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TOPOLOGICAL BOUNDARY MAPS IN PHYSICS

JOHANNES KELLENDONK AND SERGE RICHARD

ABSTRACT. The material presented here covers two talks given by the authors at the
conference Operator Algebras and Mathematical Physics organized in Bucharest in
August 2005. The first one was a review given by J. Kellendonk on the relation be-
tween bulk and boundary topological invariants in physical systems. In the second
talk S. Richard described an application of these ideas to scattering theory. It leads to
a topological version of the so called Levinson’s theorem.
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INTRODUCTION

The natural language for quantum physics is linear operators on Hilbert spaces and
underlying operator algebras. These algebras are fundamentally non-commutative.
Topological properties of quantum systems should hence be connected with the topol-
ogy of these algebras, which is what one calls non-commutative topology. An impor-
tant first question to be answered is therefore: what is the correct operator algebra
related to a physical system? Since we are looking for topological effects this algebra
should be a separable C∗-algebra and a good starting point is to look for the C∗-version
of the observables algebra. Once the question about the right algebra is settled we are
interested in studying its invariants, asking above all: which of them have a physical
interpretation? Finally, when we have identified the invariants, we want to derive rela-
tions between them, typically equations between topological quantized transport co-
efficients or, as in Levinson’s theorem, between invariants of the bounded part and the
scattering part of the physical system. Such relations can be obtained from topological
boundary maps which do not exist on the algebraic level.
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Key words and phrases. Boundary maps, non-commutative topology, solid states physics, Levinson’s the-

orem, wave operators.



106 JOHANNES KELLENDONK AND SERGE RICHARD

The purpose of this paper is twofold: Explain with more details the general theory
outlined in the previous paragraph, and show its relevance in various applications in
mathematical physics. The first section is devoted to a brief introduction to the nat-
ural framework of topological boundary maps and to the description of the general
theory. The second section contains examples of applications to solid states physics,
while the third one is entirely dedicated to an application to potential scattering. Since
crossed product C∗-algebras and their twisted versions play an important rôle in the
applications, we have decided to incorporate an appendix on these algebras. Let us fi-
nally mention that Proposition 4.1 on the decomposition of magnetic twisted crossed
product C∗-algebras as iterated twisted crossed products is of independent interest.

1. GENERAL THEORY OF TOPOLOGICAL BOUNDARY MAPS IN PHYSICS

A C∗-algebra is a special kind of Banach algebra. For our purposes, the fact that its
norm satisfies the so called C∗-condition does not play an important rôle, but we wish
it to be separable, i.e. to contain a countable dense subset. Infinite dimensional von
Neumann algebras are not separable C∗-algebras and therefore not suited. K -groups
are topological invariants of C∗-algebras: they are abelian groups, which are countable
for separable C∗-algebras. They are isomorphic for isomorphic algebras and one may
think of them as simpler objects which might tell apart C∗-algebras. A very concise
formulation of our philosophy is the following: If the C∗-algebra is somewhat naturally
assigned to a physical system, then the elements of its K -groups are to be understood
as topological invariants of that system.

1.1. K -groups and n-traces. The K0-group of a unital C∗-algebra C is constructed
from the homotopy classes of projections in the set of square matrices with entries in
C . Its addition is induced from the addition of two orthogonal projections: if p and q

are orthogonal projections, i.e. pq = 0, then also p +q is a projection. Thus, the sum of
two homotopy classes [p]0+[q]0 is defined as the class of the sum of the block matrices
[p ⊕ q]0 on the diagonal. This new class does not depend on the choice of the repre-
sentatives p and q . K0(C ) is defined as the Grothendieck group of this set of homotopy
classes of projections endowed with the mentioned addition. In other words, the el-
ements of the K0-group are given by formal differences: [p]0 − [q]0 is identified with
[p ′]0 − [q ′]0 if there exists a projection r such that [p]0 + [q ′]0 + [r ]0 = [p ′]0 + [q]0 + [r ]0.
In the general non-unital case the construction is a little bit more subtle.

The K1-group of a C∗-algebra C is constructed from the homotopy classes of uni-
taries in the set of square matrices with entries in the unitization of C . Its addition is
again defined by: [u]1+[v]1 = [u⊕v]1 as a block matrix on the diagonal. The homotopy
class of the added identity is the neutral element.

For our purpose, higher traces will always be constructed from ordinary traces and
derivations, which might both be unbounded. More precisely, an n-trace on a C∗-
algebra C is determined by the data (T ;δ1, . . . ,δn), where T is a trace on C and {δ j }n

j=1

are n commuting derivations on C which leave the trace invariant: T ◦δ j = 0. More
important than the fact that their characters define unbounded cyclic cocycles, is for
us that they define additive functionals on the K -groups by Connes’ pairing: Extending
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T and δ j to matrices with entries in C in the canonical way one has, up to constants,
for even n, a functional 〈(T ;δ1, . . . ,δn), · 〉 : K0(C ) →C defined by

〈(T ;δ1, . . . ,δn), [p]0〉 =
∑

π∈Sn

sgn(π)T
(

pδπ(1)(p) · · ·δπ(n)(p)
)

,

and for odd n a functional 〈(T ;δ1, . . . ,δn), · 〉 : K1(C ) →C defined by

〈(T ;δ1, . . . ,δn), [u]1〉 =
∑

π∈Sn

sgn(π)T
(

(u∗−1)δπ(1)(u)δπ(2)(u∗) · · ·δπ(n)(u)
)

.

Here, Sn is the group of permutations of n elements.

1.2. The general theory. Let us consider a quantum system described by a linear op-
erator in a Hilbert space H , and let C be a C∗-subalgebra of B(H ) that is related with
this system. Here and in the sequel, B(H ) denotes the C∗-algebra of all bounded oper-
ators in H and K (H ) the ideal of compact operators in H . For instance, the system is
described by a self-adjoint operator H in H and C contains the C0-functional calculus
of H . Suppose now that we can identify certain elements of the K -groups of C with
physically meaningful quantities. For example, the spectral projection P(−∞,c)(H) of
H would give rise to an element of K0(C ), provided H is bounded from below and the
value c lies in a gap of the spectrum of H . Since the elements of the K -groups exhibit
some homotopy invariance, we expect that they will be stable under certain pertur-
bations of the system. Moreover, suppose that we have a higher trace such that its
pairing with the K -groups describes a physically significant quantity. Then this quan-
tity is topologically quantized, i.e. it takes values in a countable subgroup of the real
numbers.

