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Abstract

In this short review paper, we discuss the concept of time delay for an abstract quantum
scattering system. Its definition in terms of sojoum times is explained as well as its identity
with the so-called Eisenbud-Wigner time delay. Necessary and natural conditions for such a
constmction are introduced and thoroughly discussed. Assumptions and statements are pre-
cisely formulated but proofs are contained in two companion papers written in collaboration
with R. Tiedra de Aldecoa.

1 Introduction

Heuristically, the notion of time delay in scattering theory is quite easy to understand. Given a
reference scattering process, this concept should indicate a measure of the advance or of the delay
that a system acquires during a slightly different scattering process. In other words, the time delay
should be a measure of an excess or a defect of time that a certain evolution process gets compared
to an a priori process. The paradigm example of such two related systems consists in a classical
particle evolving either freely in an Euclidean space or in the same Euclidean space but under the
influence of a compactly supported potential.

Once this general notion is accepted, one might wonder how it can effectively be measured ?
For the paradigm example, the traditional setup consists in a series of manipulations: One first
considers a family of boxes $B(r)$ centered at the origin and of edges equal to $r>0$ . One then
measures the $ti$ me $T_{r}^{0}$ spent by the free particle inside the box $B(r)$ as well as the time $T_{r}$ spent
by the second particle in the same box $B(r)$ . $Si_{I1}ce$ the time delay is a relative notion, one defines
$\tau_{r}$ as the difference between $T_{r}$ and $T_{r}^{0}$ . In order to have a quantity independent of the size of the
boxes one finally considers the limit $\lim_{rarrow\infty}\tau_{r}$ , and says that this quantity, if it exists, is the time
delay between the two scattering processes.

The above setup is obviously sensible and defines a rather comprehensible notion. However,
even if these manipulations are convincing for the paradigm model, how can we generalize this
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procedure for a more complicated system ? Is it even possible to realize such a measure for an
abstract scattering process and what is the underlying reference system ? In the same line, how can
we define the notion of localisation in a box when there is no clear underlying space and no notion
of boxes ?

Now, coming back to the paradigm example and assuming that the above quantity exists,
one might also wonder if this quantity can be related to another measurement ? The answer is
yes, and the corresponding notion $is$ the Eisenbud-Wigner time delay [9, 31]. In fact, the identity
between the two notions of time delay was proved in different settings by various authors (see
[2, 3, 4, 6, 8, 10, 11, 13, 14, 17, 18, 20, 23, 24, 27, 29, 30] and references therein), but a general
and abstract statement has never been proposed.

Quite recently, R. Tiedra de Aldecoa and the author of the present essay introduced an abstract
version for the two notions of time delay and showed that the two concepts are equal [22]. The proof
mainly relies on a general formula relating localisation operators to time operators [21]. Using this
formula, these authors proved that the existence and the identity of the two time delays is in fact
a common feature of quanmm scattering theory. Note that on the way they took into account a
symmetrization procedure [3, 7, 10, 16, 18, 26, 27, 28, 29] which broadly extends the applicability
of the theory.

The aim of the present paper is to explain how these two notions of time delay can be con-
stmcted for an abstract quantum scattering system. In panicular, we introduce the necessary and
natural conditions for such a construction. All assumptions and statements are precisely formulated
but for the simplicity of presentation we refer to the two companion papers [21, 22] for the proofs.
In fact, this paper is an expansion of the presentation done by its author at the conference Spectral
and scattering theory and related topics organised in February 2011 in Kyoto in honor of Professor
H. Isozaki’s $60^{th}$ -Birthday.

2 Asymptotic evolution

In this section we introduce the asymptotic system and the necessaly assumptions on it.
Let $\mathcal{H}$ be a Hilbert space with scalar product and norm denoted respectively by $\langle\cdot,$ $\cdot)_{\mathcal{H}}$ and

$\Vert\cdot\Vert_{\mathcal{H}}$ . The evolution of a quantum scattering system is defined in terms of the unitaly group
generated by a self-adjoint operator $H$ in $\mathcal{H}$ . One aim of scattering theory is to understand the
limits as $tarrow\pm\infty$ of the evolving state $\psi(t)$ $:=e^{-itH}\psi$ for suitable $\psi\in \mathcal{H}$ . Obviously, not
all states $\psi\in \mathcal{H}$ can be smdied and in fact only elements in the absolutely continuous subspace
$\mathcal{H}_{ac}(H)$ of $\mathcal{H}$ with respect to $H$ are concemed with usual scattering theory.

