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0. Introduction

This article is concerned with a spinless non-relativistic particle placed in a variable
magnetic field. Recent publications [3, 5, 6, 13–15, 17, 20] introduced and developed
a mathematical formalism for the observables naturally associated with such a
system, both in a classical and in a quantum framework. We now would like to
complete the picture, indicating an appropriate way to model the states of these
systems.
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Classically, the magnetic field is described by a change in the geometry of the
phase-space and is implemented by a modification of the standard symplectic form.
Consequently, it also modifies the Poisson algebra structure of the smooth functions
on phase-space, which are interpreted as classical observables, see [19, 15] for details.
At the quantum level, one introduces algebras of observables defined only in terms
of the magnetic field [5, 6, 14, 20]. The main new feature is a composition law on
symbols defined in terms of fluxes of the magnetic field through triangles. With a
proper implementation of Planck’s constant �, it has been proved in [15] that the
quantum algebra of observables converges to the classical one in the sense of strict
deformation quantization [11, 22–24].

To get the traditional setting involving self-adjoint operators, the quantum alge-
bra can be represented in Hilbert spaces. This is realized by choosing any vector
potential defining the magnetic field. In such a way one gets essentially a new
pseudodifferential calculus [3, 4, 13, 14] which can be interpreted as a functional
calculus for the family of non-commuting operators composed of positions and
magnetic momenta. When no magnetic field is present, it coincides with the Weyl
quantization. It has been adapted in [2] to the framework of nilpotent Lie groups.
One of the main virtues of this construction is gauge-covariance: equivalent choices
of vector potentials lead to unitarily equivalent representations. Both the intrinsic
and the represented version admit C∗-algebraic reformulations [16, 17]. They were
essential in [15] to prove the classical norm-sense limit of the quantum structure
and are also useful in the spectral analysis of magnetic Schrödinger operators [18].

Now, the complete formalism involves coupling the classical and the quantum
observables to states. We refer to [9–12] and to references therein for a general
presentation and justification of the concept of state quantization. We simply recall
that the space of pure states of both classical and quantum mechanical systems are
Poisson spaces with a transition probability [11, Definition I.3.1.4]. In the magnetic
case, the classical setting consists in the phase space Ξ = R

2N endowed with the
magnetic symplectic form σB and the transition probability defined by

pcl : Ξ × Ξ → [0, 1], pcl(X,Y ) := δXY .

In the quantum case, the pure states space of K(H) (the C∗-algebra of all the
compact operators in the Hilbert space H) with the w∗-topology is homeomorphic
to the projective space P(H) with its natural topology, see [11, Proposition I.2.5.2]
and [11, Corollary I.2.5.3]. The latter space is also endowed with the �-dependent
Fubini–Study symplectic form Σ′

�
. With the interpretation of elements v of P(H)

as one-dimensional orthogonal projections |v〉〈v| defined by unit vectors v ∈ H, the
quantum transition probability is given by

pqu : P(H) × P(H) → [0, 1], pqu(u, v) := Tr(|u〉〈u| · |v〉〈v|) = |〈u, v〉|2. (0.1)

A pure state quantization corresponds then to a family of injective embeddings
{v� : Ξ → P(H)}�∈(0,1] satisfying a certain set of axioms [11, Definition II.1.3.3]. In
particular, the transition probabilities and the symplectic structures of Ξ and P(H)
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are respectively connected in the limit � → 0. In our case the embeddings v� ≡ vA
�

are defined in Definition 2.1 by the choice of a vector potential A generating the
magnetic field. When composed with the magnetic Weyl calculus, they furnish pure
states vB

�
on a C∗-algebra defined intrinsically by the magnetic composition law. At

this level the pure states only depend on the magnetic field and not on any vector
potential. In Theorem 3.2 we sum up how such a pure state quantization can be
achieved in the magnetic case.

In conformity with [11, Definition II.1.5.1] this pure state quantization is coher-
ent, i.e. it can be deduced from a family of continuous injections vA

�
: Ξ → H. In

Definition 2.2, this family is referred to as a family of magnetic coherent states. In
a future article we are going to pursue this, introducing and studying the Berezin–
Toeplitz type quantization associated with these coherent states as well as the
corresponding Bargmann transform.

The structure of this article is the following: In the first section we make a
short survey of the quantization of observables. In Sec. 2 we define coherent vectors
and coherent states and study their properties, especially those connected to the
limit � → 0. In the last section we put the results of Sec. 2 in the perspective of
deformation quantization of states and observables.

1. Quantization of Observables

In this section we recall the structure of the observable algebras of a particle in
a variable magnetic field, both from a classical and a quantum point of view. We
follow [14, 15] which contain further details and technical developments. Our main
purpose is to introduce the basic objects that will be used subsequently and to give
motivations.