Now assume that we have two quantum systems, the first one related with a C∗-
algebra J and the second one with a C∗-algebra C . Assume moreover that these are
related via an extension, i.e. there exists a third algebra E such that J is an ideal of E
and C is isomorphic to the quotient E /J . Another way of saying this is that J and
C are the left and right part of an exact sequence of C∗-algebras

0 →J
i→ E

q→C → 0,

i being an injective morphism and q a surjective morphism satisfying ker q = im i .
There might not be any reasonable algebra morphism between J and C but algebraic
topology provides us with homomorphisms between their K -groups: ind : K1(C ) →
K0(J ) and exp : K0(C ) → K1(J ), the index map and the exponential map. These
maps, which are also referred to as boundary maps, allow us to relate topological in-
variants of the two systems. Furthermore, with a little luck we also obtain dual maps
on the functionals defined by higher traces and therefore equations between numeri-
cal topological invariants. Therefore, the procedure goes as follows:

(1) Find a suitable C∗-algebra related with a given quantum system.
(2) Identify K -elements and higher traces whose pairings allow for a physical in-

terpretation.
(3) Construct extensions to the C∗-algebras related with two different systems and

compute the boundary maps to obtain relations between topological quan-
tized quantities.
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The reader may wonder at this point that operators don’t seem to come up at all in the
picture. This is misleading. An important part of the first and third step is actually to
prove that the operators describing the system are related in some sense to the alge-
bra. This affiliation is often a difficult analytical problem! Furthermore, the physical
interpretation of pairings involves as well the operators.

2. APPLICATIONS TO SOLID STATES PHYSICS

One of the most common realizations of the ideas presented above is furnished by
a quantum system described by a self-adjoint operator H in a Hilbert space H and a
norm closed subalgebra C of B(H ) that can be considered as the algebra of observ-
ables. In particular, C is expected to contain the energy observables η(H), obtained
from functions η which belong to C0(R), the algebra of continuous functions on R that
vanish at infinity. This section is devoted to a presentation of such realizations in the
context of solid states physics.

Since crossed product C∗-algebras and their twisted versions are discussed in the
appendix, we shall not recall their definitions in this section.

2.1. Algebras of energy observables derived from the set of atomic positions. An im-
portant class of C∗-algebras of observables can be obtained from the geometry of the
set P of equilibrium atomic positions in a solid. P is a discrete subset of Rn which
we suppose to be of finite local complexity, i.e. for each r > 0, there exists only finitely
many so called r -patches (P − x)∩Br , with x varying in P . Br denotes the closed ball
centered at 0 and of radius r .

A continuous function f : Rn → C is called P -equivariant with range r whenever
Br ∩ (P − x) = Br ∩ (P − y) implies f (x) = f (y), x, y ∈ R

n . The sup-norm closure of
all P -equivariant functions with arbitrary range is called the C∗-algebra CP (Rn) of P -

equivariant functions. A typical example of a P -equivariant function is a potential
V defined by V (x) := ∑

y∈P v(x − y) where v is a short range atomic potential, i.e. a
function which decays sufficiently fast for the sum to be finite. The unital algebra
CP (Rn) carries the continuous R

n-action α by translation. Then the algebra of the
aperiodic structure described by P is the corresponding crossed product C∗-algebra
CP :=CP (Rn)⋊αR

n .
Suppose now that the system is in an exterior constant magnetic field whose com-

ponents we denote by {B j k }n
j ,k=1 with B j k ∈ R. For any x, y ∈ R

n , consider the flux

Γ
B 〈0, x, x+y〉 through the triangle defined by the points 0, x and x+y , and letωB (x, y) :=

exp(−iΓB 〈0, x, x + y〉). We refer to the appendix for the general construction in the case
of a non-constant magnetic field with components in CP (Rn). One may thus form the
magnetic twisted crossed product C∗-algebra CP (Rn)⋊B

αR
n associated with the twisted

actions (α,ωB ) . This algebra is simply denoted by C B
P

, and if the magnetic field van-
ishes, then this algebra corresponds to CP .

The important fact is the following: Let A := {A j }n
j=1 with A j : Rn → R a continuous

vector potential for the magnetic field. Let H = (P − A)2 +V be the Landau opera-
tor perturbed by a potential V which is a P -equivariant real function. This magnetic
Schrödinger operator, which is a self-adjoint operator in H := L2(Rn), is affiliated to
CP in the following sense. There exists a faithful representation π : C B

P
→ B(H ) such
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that for any η ∈ C0(R), η(H) ∈ π(C B
P

). Note that the representation is constructed with
the help of the vector potential A. It can be argued that C B

P
is the algebra of observ-

ables for the system describing the motion of an electric particle in the aperiodic solid
described by P under the influence of the constant magnetic field B .

Examples or related constructions.

1) Finite systems without magnetic field. Suppose that we have a finite system, like an
atom or a molecule, and no external magnetic field. In that case P would simply be
a finite set contained in some ball Br ′ , say. Therefore a P -equivariant function with
range r would be constant outside Br+r ′ . Hence CP (Rn) is the unitization of C0(Rn)
and CP =C0(Rn)⋊αR

n +C⋊R
n is commonly called the two-body algebra. Let us note

that the first summand is isomorphic to K (L2(Rn)) and hence an ideal.

2) Crystals and quasi-crystals without magnetic field. Before the discovery of quasi-
crystals a crystal was considered to be a periodic arrangement of atoms, the set P being
therefore a regular lattice. In that case, CP (Rn) is simply the algebra of continuous P -
periodic functions on R

n . The corresponding crossed product algebra CP can be seen
as the C∗-algebra of observables associated with this periodic crystal.

Idealized quasi-crystals are often described by quasi-periodic sets P . For example
such a set can be obtained from a cut and project scheme. More generally, it has been
proposed to describe aperiodic ordered systems by repetitive Delone sets P of finite
local complexity with uniform existence of patch frequencies. In this case CP (Rn) is a
lot more complicated. Its spectrum ΩP is a foliated space which is transversally totally
disconnected. Repetitiveness corresponds to simplicity of the algebra CP , i.e. absence
of non-trivial closed ideals, and uniform existence of patch frequencies to the fact that
CP (Rn) carries a unique invariant normalized trace τ. We then get a 0-trace on CP by
defining T (F ) = τ(F (0)) on any continuous element F ∈ L1(Rn ,CP (Rn)) of the crossed
product.