For investigating the long time asymptotics of $\psi(t)$ one usually looks for another Hilbert space
$\mathcal{H}_{0}$ (which can also be $\mathcal{H}$ itself) and for a second self-adjoint operator $H_{0}$ in $\mathcal{H}_{0}$ such that the
element $\psi(t)$ approaches for $tarrow\pm\infty$ and in a suitable sense the elements $e^{-itH_{0}}\psi\pm$ for some
$\psi_{\pm}\in \mathcal{H}_{0}$ . Since in general these states do not live in the same Hilbert space, the construction
requires the introduction of an operator $J$ : $\mathcal{H}_{0}arrow \mathcal{H}$ usually called identification operator. For
simplicity, we shall consider $J\in \mathscr{B}(\mathcal{H}_{0}, \mathcal{H})$ but let us mention that this boundedness condition
can be relaxed if necessary.

More precisely, given the self-adjoint operator $H$ in the Hilbert space $\mathcal{H}$ , one looks for a triple
$(\mathcal{H}_{0}, H_{0}, J)$ such that the following strong limits exist

$W_{\pm}(H, H_{0}, J)$ $:= s-\lim_{tarrow\pm\infty}e^{itH}Je^{-itH_{0}}P_{ac}(H_{0})$ . (2.1)

34



Assuming that the operator $H_{0}$ is simpler than $H$ , the study of the wave operators $W_{\pm}(H, H_{0}, J)$

leads then to valuable information on the spectral decomposition of $H$ . This setting $is$ also at the
root for further investigations on the evolution group generated by $H$ and in particular for our study
of the time delay.

Now, let us call suitable a triple $(\mathcal{H}_{0}, H_{0}, J)$ which leads to the existence of non-trivial oper-
ators $W_{\pm}(H, H_{0}, J)$ (a precise condition is stated in Assumption 3). Note that we are not aware
of any general criterion which would insure the existence of a suitable triple. Furthermore, if any
such suitable triple exists, its uniqueness can certainly not be proved. However, in the set (possibly
empty) of suitable triples, the additional conditions on $H_{0}$ that we shall introduce in the sequel
might select an optimal choice between suitable triples.

Let us recall from the Introduction that the time delay is defined in terms of expectations of
evolving states on a family ofposition-type operators. In an abstract setting, the existence of such
a family is not guaranteed by any means and thus these operators have to be introduced by hands.
So, let us assume that there exists a finite family of mutually commuting self-adjoint operators
$\Phi\equiv(\Phi_{1}, \ldots, \Phi_{d})$ in $\mathcal{H}_{0}$ which have to satisfy two appropriate assumptions with respect to $H_{0}$ .
The first one, and by far the most important one, $is$ a certain type of commutations relation. By
looking at the examples presented in [22, Sec. 7], one can get the feeling that this assumption is
related to a certain homogeneity property of an underlying configuration space. However, one has
clearly not introduced such a concept up to now, and this interpretation is not based on any strong
ground. The second assumption concems the regularity of $H_{0}$ with respect to the operators $\Phi_{1}$ to
$\Phi_{d}$ . While the first assumption is easily stated, the second one necessitates some preparations.

For any $x\in \mathbb{R}^{d}$ let us set
$H_{0}(x):=e^{-ix\cdot\Phi}H_{0}e^{ix\cdot\Phi}$

for the self-adjoint operator with domain $e^{-ix\cdot\Phi}\mathcal{D}(H_{0})$ .

Assumption 1. The operators $H_{0}(x),$ $x\in \mathbb{R}^{d}$, mutually commute.

Clearly, this assumption is equivalent to the commutativity of each $H_{0}(x)$ with $H_{0}$ . Now, in
order to express the regularity of $H_{0}wi$ th respect to $\Phi_{j}$ , we recall from [1, Def. 6.2.2] that a self-
adjoint operator $T$ with domain $\mathcal{D}(T)\subset \mathcal{H}_{0}$ and spectrum $\sigma(T)$ is said to be of class $C^{1}(\Phi)$ if
there exists $\omega\in \mathbb{C}\backslash \sigma(T)$ such that the map

$\mathbb{R}^{d}\ni x\mapsto e^{-tx\cdot\Phi}(T-\omega)^{-1}e^{ix\cdot\Phi}\in \mathscr{B}(?\{_{0})$

is strongly of class $C^{1}$ in $\mathcal{H}_{0}$ . In such a case and for each $j\in\{1, \ldots, d\}$ , the set $\mathcal{D}(T)\cap \mathcal{D}(\Phi_{j})$

is a core for $T$ and the quadratic form $\mathcal{D}(T)\cap \mathcal{D}(\Phi_{j})\ni\varphi\mapsto\langle T\varphi,$ $\Phi_{j}\varphi\rangle_{H_{0}}-\{\Phi_{j}\varphi,$ $T\varphi\rangle_{\mathcal{H}_{0}}$ is
continuous in the topology of $\mathcal{D}(T)$ . This form extends then uniquely to a continuous quadratic
form $[T, \Phi_{j}]$ on $\mathcal{D}(T)$ , which can be identified with a continuous operator from $\mathcal{D}(T)$ to its dual
$D(T)^{*}$ . Finally, the following equality holds:

$[\Phi_{j},$ $(T-\omega)^{-1}]=(T-\omega)^{-1}[T, \Phi_{j}](T-\omega)^{-1}$ .

