˇ̃ϕm,1(y) = 1
2

√
2πδ(y), ˇ̃ϕm,2(y) = 1

2 i
√

2
π Pv

(

1
sinh(y)

)

and

ˇ̃ϕm,3(y) = 1
2 i
√

2
π

1
sinh(y)

[

e−νy Γ( ν+µ
2

+1)Γ( ν−µ
2

+1)

Γ(ν+1) 2F1

(

ν+µ
2 , ν−µ

2 ; ν + 1; e−2y
)

− 1
]

,

where the notation µ = |m+α| and ν = |m| has been used for shortness. The sum
of these distributions is clearly equal to ˇ̃ϕm, and it is well know that ϕ̃m,1 + ϕ̃m,2 =
1
2

[

1+ tanh
(

π
2 ·
)]

. One can already observe that these terms give the correct values
at ±∞.

For ϕ̃m,3, it follows from Proposition 5.1 that ˇ̃ϕm,3 belongs L1
loc(R). For

y ∈ [0,+∞), the hypergeometric function is bounded, and therefore the map
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y 7→ ˇ̃ϕm,3(y) has an exponential decrease as y → +∞, driven by the inverse of
the hyperbolic sinus. For y → −∞, an asymptotic development of the hypergeo-
metric function is necessary. Borrowing such a development from [AS, Sec. 15.3],
one easily obtains that the leading term of ˇ̃ϕm,3(y) for y → −∞ is of the form

e−y(|m+α|−1), which is exponentially decreasing if and only if m ∈ {0,−1}. It thus
follows that ˇ̃ϕm,3 belongs to L1(R), and its Fourier transform is then in C0(R). The
statement follows then from the density of C∞

c (R+) in Hr. �

5.2. New formula for the wave operators. We shall now collect all infor-
mation obtained so far, and propose a new formula for ΩU

−.

Since the wave operators ΩU
± are reduced by the decomposition of H into Hint⊕

H⊥
int

, so does the scattering operator SU
α ≡ SU

α (−∆) :=
(

ΩU
+

)∗
ΩU

−. Furthermore,

by looking at the restriction of SU
α to Hint and by considering it as a map from

G to G, one naturally observes that there exists a close relation between this map
and the family S U

α (·) introduced before. Indeed, by comparing the expression of
S U

α (·) with the formula obtained in [AT] for the scattering amplitude fU
α , and by

taking into account the relation between the scattering amplitude and the scattering
operator [T1, R], one observes that the following equality holds on G:

S
U
α (

√
−∆) = SU

α (−∆) −
(

e−iπα 0
0 eiπα

)

where S U
α (

√
−∆) is given by F∗S U

α (k)F and S U
α (k) is the operator of multipli-

cation by S U
α (·) in G.

The following new description of the wave operators is now an easy consequence
of the above observation and of the results obtained before for ϕm and ϕ̃m.

Theorem 5.3. For any U , the restriction of the wave operator ΩU
− to Hint,

seen as a map from G to G, satisfies the equality

(5.3) ΩU
− =

(

ϕ−

0
(A) 0

0 ϕ−

−1
(A)

)

+
(

ϕ̃0(A) 0
0 ϕ̃

−1(A)

)[

SU
α (−∆) −

(

e−iπα 0
0 eiπα

)]

.

Proof. It has been proved in Section 4 that the term ΩAB
− in (5.1) takes the

form of the first term on the r.h.s. of (5.3). Then, the second term of (5.1) is also
equal to

l.i.m.

∫

R+

κ Tα(κr)
[

F
(

F∗
S

U
α (k)F

)

f
]

(κ)dκ

=
(

T0 0
0 T

−1

)[

(

F∗
S

U
α (k)F

)

f
]

(r) ,

which implies the statement. �

Remark 5.4. A similar formula holds for ΩU
+. The precise formula can either

be calculated again from ΨU
α or from the equality ΩU

+ = ΩU
−
(

SU
α (−∆)

)∗
.
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