We add the remark that the unique invariant trace on CP (Rn) corresponds to a unique
invariant ergodic probability measure on its spectrum ΩP . The condition of P having
uniform existence of patch frequencies can be relaxed, leading to the freedom of choice
for the trace which corresponds to a choice of ergodic probability measure on ΩP and
may be interpreted as a choice of physical phase.

3) Solids with boundary in a constant magnetic field. We consider a solid described by
P restricted to the half-space R

n−1 × (−∞, s], and therefore with a boundary at x⊥ ≡
xn = s. The new variable s describes the relative position between the P -equivariant
potential and the boundary. We let it vary over R∪ {+∞}, s =+∞ corresponding to the
system without boundary.

In order to construct a suitable C∗-algebra for that system, we rewrite the algebra
C B

P
as a crossed product by R,

CP (Rn)⋊
B
α R

n ∼= (CP (Rn)⋊
B
α‖ R

n−1)⋊βR=: C . (1)

Here CP (Rn) ⋊
B
α‖ R

n−1 is obtained by restricting the action to translations which are

parallel to the boundary, and the twisting cocycle to ωB
∥ (x, y) := ωB ((x,0), (y,0)) for
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x, y ∈R
n−1. In the case of constant magnetic field this could be understood as a choice

of gauge, but a more elegant approach which uses only gauge invariant quantities and
generalizes to variable magnetic field is presented in the appendix, Proposition 4.1.
The action β contains, of course, the part coming from translations perpendicular to
the boundary, see the appendix. Now, for the system with boundary it is natural to
consider the algebra

E :=
(

C0(R∪ {+∞})⊗ (CP (Rn)⋊
B
α‖ R

n−1)
)

⋊γ⊗βR, (2)

which is the Wiener-Hopf extension of (1). γ is the translation action on C0(R∪ {+∞})
which has +∞ as fixed point. The evaluation at +∞ defines a surjective morphism
from E onto C .

The important fact, proved for n = 2 in [19], is the following: Let b be the compo-
nent of the magnetic field pointing in the direction perpendicular to the plane, and
let Hs be the restriction of H = (P1 −bQ2)2 +P 2

2 +V to the half space R× (−∞, s] with
Dirichlet boundary conditions. The family {Hs }s∈R∪{+∞} is affiliated to E in the fol-
lowing sense: For any η ∈ C0(R), there exists F ∈ E such that η(Hs ) = πs (F ), where
πs : E → B(L2(R2)) is a representation induced by the evaluation map at (s,0), evs,0 :
C0(R∪ {+∞})⊗CP (R2) → C. The possibility of letting s tend to infinity allows to relate
continuously η(H) = π+∞(F ) with η(Hs ) = πs (F ) for any s ∈ R. Whereas the individual
representations πs are not faithful, their direct sum is faithful.

From this, it can be argued that E is the algebra of observables for the family over s

of systems describing the motion of an electric particle, in the aperiodic solid described
by P and under the influence of the constant magnetic field B , that is confined to the
half space R× (−∞, s].

4) The edge algebra. Let us describe the ideal J which is the kernel of the surjection
E →C . That is

J :=
(

C0(R)⊗ (CP (Rn)⋊
B
α‖ R

n−1)
)

⋊γ⊗βR, (3)

which is isomorphic to (C0(R)⋊γR)⊗ (CP (Rn)⋊B
α‖ R

n−1). Its elements are thus limits of
elementary tensors F⊥⊗F∥ where F⊥ is a compact operator, and F⊥ is an element of the
algebra CP (Rn)⋊B

α‖R
n−1. J is therefore the algebra of observables which are localized

near the boundary (or edge), in the loose sense of being compact in the perpendicular
direction. We call it the edge algebra. As for CP we can construct a trace on J starting

from the trace τ on CP (Rn), namely we define T̂ (F⊥⊗F∥) := Tr(F⊥)τ(F∥(0)), with Tr the
standard trace on compact operators, on any trace class element F⊥ of C0(R) ⋊γR and
any continuous element F∥ ∈ L1(Rn−1,CP (Rn)) of the crossed product.

2.2. Examples of pairings with physical interpretation. Let us present some systems
in which the pairing of a K -element with a higher trace has a physical interpretation.

The simplest construction consists in using the K0-elements of an algebra of ob-
servables C B

P
defined by the spectral projections, and a trace on the algebra to pair with

them. For example, consider the K0-elements defined by the projection P(−∞,EF )(H) of
the Hamiltonian H to the energies below the Fermi energy EF , provided this value lies
in a gap of spectrum of H . Pairing it with a suitable trace yields IDS(EF ), the integrated
density of states at the Fermi level.
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In the absence of magnetic field, we mention that also the pairing of the full K0-
group with the 0-trace T (the so called gap-labelling group) has been of great interest.
It describes the set of possible gap labels of a physical system. One can construct an
element in the K0-group for each r -patch of P . Pairing this element with the 0-trace
T yields the frequency of the patch. Note that the notion of frequency depends on
the choice of ergodic measure on ΩP . As has been proved relatively recently, these
frequencies generate the gap-labelling group [5, 6, 16].

The most famous example is related to the topological quantization of the Integer
Quantum Hall Effect. One typically finds two models used to describe the quantiza-
tion. In the bulk model, the sample is modelled by a Hamiltonian H on L2(R2) which
is affiliated to CP (R2)⋊

B
α R

2. Here the Hall conductivity σH , the transverse component
of the conductivity tensor, is up to a universal constant the pairing between the K0-
element determined by the spectral projection P(−∞,EF )(H), provided the Fermi energy
EF lies in a gap of its spectrum, and the 2-trace (T ;δ1,δ2). In the representation of the
algebra in B(L2(R2)) discussed above, T is the trace per unit volume and δ j = i[Q j , ·],
the commutator with the j -component of the position operator. We refer to [4] for a
discussion of the tight binding case where it is also explained that the condition that
EF belongs to a gap can be relaxed to EF belongs to a mobility gap.

Examples of pairings related to edge states. The edge algebra J is the algebra in which
we expect to find the operators describing the physics on the boundary. We first con-
struct an element of its K1-group.