In the sequel, we shall say that $i[T, \Phi_{j}]$ is essentially self-adjoint on $\mathcal{D}(T)$ if $[T, \Phi_{j}]\mathcal{D}(T)\subset \mathcal{H}_{0}$

and if $i[T, \Phi_{j}]$ is essentially self-adjoint on $\mathcal{D}(T)$ in the usual sense.

Assumption 2. The operator $H_{0}$ is of class $C^{1}(\Phi)$ , and for each $j\in\{1, \ldots, d\},$ $i[H_{0}, \Phi_{j}]$ is
essentially self-adjoint on $\mathcal{D}(H_{0})$ , with its self-adjoint extension denoted by $\partial_{j}H_{0}$ . The operator
$\partial_{j}H_{0}$ is of class $C^{1}(\Phi)$ , and for each $k\in\{1, \ldots, d\},$ $i[\partial_{j}H_{0}, \Phi_{k}]$ is essentially self-adjoint on
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$\mathcal{D}(\partial_{j}H_{0})$ , with its self-adjoint extension denoted by $\partial_{jk}H_{0}$. The operator $\partial_{jk}H_{0}$ is ofclass $C^{1}(\Phi)$ ,
and for each $\ell\in\{1, \ldots, d\},$ $i[\partial_{jk}H_{0}, \Phi_{\ell}]$ is essentially self-adjoint on $\mathcal{D}(\partial_{jk}H_{0})$ , with its self-
adjoint extension denoted by $\partial_{jk\ell}H_{0}$ .

Remark 2.1. Readers familiar with Mourre theory would have guessed that this assumption is
closely related to a $C^{3}(\Phi)$ -type regularity condition. However, the unusual requirement on self-
adjoinmess is due to our use ofafunctional calculus associated with these successive commutators.

As shown in [21, Sec. 2], this assumption implies the invariance of $D(H_{0})$ under the ac-
tion of the unitaly group $\{e^{-ix,.\Phi}\}_{x\in \mathbb{R}^{d}}$ . As a consequence, each operator $H_{0}(x)$ has the same
domain equal to $\mathcal{D}(H_{0})$ . Similarly, the domains $\mathcal{D}(\partial_{j}H_{0})$ and $\mathcal{D}(\partial_{jk}H_{0})$ are left invariant by the
action of the unitary group $\{e^{-tx\cdot\Phi}\}_{x\in N^{d}}$ , and the operators $(\partial_{j}H_{0})(x)$ $:=e^{-ix\cdot\Phi}(\partial_{j}H_{0})e^{ix\cdot\Phi}$

and $(\partial_{jk}H_{0})(x)$ $:=e^{-i\tau\cdot\Phi}(\partial_{jk}H_{0})e^{ix\cdot\Phi}$ are self-adjoint operators with domains $\mathcal{D}(\partial_{j}H_{0})$ and
$\mathcal{D}(\partial_{jk}H_{0})$ respectively. It has also been shown in [21, Lemma 2.4] that Assumptions 1 and 2
imply that the operators $H_{0}(x),$ $(\partial_{j}H_{0})(y)$ and $(\partial_{k\ell}H_{0})(z)$ mutually commute for each $j,$ $k,l\in$

$\{1, \ldots, d\}$ and each $x,$ $y,$
$z\in \mathbb{R}^{d}$ . For simplicity, we set

$H_{0}’:=(\partial_{1}H_{0}, \ldots, \partial_{d}H_{0})$

and define for each measurable function $g:\mathbb{R}^{d}arrow \mathbb{C}$ the operator $g(H_{0}’)$ by using the d-variables
functional calculus. Similarly, we consider the family of operators $\{\partial_{jk}H_{0}\}$ as the components of
a d-dimensional matrix which we denote by $H_{0}’’$ .

Remark 2.2. By choosing for $\Phi$ the single operator 1, or any operator commuting with $H_{0}$ , both
conditions above are satisfied by any suitable triple $(\mathcal{H}_{0},H_{0}, J)$ . However, as we shall see in the
next section, these choices would lead to trivial statemems with no information in them. In fact a
criterionfor an optimal choicefor both $(\mathcal{H}_{0}, H_{0}, J)$ and $\Phi$ will be explained in Remark 3.5.