Let ∆ be an interval contained in a gap of the spectrum of the Hamiltonian H . Then
P∆(Hs ) will not be 0 for s <∞, but rather the projection onto the edge states with en-
ergy in ∆. Now, consider the bounded continuous function u : R → C defined for all
t ∈R by

u(t ) = 1+χ∆(t )
(

exp
(−2πi

|∆| (t − inf∆)
)

−1
)

,

where χ∆ is the characteristic function on the interval ∆. Thus, there exists an element
U −1 ∈ E such that πs (U −1) = u(Hs )−1. However, since u(H∞)−1 ≡ u(H)−1 = 0, it
follows that U belongs to J ⊂ E . Therefore U defines an element of K1(J ).

To construct odd higher traces we make use of the trace constructed on J , and
consider the derivations δ j for j 6= n as above and ∂⊥ := i[P⊥, · ] ≡ i[Pn , · ], the commu-
tator with the infinitesimal generator of translation in position space perpendicular to
the boundary.

The pairings of [U ] with the 1-traces (T̂ ,δ j ) for j 6= n, and (T̂ ,∂⊥) have physical

interpretation. First of all, the trace T̂ of an element F⊥ ⊗F∥ may be interpreted as an
average, namely the average over the position s of the boundary of the usual trace on

L2(R) times the trace per unit volume on L2(Rn−1) of πs (F⊥⊗F∥). 1
2π 〈(T̂ ,δ j ), [U ]〉 is the

average of the operator 1
|∆|P∆(Hs )[Q j , Hs ]P∆(Hs ). Since this operator is 1

|∆| times the j -

component of the current operator restricted to the edge states, σ j := 1
2π 〈(T̂ ,δ j ), [U ]〉

is the j -direction of the conductivity along the boundary provided the Fermi energy
lies in ∆.

Similarly Π := 1
2π 〈(T̂ ,∂⊥), [U ]〉 is the average of 1

|∆|P∆(Hs ) ∂V
∂xn

P∆(Hs ). Since the oper-

ator P∆(Hs ) ∂V
∂xn

P∆(Hs ) is the perpendicular component of the gradient force restricted
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to the edge states, Π can be understood as the gradient pressure per unit energy on the
boundary of the system again supposing that the Fermi energy lies in ∆.

2.3. Relating two systems. Now we consider two quantum systems, one with an al-
gebra of observables J and the other with an algebra of observables C , which are
related via an extension E . It turns out that in all our examples the extensions are
Wiener-Hopf extensions determined by a continuous action β of R on some auxiliary
C∗-algebra B. These are abstractly defined as follows: Given a C∗-algebra B with
a continuous R-action β, the Wiener-Hopf extension of B ⋊βR is the crossed product
C∗-algebra E := (C0(R∪{+∞})⊗B)⋊γ⊗βR. The evaluation at+∞ for C0(R∪{+∞}) gives
a surjective morphism onto B ⋊β R, which we assumed to be equal to C . The kernel
of this morphism is supposed to be equal to J . One good feature of the Wiener-Hopf
extension is that the K -groups of E always vanish making the boundary maps ind and
exp isomorphisms. They are in fact the inverses of the Connes-Thom isomorphism.
Another advantage is that the dual maps on functionals defined by higher traces are
simple and explicit.

Solids with boundary. In the context of aperiodic ordered solids with boundary we
have already seen that the algebra E is the Wiener-Hopf extension of C with ideal
J , all these algebras being defined in equations (2), (1) and (3). So let us consider
the boundary map on K -theory exp : K0(C ) → K1(J ). Under the assumption that the
Fermi energy EF belongs to an interval ∆ which does not overlap with the “bulk” spec-
trum, one can show that the image of the K0-class defined by the projection P(−∞,EF )(H)
under this map is the K1-class defined by the unitary U above.

To describe the dual map we consider for simplicity the case n = 2. In this case
the map identifies the functional defined by the 2-trace (T ,δ1,δ2) with the functional

defined by the 1-trace (T̂ ,δ1). This leads to the relation

σ1 =σH ,

which expresses the fact that the Hall conductivity defined as the transverse compo-
nent of the conductivity tensor in the bulk equals the conductivity σ1 of the current
along the edge [18, 20].

The dual map identifies furthermore the functional defined by the 0-trace T with

that defined by the 1-trace (T̂ ,∂s ), where ∂s is the infinitesimal generator of transla-
tion of the boundary. The latter functional is a linear combination of the functionals

defined by (T̂ ,δ1) and (T̂ ,∂⊥). As a consequence we get the relation

IDS =Π+Bσ1.

This relation is valid at the Fermi energy provided it belongs to a gap of the spectrum.
We note that IDS is a bulk quantity which cannot be obtained from a measurement of
the density of states near the Fermi energy, since IDS(EF ) depends on the density of
states at all energies below EF . By contrast, Π and Bσ1 need only to be measured in an
arbitrarily small interval containing EF . Note that they are a priori introduced as quan-
tities depending on an interval containing EF but turn out to be largely independent of
that choice. We mention that deriving the above relation with respect to the magnetic
field strength B yields Streda’s formula ∂

∂B
IDS =σH [27].
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3. APPLICATION TO SCATTERING THEORY

Let us start by recalling very heuristically the main idea of potential scattering. We
consider a wave packet that is prepared in the far past far enough from a probe. Since
we assume that the probe is of finite size, this initial wave packet is presumably asymp-
totically free. It is then supposed to evolve in time under the influence of the poten-
tial describing the probe, to then move far away from the probe so that it can again
be considered asymptotically free in the far future. It is commonly expected that all
the observable information of the scattering process is contained in the so called S-
operator, an operator that relates the initial wave packet with the final wave packet.
Under some weak hypotheses, this operator is unitary. On the other hand, the probe
can possibly bind some states. In that situation, the projection on these states is... a
projection! Thus, we face a situation in which there exist a unitary operator and a pro-
jection that are related with two connected systems: The system of a scattering process
by a probe and the system consisting of the bound states of that probe. Having in mind
the general theory presented in Section 1.2, one is naturally led to consider an algebraic
framework that can link these two objects. This section is devoted to such a construc-
tion in the case of a two-body Schrödinger operator. Other applications and extensions
are in preparation [17].

3.1. The framework. Let us consider the self-adjoint operators H0 := −∆ and H :=
H0 +V in the Hilbert space H := L2(Rn), where |V (x)| É c(1+ |x|)−β with β > 1. It is
well known that for such short range potentials V , the wave operators

Ω± := s − lim
t→±∞

eit H e−it H0 (4)

exist and have same range. The complement of this range is spanned by the eigenvec-
tors of H , we let P denote the projection on this subspace. The scattering operator S

for this system is defined by the product Ω∗
+Ω−, where Ω

∗
+ is the adjoint of Ω+.

Levinson’s theorem establishes a relation between an expression in terms of the uni-
tary operator S and an expression depending on the projection P . There are many pre-
sentations of this theorem, but we recall only the one of [22]. We refer to [7], [12] and
[23] for other versions of a similar result.

Let U : H → L2(R+;L2(Sn−1)) be the unitary transformation that diagonalizes H0,
i.e. that satisfies [U H0 f ](λ,ω) = λ[U f ](λ,ω), with f in the domain of H0, λ ∈ R+ and
ω ∈ S

n−1. Since the operator S commutes with H0, there exists a family {S(λ)}λ∈R+ of
unitary operators in L2(Sn−1) satisfying U S U

∗ = {S(λ)} almost everywhere in λ [3,
Chapter 5.7]. Under suitable hypotheses on V [22] and in the case n = 3, Levinson’s
theorem takes the form

∫∞

0
dλ

{

tr

[

iS(λ)∗
dS

dλ
(λ)

]

− ν
p
λ

}

= 2πTr[P ], (5)

where tr is the trace on L2(Sn−1), Tr the trace on H and ν= 1
4π

∫

R3 dxV (x). Clearly the
right hand side of this equality is invariant under variations of V that do not change the
number of bound states of H . But it is not at all clear how this stability comes about in
the left hand side.
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In the sequel we propose a modification of the left hand side of (5) in order to re-
store the topological nature of this equality. The idea is very natural from the point
of view presented in Section 1.2: we rewrite the left hand side of (5) as the result of
a pairing between an element of K1 and a 1-trace. Beyond formula (5), we show that
the unitary S is related to the projection P at the level of K -theory by the index map,
cf. Theorem 3.2. Let us point out that the wave operators play a key rôle in this work.
Sufficient conditions on Ω− imply that H has only a finite set of bound states, but also
give information on the behavior of S( · ) at the origin.

3.2. A suitable short exact sequence and its representation. In this section we con-
struct a short exact sequence, i.e. an extension of two algebras. One algebra is associ-
ated with the scattering system and the other with the bound state system. We allow
ourselves to do that twice, first in a heuristic way similar to Section 2.1 and then again
more rigorously, shifting attention to the wave operator. This will lead us to natural
hypotheses, under which we obtain a relation between the scattering operator S and
the projection P on the bound states via a boundary map of K -theory.

The size of the probe being finite, it could be described by finite set P in the spirit
of Section 2.1. For such a system we obtained the two body algebra CP = C0(Rn) ⋊α

R
n +C⋊R

n . The first summand is isomorphic to K (L2(Rn)), and we expect the projec-
tion onto the bound states to be compact, supposing that there are only finitely many.
So the algebra of the bound state system should be that ideal of CP . Although CP is
actually an extension of C⋊R

n by the ideal, it is not this extension which will be used.
The algebra describing the scattering part should contain all possible S-operators.

Writing an S-operator as a unitary operator-valued function of energy as above, it is
therefore contained in L∞(R+;B(L2(Sn−1))). We now make assumptions which allow
us to obtain topological information: (1) the map λ 7→ S(λ) is continuous with respect
to norm topology, (2) S(λ) − 1 ∈ K (L2(Sn−1)), (3) S(0) = S(∞) = 1. These will be a
consequence of our hypotheses below. They allow us to regard S −1 as an element of
C0(R+;K (L2(Sn−1))) ∼=K (L2(Sn−1))⋊R, which we therefore consider as the algebra of
the scattering system. The action in this crossed product is trivial and the isomorphism
is given by Fourier transformation.

The extension we will use is

0 →C0(R;K )⋊γR→C0(R∪ {+∞)K )⋊γR
ev∞→ K ⋊R→ 0, (6)

where K is the algebra of compact operators in some Hilbert space. The sequence (6)
is the Wiener-Hopf extension of the crossed product K ⋊R with trivial R-action on K ,
γ is the action on C0(R∪{+∞}) by translation, leaving the point {+∞} invariant, and the
surjection ev∞ is induced by evaluation at {+∞}. Note that setting K = K (L2(Sn−1))
we have naturally C0(R;K ) ⋊γ R

∼= K (L2(Rn)), and so we expect P to be in the left
algebra and S −1 to be in the right algebra. But, instead of verifying that directly, we
change perspective and concentrate on the middle algebra with the goal to identify
the wave operator as an element of it. To do so we represent the above short exact
sequence in the physical Hilbert space H .

Following the developments of [13] we first consider the case K = C, letting A,B

be self-adjoint operators in H with purely absolutely continuous spectrum equal to R

and commutator given formally by [iA,B ] = −1. Then we can represent the crossed
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product algebra C0(R∪ {+∞};K )⋊γR faithfully as the norm closure E ′ in B(H ) of the
set of finite sums of the form ϕ1(A)η1(B)+·· ·+ϕm(A)ηm(B), where ϕi ∈C0(R∪ {+∞})
and ηi ∈ C0(R). We denote by J ′ the ideal obtained by choosing functions ϕi that
vanish at {+∞}. Furthermore, we can represent K ⋊R faithfully in B(H ) by elements
of the form η(B) with η ∈C0(R). This algebra is denoted by C ′.

In [13] position and momentum operators were chosen for A and B , but we take
A := − i

2 (Q · ∇+∇ ·Q) and B := 1
2 ln H0. We refer to [14] for a thorough description of

A in various representations. Let us notice that a typical element of E ′ is of the form
ϕ(A)η(H0) with ϕ ∈ C0(R∪ {+∞}) and η ∈ C0(R+), the algebra of continuous functions
on R+ that vanish at the origin and at infinity. We shall now consider K =K (L2(Sn−1))
from the decomposition H ∼= L2(R+;L2(Sn−1)) in spherical coordinates. Since A and
H0 are rotation invariant, the presence of a larger K does not interfere with the above
argument. Thus we set E := E ′⊗K , J := E ′⊗K and C :=C ′⊗K . These algebras are
all represented in B(H ), although C is a quotient of E . The surjection ev∞ becomes
the map P∞, where P∞[T ] := T∞, with T∞ uniquely defined by the conditions ‖χ(A Ê
t )(T −T∞)‖→ 0 and ‖χ(A Ê t )(T ∗−T ∗

∞)‖→ 0 as t →+∞, χ denoting the characteristic
function. We easily observe that P∞[ϕ(A)η(H0)] = ϕ(+∞)η(H0) for any ϕ ∈ C0(R∪
{+∞}) and η ∈ C0(R+;K ), where ϕ(+∞) is simply the value of the function ϕ at the
point {+∞}. Let us summarize our findings:

Lemma 3.1. All three algebras of (6) are represented faithfully in H by J , E and C . In

B(H ) the surjection ev∞ becomes P∞.