We are already in a suitable position for the definition of the sojoum time for the evolution
group generated by $H_{0}$ . However, we would like first to look at various consequences on $H_{0}$ of the
Assumptions 1 and 2.

3 Properties of $H_{0}$

In this section we assume tacitly that Assumptions 1 and 2 hold and exhibit some consequences on
the operator $H_{0}$ . Our first task is to define values in the spectrum of $H_{0}$ which have a troublesome
behaviour for scattering theory. Obviously, this set can only be defined with the objects yet at hand.

For that purpose, let $E^{H_{0}}(\cdot)$ denote the spectral measure of $H_{0}$ . For shortness, we also use
the notation $E^{H_{0}}(\lambda;\delta)$ for $E^{H_{0}}((\lambda-\delta, \lambda+\delta))$ . We now introduce the set of critical values of $H_{0}$

and state its main properties, see also [21, Lemma 2.6] for more properties and details.

Definition 3.1. A number $\lambda\in\sigma(H_{0})$ is called a critical value of $H_{0}$ if
$\lim_{\epsilon\backslash 0}\Vert((H_{0}’)^{2}+\epsilon)^{-1}E^{H_{0}}(\lambda;\delta)\Vert_{H_{0}}=+\infty$

for each $\delta>0$. We denote by $\kappa(H_{0})$ the set of critical values of $H_{0}$ .

Lemma 3.2. Let $H_{0}$ satisfy Assumpfions 1 and 2. Then the set $\kappa(H_{0})$ is closed and contains the
set ofeigenvalues of $H_{0}$ .
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Now, the spectral properties of $H_{0}$ which are exhibited in the next proposition are conse-
quences of the existence of an explicit conjugate operator for $H_{0}$ . Indeed, it has been shown in [21,
Sec. 3] that for $j\in\{1, \ldots, d\}$ the expression $\Pi_{j}$ $:=\langle H_{0}\rangle^{-2}(\partial_{j}H_{0})\langle H_{0})^{-2}$ defines a bounded
self-adjoint operator and that the operators $\Pi_{j}$ and $\Pi_{k}$ commute for arbitrary $j,$ $k$ . Note that we use
the notation $\langle x)$ $:=(1+x^{2})^{1/2}$ for any $x\in \mathbb{R}^{n}$ . Based on this, it is proved in the same reference
that the operator

$A:= \frac{1}{2}(\Pi\cdot\Phi+\Phi\cdot\Pi)$

is essentially self-adjoint on the domain $\mathcal{D}(\Phi^{2})$ . Then, since the formal equality

$[iH_{0}, A]=\langle H_{0}\rangle^{-2}(H_{0}’)^{2}(H_{0})^{-2}$

holds, the commutator $[iH_{0}, A]$ is non-negative and this construction opens the way to the smdy
of the operator $H_{0}$ with the so-called Mourre theory. Such an analysis has been performed in [21,
Sec. 3] from which we recall the main spectral result:

ProposItion 3.3. Let $H_{0}$ satisfy Assumptions 1 and 2. Then,

$(a)$ the spectrum of $H_{0}$ in $\sigma(H_{0})\backslash \kappa(H_{0})$ is purely absolutely continuous,

$(b)$ each operator $B\in \mathscr{B}(D(\langle\Phi\rangle^{-s}), \mathcal{H}_{0})$ , with $s>1/2$ , is locally $H_{0}$ -smooth on $\mathbb{R}\backslash \kappa(H_{0})$ .

Remark 3.4. It is worth noting that modulo the regularization $\langle H_{0}\rangle^{-2}$, the usual conjugate op-
eratorfor the Laplace operator $\Delta$ in $L^{2}(\mathbb{R}^{d})$ is constructed similarly. Indeed, ifwe choose for $\Phi$

the family ofposition operators $X=(X_{1}, \ldots, X_{d})$ , then Assumptions 1 and 2 are clearly satisfied
and the genemtor ofdilation is obtained by this procedure.

Remark 3.5. One would like to stress that the definition of the set $\kappa(H_{0})$ clearly depends on the
choice of the family of opemtors $\Phi=\{\Phi_{1}, \ldots, \Phi_{d}\}$ . For example $\iota f\Phi=\{1\}$ , then $H_{0}’=0$ and
$\kappa(H_{0})=\sigma(H_{0})$ , and it follows that Proposition 3.3 does not contain any information. Thus the
choice for both a suitable triple $(\mathcal{H}_{0}, H_{0}, J)$ and the family of operators $\Phi$ should be dictated by
the size of the corresponding set $\kappa(H_{0})$ : the smaller the better.

4 Sojourn times and symmetrized time delay

In this section we introduce the notions of sojoum times for the two evolution groups and define
the symmetrized time delay. We also state the main result on the existence of the symmetrized time
delay under suitable assumptions on the scattering system. But first of all, let us state the precise
assumption on a triple $(\mathcal{H}_{0}, H_{0}, J)$ for being suitable. More precisely, this assumption concems
the existence, the isometry and the completeness of the generalised wave operators.

Assumption 3. The genemlised wave operators $W\pm(H, H_{0}, J)$ defined in (2.1) exist and are par-
tial isometries withfinal subspaces $\mathcal{H}_{ac}(H)$ .

The initial subspaces of the wave operators are denoted by $\mathcal{H}_{0}^{\pm}\subset \mathcal{H}_{ac}(H_{0})$ . In fact, it follows
from a standard argument that the operator $H_{0}$ is reduced by the decompositions $\mathcal{H}_{0}^{\pm}\oplus(\mathcal{H}_{0}^{\pm})^{\perp}$ of
$\mathcal{H}_{0}$ , cf. [5, Prop. 6.19]. Furthermore, the main consequence of Assumption 3 is that the scattering
operator

$S:=W_{+}^{*}W_{-}:\mathcal{H}_{0}^{-}arrow \mathcal{H}_{0}^{+}$
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is a well-defined unitary operator commuting with $H_{0}$ . Note that if $S$ is considered from $\mathcal{H}_{0}$ into
itself, then this operator is only a partial isometry, with initial subset $\mathcal{H}_{\overline{0}}$ and final subset $\mathcal{H}_{0}^{+}$ .

We now define the sojoum times for the quanmm scattering system, starting with the sojoum
time for the free evolution $e^{-itH_{0}}$ . For that purpose, let us first define for any $s\geq 0$

$\mathcal{D}_{s}$ $:=\{\varphi\in \mathcal{D}(\langle\Phi\rangle^{s})|\varphi=\eta(H_{0})\varphi$ for some $\eta\in C_{c}^{\infty}(\mathbb{R}\backslash \kappa(H_{0}))\}$ .

The set $\mathcal{D}_{\epsilon}$ is included in the subspace $\mathcal{H}_{ac}(H_{0})$ of absolute continuity of $H_{0}$ , due to Proposition
3.3.(a), and $\mathcal{D}_{S1}\subset \mathcal{D}_{s}2$ if $s_{1}\geq s_{2}$ . We also refer the reader to [21, Sec. 6] for an account on density
properties of the sets $\mathcal{D}_{s}$ . Then, let $f$ be a non-negative even element of the Schwartz space $(\mathbb{R}^{d})$

equal to 1 on a neighbourhood $\Sigma$ of the origin $0\in \mathbb{R}^{d}$ . Here even means that $f(-x)=f(x)$ for
any $x\in \mathbb{R}^{d}$ . For $r>0$ and $\varphi\in \mathcal{D}_{0}$ , we set

$T_{r}^{0}( \varphi):=\int_{\mathbb{R}}dt\langle e^{-itH_{0}}\varphi,$ $f(\Phi/r)e^{-itH_{0}}\varphi\rangle_{\mathcal{H}_{0}}$ ,

where the integral has to be understood as an $i$ mproper Riemann integral. The operator $f(\Phi/r)$ is
approximately the projection onto the subspace $E^{\Phi}(r\Sigma)\mathcal{H}_{0}$ of $\mathcal{H}_{0}$ , with $r\Sigma$ $:=\{x\in \mathbb{R}^{d}|x/r\in$

$\Sigma\}$ . Therefore, if $\Vert\varphi\Vert_{\mathcal{H}_{0}}=1$ , then $T_{r}^{0}(\varphi)$ can be approximately interpreted as the time spent by
the evolving state $e^{-itH_{0}}\varphi$ inside $E^{\Phi}(r\Sigma)\mathcal{H}_{0}$ . Furthermore, the expression $T_{r}^{0}(\varphi)$ is finite for each
$\varphi\in \mathcal{D}_{0}$ , since we know from Proposition 3.3.(b) that each operator $B\in \mathscr{B}(D(\langle\Phi\rangle^{-s}), \mathcal{H}_{0})$ , with
$s> \frac{1}{2}$ , is locally $H_{0}$-smooth on $\mathbb{R}\backslash \kappa(H_{0})$ .