Note that J is equal to the set of compact operators in H . For suitable potentials V ,
the operator S−1 belongs to C [14, 15] and P is a compact operator. The key ingredient
below is the use of Ω− to make the link between the K1-class [S]1 of S and the K0-class
[P ]0 of P .

Theorem 3.2. Assume that Ω−−1 belongs to E . Then S−1 is an element of C , P belongs

to J , and at the level of K -theory one has

ind[S]1 =−[P ]0. (7)

Proof. Let T ∈ E . Then T∞ = P∞(T ) ∈ C satisfies ‖χ(A Ê t )(T −T∞)‖ → 0 as t →+∞.
Equivalently, ‖χ(A Ê 0) [U (t )TU (t )∗−T∞]‖ → 0 as t →+∞, since T∞ commutes with
U (t ) := e(i/2)t ln H0 for all t ∈R. It is then easily observed that s − limt→+∞U (t )TU (t )∗ =
T∞. Now, if T is replaced by Ω− − 1, the operator T∞ has to be equal to S − 1, since
s − limt→+∞U (t )Ω−U (t )∗ is equal to S. Indeed, this result directly follows from the
intertwining relation of Ω− and the invariance principle [1, Theorem 7.1.4].

We thus have shown that Ω− − 1 is a preimage of S − 1 in E . It is well known that
Ω−Ω∗

− = 1−P and Ω
∗
−Ω− = 1. In particular Ω− is a partial isometry so that ind[S]1 =

[Ω−Ω∗
−]0 − [Ω∗

−Ω−]0 =−[P ]0, see e.g. [26, Proposition 9.2.2]. �

Remark 3.3. It seems interesting that the condition Ω−−1 ∈ E implies the finiteness
of the set of eigenvalues of H . Another consequence of this hypothesis is that S(0) = 1,
a result which is also not obvious. See [15, Section 5] for a detailed analysis of the
behavior of S( · ) near the origin.



116 JOHANNES KELLENDONK AND SERGE RICHARD

It is important to express the above condition on Ω− in a more traditional way, i.e. in
terms of scattering conditions. The following lemma is based on an alternative descrip-
tion of the C∗-algebra E . Its easy proof can be obtained by mimicking some develop-
ments given in Section 3.5 of [13]. We also use the convention of that reference, that is:
if a symbol like T (∗) appears in a relation, it means that this relation has to hold for T

and for its adjoint T ∗.

Lemma 3.4. The operator Ω−−1 belongs to E if and only if S( · )−1 belongs to C0(R+;K )
and the following conditions are satisfied:

(i) limε→0 ‖χ(H0 É ε)(Ω−−1)(∗)‖ = 0 and limε→+∞ ‖χ(H0 Ê ε)(Ω−−1)(∗)‖ = 0,

(ii) limt→−∞ ‖χ(A É t )(Ω−−1)(∗)‖ = 0 and limt→+∞ ‖χ(A Ê t )(Ω−−S)(∗)‖ = 0.

Let us note that conditions (ii) can be rewritten as

lim
t→−∞

‖χ(A É 0)U (t )(Ω−−1)(∗)U (t )∗‖ = 0

and
lim

t→+∞
‖χ(A Ê 0)U (t )(Ω−−S)(∗)U (t )∗‖ = 0.

3.3. The topological version of Levinson’s theorem. In the next statement it is re-
quired that the map R+ ∋λ 7→ S(λ) ∈B(L2(Sn−1)) is differentiable. We refer for example
to [14, Theorem 3.6] for sufficient conditions on V for that purpose. Trace class condi-
tions on S(λ)−1 for all λ ∈ R+ are common requirements [11]. Unfortunately, similar
conditions on S′(λ) were much less studied in the literature. However, let us already
mention that these technical conditions are going to be weakened in [17].

Theorem 3.5. Let Ω− − 1 belong to E . Assume furthermore that the map R+ ∋ λ 7→
S(λ) ∈ B(L2(Sn−1)) is differentiable, and that λ 7→ tr[S′(λ)] belongs to L1(R+,dλ). Then

the following equality holds:
∫∞

0
dλ tr

[

i(S(λ)−1)∗S′(λ)
]

= 2πTr[P ]. (8)

Proof. The boundary maps in K -theory of the exact sequence (6) are the inverses of
the Connes-Thom isomorphism (which here specializes to the Bott-isomorphism as
the action in the quotient is trivial) and have a dual in cyclic cohomology [9], or rather
on higher traces [10, 20], which gives rise to an equality between pairings which we first
recall: Tr is a 0-trace on the ideal C0(R;K ) ⋊γ R

∼= K (L2(R))⊗K (L2(Sn−1)) which we
factor Tr = Tr′⊗ tr. Then t̂r : K ⋊R→C, t̂r[a] = tr[a(0)], is a trace on the crossed product
and (a,b) 7→ t̂r[aδ(b)] a 1-trace where [δ(b)](t ) = itb(t ). With these ingredients

t̂r
[

i(u −1)∗δ(u)
]

=−2πTr[p] if ind[u]1 = [p]0, (9)

provided u is a representative of its K1-class [u]1 on which the 1-trace can be evalu-
ated. This is for instance the case if δ(u) is t̂r-trace class. To apply this to our situation,
in which u is the unitary represented by the scattering operator and p is represented
by the projection onto the bound states, we express δ and t̂r on UC U

∗, where U is
the unitary from Section 3.1 diagonalizing H0. Then δ becomes λ d

dλ and t̂r becomes
∫

R+
dλ
λ tr. Our hypothesis implies the necessary trace class property, so that the left

hand side of (9) corresponds to
∫∞

0 dλ tr[i(S(λ)− 1)∗S′(λ)] and the right hand side to
2πTr[P ]. �
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Remark 3.6. Expressions very similar to (8) already appeared in [7] and [12]. However,
it seems that they did not attract the attention of the respective authors and that a for-
mulation closer to (5) was preferred. One reason is that the operator {S(λ)∗S′(λ)}λ∈R+
has a physical meaning: it represents the time delay of the system under consideration.
We refer to [2] for more explanations and results on this operator.