When trying to define the sojoum time for the full evolution $e^{-itH}$ , one faces the problem
that the $l$ocalisation operator $f(\Phi/r)$ acts in $\mathcal{H}_{0}$ while the operator $e^{-itH}$ acts in $\mathcal{H}$ . The obvious
modification would be to consider the operator $Jf(\Phi/r)J^{*}\in \mathscr{R}(\mathcal{H})$ , but the resulting framework
could be not general enough. Sticking to the basic idea that the freely evolving state $e^{-itH_{0}}\varphi$

should approximate, as $tarrow\pm\infty$ , the corresponding evolving state $e^{-itH}W_{\pm}\varphi$, one looks for an
operator $L(t)$ : $\mathcal{H}arrow \mathcal{H}_{0},$ $t\in \mathbb{R}$ , such that

$tarrow\pm\infty hm\Vert L(t)e^{-itH}TT^{r_{\pm}}\varphi-e^{-itH_{0}}\varphi\Vert_{\mathcal{H}_{0}}=0$ . (4.1)

Since we consider vectors $\varphi\in \mathcal{D}_{0}$ , the operator $L(t)$ can be unbounded as long as $L(t)E^{H}(I)$ is
bounded for any bounded subset $I\subset \mathbb{R}$ . With such a family of operators $L(t)$ , it is namral to define
a first contribution for the sojoum time of the full evolution $e^{-itH}$ by the expression

$T_{r,1}(\varphi)$ $:= \int_{\mathbb{R}}dt\langle e^{-itH}W_{-}\varphi,$ $L(t)^{*}f(\Phi/r)L(t)e^{-itH}W_{-}\varphi\rangle_{\mathcal{H}}$ .

However, another contribution namrally appears in this context. Indeed, for fixed $t$ , the localisation
operator $L(t)^{*}f(\Phi/r)L(t)$ strongly converges to $L(t)^{*}L(t)$ as $rarrow\infty$ , but this operator might be
rather different from the operator 1. As a consequence, a part of the Hilbert space might be not
considered $wi$ th the definition of $T_{r,1}(\varphi)$ . Thus, a second contribution for the sojoum time is

$T_{2}(\varphi)$ $:= \int_{\mathbb{R}}dt\langle e^{-ttH}W_{-}\varphi,$ $(1-L(t)^{*}L(t))e^{-itH}W_{-}\varphi\rangle_{\mathcal{H}}$ .

The finiteness of $T_{r,1}(\varphi)$ and $T_{2}(\varphi)$ is proved under an additional assumption in Theorem 4.1
below. The term $T_{r,1}(\varphi)$ can be approximatively interpreted as the time spent by the scattering
state $e^{-itH}W_{-}\varphi$ inside $L(t)^{*}f(\Phi/r)L(t)\mathcal{H}$ . The term $T_{2}(\varphi)$ can be seen as the time spent by the
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scattering state $e^{-itH}W_{-}\varphi$ inside the time-dependent subset $($ 1 $-L(t)^{*}L(t))\mathcal{H}$ of $\mathcal{H}$ . If $L(t)$ is
considered as a time-dependent quasi-inverse for the identification operator $J$ (see [32, Sec. 2.3.2]
for the related time-independent notion of quasi-inverse), then the subset $(1 -L(t)^{*}L(t))\mathcal{H}$ can
be seen as an approximate complement of $J\mathcal{H}_{0}$ in $\mathcal{H}$ at time $t$ . When $\mathcal{H}_{0}=\mathcal{H}$, one usually sets
$L(t)=J^{*}=1$ , and the term $T_{2}(\varphi)$ vanishes. Within this general framework, the total sojoum
time for the full evolution $e^{-itH}$ is given by

$T_{r}(\varphi):=T_{r,1}(\varphi)+T_{2}(\varphi)$ .

Since both sojoum times have now been defined, the definition of the time delay should be
at hand. However, let us first consider the following dilemma. For a given state $L(t)e^{-itH}\psi$ with
$\psi\in \mathcal{H}_{ac}(H)$ , which one is the correct free evolution state: is it $e^{-itH_{0}}\varphi_{-}$ with $W_{-}\varphi-=\psi$

which is a good approximation for $tarrow-\infty$ , or is it $e^{-itH_{0}}\varphi+$ with $W_{+}\varphi+=\psi$ which is also a
good approximation but for $tarrow+\infty$ ? Obviously, both states have to be taken into account, and
therefore we say that

$\tau_{r}(\varphi):=T_{r}(\varphi)-\frac{1}{2}\{T_{r}^{0}(\varphi)+T_{r}^{0}(S\varphi)\}$ ,

is the symmetrized $ti$me delay of the scattering system with incoming state $\varphi$ . This symmetrized
version of the usual time delay

$\tau_{r}^{in}(\varphi):=T_{r}(\varphi)-T_{r}^{0}(\varphi)$

is known to be the only time delay having a well-defined limit as $rarrow\infty$ for complicated scattering
systems (see for example [3, 7, 10, 12, 16, 18, 22, 25, 26, 27]).

The last assumption is a condition on the speed of convergence of the state $L(t)e^{-itH}W\pm\varphi\pm$

to the corresponding states $e^{-itH_{0}}\varphi\pm$ as $tarrow\pm\infty$ . Up to now, only the convergence to $0$ of the
$no$ of the difference of these states had been used, cf. (4.1).

AssumptIon 4. For each $\varphi\pm\in \mathcal{H}_{0}^{\pm}\cap \mathcal{D}_{0}$ one has

$\Vert(L(t)W_{-}-1)e^{-itH_{0}}\varphi-\Vert_{\mathcal{H}_{0}}\in L^{1}(\mathbb{R}_{-}, dt)$ and
$\Vert(L(t)W_{+}-1)e^{-itH_{0}}\varphi+\Vert_{\mathcal{H}_{0}}\in L^{1}(\mathbb{R}_{+},dt)(4.2)$

Next Theorem shows the existence of the symmetrized time delay. The apparently large num-
ber of assumptions reflects nothing more but the need of describing the very general scattering
system; one needs hypotheses on the relation between $H_{0}$ and $\Phi$ , a compatibility assumption be-
tween $H_{0}$ and $H$ , conditions on the localisation function $f$ and conditions on the state $\varphi$ on which
the calculations are performed.

Theorem 4.1. Let $H,$ $H_{0}J$ and $\Phi$ satisfy Assumptions 1 to 4, and let $f$ be a non-negative even
element $of\ovalbox{\tt\small REJECT}(\mathbb{R}^{d})$ equal to 1 on a neighbourhood ofthe origin $0\in \mathbb{R}^{d}$. Then, for each $\varphi\in \mathcal{H}_{0}^{-}\cap \mathcal{D}_{2}$

satisfying $S\varphi\in \mathcal{D}_{2}$ , the sojoum time $T_{r}(\varphi)$ is finite for each $r>0$ and the limit $\lim_{rarrow\infty}\tau_{r}(\varphi)$

exists.

Remark 4.2. All the assumptions in the above statemem are mther explicit except the one on
$S\varphi\in \mathcal{D}_{2}$. Indeed, such a property is related to the mapping properties of the scattering operator
and this assumption is not directly connected to the other conditions. Let us simply mention that
one usually proves such a property by studying higher order resolvent estimates.

In the next section, we show that the time delay $\lim_{rarrow\infty}\tau_{r}(\varphi)$ can be related to another
quantity defined only in terms of the scattering operator and a so-called time operator.
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5 Time operator and $Eisenbud\cdot Wigner$ time delay

We now define a time operator for the operator $H_{0}$ and recall some of its properties from [21]. For
that purpose, one needs to constmct a new function $R_{f}$ from the localisation function $f$ introduced
above. This function was already smdied and used, in one form or another, in [10, 21, 22, 28, 29].
Thus, let us define $R_{f}\in C^{\infty}(\mathbb{R}^{d}\backslash \{0\})$ by

$R_{f}(x):= \int_{0}^{\infty}\frac{d\mu}{\mu}(f(\mu x)-\chi_{[0,1]}(\mu))$ .

The following properties of $R_{f}$ are proved in [29, Sec. 2]: $R_{f}’(x)= \int_{0}^{\infty}d\mu f’(\mu x),$ $x\cdot R_{f}’(x)=-1$

and $t^{|\alpha|}(\partial^{\alpha}R_{f})(tx)=(\partial^{\alpha}R_{f})(x)$ , where $\alpha\in N^{d}$ is a multi-index and $t>0$ . Furthermore, if $f$ is
radial, then $R_{\int}’(x)=-x^{-2}x$ .

Now, the next statement follows from [21, Prop. 5.2] and [21, Rem. 5.4].

Proposition 5.1. Let $H_{0}$ and $\Phi sati\phi$ Assumptions 1 and 2, and let $f$ be the localisationfunction
introduced above. Then the map

$t_{f}:\mathcal{D}_{1}arrow \mathbb{C}$ , $\varphi\mapsto t_{f}(\varphi):=-\frac{1}{2}\sum_{j=1}^{d}\{\langle\Phi_{j}\varphi, (\partial_{j}R_{f})(H_{0}’)\varphi\rangle_{\mathcal{H}0}+\langle(\partial_{j}R_{f})(H_{0}’)\varphi, \Phi_{j}\varphi\rangle_{\mathcal{H}_{0}}\}$,

is well-defined. Moreover, the linear operator $T_{f}$ : $\mathcal{D}_{1}arrow H_{0}$ defined by

$T_{f} \varphi:=-\frac{1}{2}(\Phi\cdot R_{f}’(H_{0}’)+R_{f}’(_{\overline{|}H}H\eta_{0}’)\cdot\Phi|H_{0}’|^{\sim 1}+iR_{f}’(\mu_{1}^{H’}0)\cdot(H_{0}^{\prime\prime T}H_{0}’)|H_{0}’|^{-3})\varphi$ (5.1)

satisfies $t_{f}(\varphi)=\langle\varphi,$ $T_{f}\varphi\rangle$ for each $\varphi\in \mathcal{D}_{1}$ . In particular, $T_{f}$ is a symmetric opemtor $\iota f\mathcal{D}_{1}$ is
dense in $\mathcal{H}_{0}$ .