Remark 3.7. At present our approach does not allow to say anything about a half-

bound state, but this will be remedied in [17]. We refer to [15], [23] or [24] for explana-
tions on that concept, and to [23] or [24] for corrections of Levinson’s theorem in the
presence of such a 0-energy resonance.

3.4. Further prospects. We outline several improvements or extensions that ought to
be carried out or seem natural in view of this note. We hope to express some of these
in [17].

(1) Our main hypothesis of Theorem 3.5, that Ω−−1 belongs to the C∗-algebra E is
crucial. In Lemma 3.4 we provided estimates which would guarantee it. Such
estimates are rather difficult to obtain and we were not able to locate similar
conditions in the literature. They clearly need to be addressed.

(2) Similar results should hold for a more general operator H0 with absolutely con-
tinuous spectrum. In that case the rôle of A would be played by an operator
conjugate to H0. We refer to [1, Proposition 7.2.14] for the construction of such
an operator in a general framework.

(3) More general short range potentials or trace class perturbations can also be
treated in a very similar way. By our initial hypothesis on V we have purposely
eliminated positive eigenvalues of H , but it would be interesting to have a bet-
ter understanding of their rôle with respect to Theorems 3.2 and 3.5.

(4) In principle, Theorem 3.2 is stronger than Levinson’s theorem and one could
therefore expect new topological relations from pairings with other cyclic co-
cycles. In the present setting these do not yet show up as the ranks of the K -
groups are too small. But in more complicated scattering processes this could
well be the case.

(5) In the literature one also finds the so called higher order Levinson’s Theorems

[8]. In the case n = 3 and under suitable hypotheses they take the form [8,
Equation 3.28]

∫∞

0
dλ λN

{

tr
[

iS(λ)∗S′(λ)
]

−CN (λ)
}

= 2π
∑

j

eN
j ,

where N is any natural number, CN are correction terms, and {e j } is the set
of eigenvalues of H with multiplicities counted. The correction terms can be
explicitly computed in terms of H0 and V [8]. We expect them to be absorbed
in a similar manner into the S-operator as above.
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4. APPENDIX ON TWISTED CROSSED PRODUCTS

In this section we start by recalling the definition of a twisted crossed product C∗-
algebra borrowed from [21, Section 2]. We refer to the references quoted in that pa-
per for a more general definition. Then we consider the particular situation of the 2-
cocycle defined by a magnetic field. Finally, a decomposition of the magnetic twisted
crossed product as an iterated twisted crossed product is proved.

Let X be an abelian, second countable, locally compact group, and let C be an
abelian C∗-algebra, with its norm denoted by ‖ f ‖ and its involution by f ∗, for any
f ∈C . Assume that there exists a group morphism α : X → Aut(C ) from X to the group
of automorphisms of C such that the map X ∋ x 7→ αx [ f ] ∈ C is continuous for all
f ∈ C . Assume also that there exists a strictly continuous normalized 2-cocycle ω on
X with values in the unitary group of the multiplier algebra M (C ) of C . We refer to
[28] for the definition of the multiplier algebra, but recall that if C ⊂ B(H ), for some
Hilbert space H , then M (C ) = {a ∈ B(H ) : a f , f a ∈C ,∀ f ∈C }. Since C is abelian, so
is M (C ). In other words, ω : X ×X →M (C ) satisfies the following conditions: For any
x, y, z ∈ X and f ∈ C : (1) ω(x, y)∗ω(x, y) = 1, (2) the map X × X ∋ (x, y) 7→ω(x, y) f ∈ C

is continuous, (3) ω(x,0) =ω(0, x) = 1, and (4) the following 2-cocycle relation holds:

ω(x, y)ω(x + y, z) =αx [ω(y, z)]ω(x, y + z). (10)

In this relation we used the property that any automorphism of C extends uniquely
to an automorphism of M (C ). The quadruple (C ,α,ω, X ) is usually called an abelian

twisted C∗-dynamical system. Finally, we shall also assume the additional condition
ω(x,−x) = 1, which holds in all the applications we have in mind.

Now, let κ ∈ [0,1]; this additional parameter is convenient in order to relate our ex-
pressions with earlier results found in the literature. The special cases κ= 0 and κ= 1
are related with the right and the left quantization respectively. Most of the time only
the case κ = 0 is presented, but κ = 1

2 is preferred in quantum mechanics because of
some additional symmetry properties. However, let us already mention that the fol-
lowing structures are isomorphic for different κ.

We consider the set L1(X ;C ) endowed with the norm ‖F‖1 :=
∫

X ‖F (x)‖dx for any
F ∈ L1(X ;C ), the multiplication

(F ⋄G)(x) :=
∫

X
ακ(y−x)[F (y)]α(1−κ)y [G(x − y)]α−κx [ω(y, x − y)] dy,

and the involution F ⋄(x) := α(1−2κ)x [F (−x)∗]. The enveloping C∗-algebra of L1(X ;C )
endowed with these operations is called the twisted crossed product of C by X associ-

ated with the twisted actions (α,ω). We denote it by C ⋊
ω
α X , or simply C ⋊α X if ω≡ 1.

Let us now assume that C is a C∗-algebra of bounded and uniformly continuous
functions onR

n , stable under translations. We also fix X :=R
n and the actionαofRn on

C is simply given by translations. Moreover, suppose that a continuous magnetic field
on R

n is also present. Its components are denoted by {B j k }n
j ,k=1, and for any q, x, y ∈R

n

we define
ωB (q ; x, y) := exp

(

− iΓB 〈q, q +x, q +x + y〉
)

,

where Γ
B 〈q, q + q, q + x + y〉 is the flux of the magnetic field through the triangle de-

fined by the points q , q + x and q + x + y . If all B j k belong to C , then the map ωB :
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R
n ×R

n ∋ (x, y) 7→ωB ( · ; x, y) ∈ M (C ) satisfies all the above conditions imposed on ω.
Furthermore, the additional property ωB (x,−x) = 1 is always fulfilled. One may thus
form the magnetic twisted crossed product C∗-algebra associated with the magnetic
twisted actions (α,ωB ) and denote it simply by C ⋊

B
α R

n .
We now show how the magnetic twisted crossed product C ⋊

B
α R

n can be decom-
posed as an iterated twisted crossed product. The strategy is inspired from [25, The-
orem 4.1] which deals with more general algebras C , 2-cocycles ω and groups X , but
only in the special case κ = 0. Let us first observe that if (C ,α,ω,Rn) is an abelian
twisted C∗-dynamical system, then (C ,α∥,ω∥,Rn−1), with ω∥(x, y) :=ω((x,0), (y,0)) for
all x, y ∈ R

n−1 and α∥ the restriction of the action to R
n−1, is also an abelian twisted

C∗-dynamical system. For simplicity, we shall keep writing α and ω for α∥ and ω∥, and
⋄, ⋄ for the multiplication and the involution in L1(Rn−1;C ). Furthermore, we omit the
superscript B in ωB in the following statement and in its proof.

Proposition 4.1. For any magnetic abelian twisted C∗-dynamical system (C ,α,ω,Rn)
and any κ ∈ [0,1], there exists a continuous group morphism β from R to the group of

automorphisms of C ⋊
ω
α R

n−1 such that

C ⋊
ω
α R

n ∼= (C ⋊
ω
α R

n−1)⋊βR. (11)

Proof. In this proof, we consider the elements x∥, y∥ of Rn−1 and the elements x⊥, y⊥ of
R. For F ∈ L1(Rn−1;C ), let us set

βx⊥ [F ](x∥) :=α−κ(x∥,0⊥)[2(x⊥, x∥)]α(0∥,x⊥)[F (x∥)],

with 2(x⊥, x∥) := ω((0∥, x⊥), (x∥,0⊥))ω((x∥,0⊥), (0∥, x⊥))∗. We may observe that for each
q ∈ R

n the expression 2(q ; x⊥, x∥) is equal to exp{−iΓB
2(q ; (0∥, x⊥), (x∥,0⊥))}, where the

exponent is the flux of the magnetic field trough the square defined by the points q ,
q + (0∥, x⊥), q + (x∥, x⊥) and q + (x∥,0⊥).

(i) Let us first prove thatβdefines a continuous group morphism fromR to Aut(C ⋊
ω
α

R
n−1). It is obvious that βx⊥ [F ] belongs to L1(Rn−1;C ). By taking into account the

relation (10) and the special property ω(x, t x) = 1, for all x ∈ R
n and t ∈ R of magnetic

2-cocycles, one also easily obtains that βx⊥ [βy⊥ [F ]] = βx⊥+y⊥ [F ]. Furthermore, for G ∈
L1(Rn−1;C ) one has βx⊥ [F ⋄G] =βx⊥ [F ]⋄βx⊥ [G] if for all y∥ ∈R

n−1 the following equality
holds:

2(x⊥, x∥) =2(x⊥, y∥) α(y∥,0⊥)[2(x⊥, x∥− y∥)]ω(y∥, x∥− y∥)α(0∥,x⊥)[ω(y∥, x∥− y∥)]∗.

But again, this can be verified with the help of relation (10). The same relation also
leads to the equality βx⊥ [F ⋄] = (βx⊥ [F ])⋄. Finally, the continuity of the map R ∋ x⊥ 7→
βx⊥ [F ] ∈ L1(Rn−1;C ) can be proved by taking into account the strict continuity of ω
and the continuity of the map α : Rn → Aut(C ). By a density argument, one completes
the proof of the assertion.

(ii) Let us now define the bijective map: Cc (Rn ;C ) ∋ F 7→ F ′ ∈ Cc (R;Cc (Rn−1;C ))
given by

F ′(x∥; x⊥) :=α−κx

[

2(κx⊥, x∥)∗ω
(

(x∥,0⊥), (0∥, x⊥)
)∗]

F (x∥, x⊥).

The multiplication in Cc (R;Cc (Rn−1;C )) is defined by

(F ′ ⋄β G ′)( · ; x⊥) :=
∫

R

dy ⊥βκ(y⊥−x⊥)[F
′( · ; y⊥)]⋄β(1−κ)y⊥ [G ′( · ; x⊥− y⊥)],
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and the involution is given by (F ′)⋄β ( · ; x⊥) =β(1−2κ)x⊥ [(F ′( · ;−x⊥))⋄], i.e. :

(F ′)⋄β (x∥; x⊥) =α−κ(x∥,0⊥)[2((1−2κ)x⊥, x∥)]α(1−2κ)x [F ′(−x∥;−x⊥)∗].

The final step consists in verifying that F ′ ⋄β G ′ is equal to (F ⋄G)′, and that [(F ′)⋄β ] is
equal to (F ⋄)′. These equalities can be checked without difficulty by taking into ac-
count the relation (10) and the already mentioned property of magnetic 2-cocycles. A
density argument completes the proof. �

ACKNOWLEDGEMENTS

Serge Richard thanks the Swiss National Science Foundation and the European net-
work: Quantum Spaces - Noncommutative Geometry for financial support.

REFERENCES

[1] W.O. AMREIN, A. BOUTET DE MONVEL, V. GEORGESCU, C0-Groups, Commutator Methods and Spectral

Theory of N-body Hamiltonians, Progr. Math., vol. 135, Birkhäuser Verlag, Basel, 1996.
[2] W.O. AMREIN, M.B. CIBILS, Global and Eisenbud-Wigner time delay in scattering theory, Helv. Phys.

Acta 60 (1987), 481–500.
[3] W.O. AMREIN, J.M. JAUCH, K.B. SINHA, Scattering Theory in Quantum Mecanics, Lect. Notes and Suppl.

in Physics, No. 16, W.A. Benjamin, Inc., Reading, MA, 1977.
[4] J. BELLISSARD, A. VAN ELST, H. SCHULZ-BALDES, The noncommutative geometry of the quantum Hall

effect, J. Math. Phys. 35 (1994), 5373–5451.
[5] J. BELLISSARD, R. BENEDETTI, J-M. GAMBAUDO, Spaces of tilings, finite telescopic approximations and

gap-labeling, Comm. Math. Phys. 261 (2006), 1–41.
[6] M. BENAMEUR, H. OYONO-OYONO, Gap-labelling for quasi-crystals (proving a conjecture by J. Bellis-

sard), in Operator Algebras and Mathematical Physics (Constanţa, 2001), J.-M. Combes, J. Cuntz, G.A.
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