Clearly, Formula (5.1) is rather complicated and one could be tempted to replace it by the sim-
pler $fomiula-\frac{1}{2}(\Phi\cdot R_{f}’(H_{0}’)+R_{f}’(H_{0}’)\cdot\Phi)\varphi.$Unfomnately, a precise meaning of this expression
is not available in general, and its full derivation can only be justified in concrete examples.

Before stating the main result of this section, let us recall some properties of the operator $T_{f}$ ,

and refer to [21, Sec. 6] for details. In the form sense on $\mathcal{D}_{1}$ the operators $H_{0}$ and $T_{f}$ satisfy the
canonical commutation relation

$[T_{f}, H_{0}]=i$ .
Therefore, since the group $\{e^{-itH_{0}}\}_{t\in \mathbb{R}}$ leaves $\mathcal{D}_{1}$ invaniant, the following equalities hold in the
form sense on $\mathcal{D}_{1}$ :

$\langle\psi,$ $T_{f}e^{-itH_{0}}\varphi\rangle_{\mathcal{H}0}=\langle\psi,$ $e^{-itH_{0}}(T_{f}+t)\varphi\rangle_{\mathcal{H}0}$ ,

and the operator $T_{f}$ satisfies on $\mathcal{D}_{1}$ the so-called infinitesimal Weyl relation in the weak sense [15,
Sec. 3]. Note that we have not supposed that $\mathcal{D}_{1}$ is dense. However, if $\mathcal{D}_{1}$ is dense in $\mathcal{H}_{0}$ , then the
infinitesimal Weyl relation in the strong sense holds:

$T_{f}e^{-itH_{0}}\varphi=e^{-itH_{0}}(T_{f}+t)\varphi$ , $\varphi\in 9\text{ノ_{}1}$ . (5.2)

This relation, also known as $T_{f}$ -weak Weyl relation [19, Def. 1.1], has deep implications on the

$geststhatT_{f}=i\frac{H_{0}d}{dH_{0}}andthus-iT_{f}canbeseenastheoperatorofdifferentionwithrespectspectra1namreofandonthefo-ofT_{f}inthespectra1representationofH_{0}.Fo-a11y,jtsug$
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to the Hamiltonian $H_{0}$ . Moreover, being a weak version of the usual Weyl relation, Relation (5.2)
also suggests that the spectmm of $H_{0}$ may not differ too much from a purely absolutely continu-
ous spectmm. Since these properties have been thoroughly discussed in [21, Sec. 6], we refer the
interested reader to that reference.

Next theorem $is$ the main result of [22], comments on it are provided after its statement.

Theorem 5.2. Let $H,$ $H_{0}J$ and $\Phi$ satisfy Assumptions 1 to 4, and let $f$ be a non-negative even
element of$(\mathbb{R}^{d})$ equal to 1 on a neighbourhood ofthe origin $0\in \mathbb{R}^{d}$. Then, for each $\varphi\in \mathcal{H}_{0}^{-}\cap \mathcal{D}_{2}$

satisfying $S\varphi\in \mathcal{D}_{2}$ one has

$\lim_{rarrow\infty}\tau_{r}(\varphi)=-\langle\varphi,$ $S^{*}[T_{f},S]\varphi\rangle_{\mathcal{H}_{0}}$ , (5.3)

with $T_{f}$ defined by (5. 1).

The above statement expresses the identity of the symmetrized time delay (defined in terms
of sojoum times) and the Eisenbud-Wigner time delay for general scattering systems. The l.h. $s$ .
of (5.3) is equal to the symmetrized time delay of the scattering system with incoming state $\varphi$ ,
in the dilated regions associated with the localisation operators $f(\Phi/r)$ . The r.h. $s$ . of (5.3) is the
expectation value in $\varphi$ of the generalised Eisenbud-Wigner time delay $operator-S^{*}[T_{f}, S]$ . It
clearly shows that once suitable and namral conditions are assumed, then the notion of time delay
exists whatever the scattering system is.

Let us finally mention that when $T_{j}$ acts in the spectral representation of $H_{0}$ as the differential
operator $i \frac{d}{dH_{0}}$ , which occurs in most of the situations of interest (see for example [21, Sec. 7]), one
recovers the usual Eisenbud-Wigner Formula:

$\lim_{rarrow\infty}\tau_{r}(\varphi)=-\langle\varphi,$ $iS^{*} \frac{dS}{dH_{0}}\varphi\rangle_{?t_{0}}$ .
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