Let us consider the physical system consisting in a spinless particle moving in
the Euclidean space X := R

N under the influence of a magnetic field. We denote by
X ∗ the dual space of X . The duality is simply given by X ×X ∗ � (x, ξ) �→ x ·ξ. The
phase space is denoted by Ξ := T ∗X ≡ X ×X ∗; systematic notations as X = (x, ξ),
Y = (y, η), Z = (z, ζ) will be used for its points. If no magnetic field is present, the
standard symplectic form σ(X,Y ) ≡ σ[(x, ξ), (y, η)] := y · ξ − x · η prepares Ξ for
doing classical mechanics.

The magnetic field is a closed 2-form B on X (dB = 0), given by the matrix-
components Bjk : X → R satisfying Bjk = −Bkj for j, k = 1, . . . , N . Suitable
smoothness will be indicated when necessary; for the moment we simply assume
that the components of the magnetic field are continuous. The effect of B is to
change the geometry of the phase space by adding an extra term to the standard
symplectic form: σB := σ + π∗B, where π∗ is the pull-back associated with the
cotangent bundle projection π : T ∗X → X . In coordinates

(σB)X(Y, Z) = z · η− y · ζ +B(x)(y, z) =
∑

j

(zjηj − yjζj) +
∑
j,k

Bjk(x)yjzk. (1.1)
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190 M. Măntoiu, R. Purice & S. Richard

If the components of the magnetic field are smooth, one can associate with this
new symplectic form a canonical Poisson bracket acting on functions f, g ∈ C∞(Ξ)
by the formula:

{f, g}B =
∑

j

(∂ξjf∂xjg − ∂ξjg∂xjf) +
∑
j,k

Bjk(·) ∂ξjf∂ξk
g. (1.2)

It is a standard fact that C∞(Ξ; R) endowed with {·, ·}B and with the usual prod-
uct of functions is a Poisson algebra. This means that {·, ·}B is a Lie bracket,
(f, g) �→ fg is bilinear, associative and commutative and the Leibnitz rule
{f, gh}B = {f, g}Bh+ g{f, h}B holds for all f, g, h ∈ C∞(Ξ; R).

The point of view of deformation quantization is to suitably modify the classical
structure of a Poisson algebra to get a quantum structure of observables for values
of some Planck constant � ∈ I := (0, 1]. Eventually, for � �→ 0, the Poisson algebra
will re-emerge in some sense.

The magnetic field B comes into play in defining the observables composition
in terms of its fluxes through triangles. If a, b, c ∈ X , then we denote by 〈a, b, c〉 the
triangle in X of vertices a, b and c and set ΓB〈a, b, c〉 :=

∫
〈a,b,c〉B for the flux of B

through this triangle (invariant integration of a 2-form through a 2-simplex). With
this notation and for f, g : Ξ → C, the formula

(f�B� g)(X)

:= (π�)−2N

∫
Ξ

∫
Ξ

dY dZe−
2i
�

σ(X−Y,X−Z)e−
i
�
ΓB〈x−y+z,y−z+x,z−x+y〉f(Y )g(Z)

(1.3)

defines a formal associative composition law on functions. For B = 0 it coincides
with the Weyl composition of symbols in pseudodifferential theory.

The formula (1.3) makes sense and has nice properties under various circum-
stances. For example, if the components Bjk belong to C∞

pol(X ), the class of smooth
functions on X with polynomial bounds for all the derivatives, then the Schwartz
space S(Ξ) is stable under �B

�
. Denoting by MB

�
(Ξ) the largest space of tempered

distributions for which

�B� : S(Ξ) ×MB
� (Ξ) → S(Ξ) and �B� : MB

� (Ξ) × S(Ξ) → S(Ξ),

it has been shown in [14] that MB
�

(Ξ) is a ∗-algebra under �B
�

and under com-
plex conjugation. This is a large class of distributions, containing all the bounded
measures as well as the class C∞

pol,u(Ξ) of all smooth functions for which all the
derivatives are bounded by some polynomial (depending on the function, but not
on the order of the derivative). In addition, if we assume that all the derivatives
of the functions Bjk are bounded, then the Hörmander classes of symbols Sm

ρ,δ(Ξ)
compose in the usual way under �B

�
.

Being a closed 2-form in X = RN , the magnetic field is exact: it can be written
as B = dA for some 1-form A (called vector potential). It is easy to see that if B is
of class C∞

pol(X ), then A can be chosen in the same class and we shall assume this
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in the sequel. The vector potentials enter into the construction by their circulations
ΓA[x, y] :=

∫
[x,y]

A along segments [x, y] := {tx+(1−t)y | t ∈ [0, 1]} for any x, y ∈ X .
For a vector potential A with dA = B and for u : X → C, let us define

[OpA
�
(f)u](x) := (2π)−N

∫
Ξ

dY [FΞf ](Y )[WA
�

(Y )u](x) (1.4)

= (2π�)−N

∫
X

∫
X ∗

dydηe
i
�
(x−y)·ηe−

i
�
ΓA[x,y]f

(
x+ y

2
, η

)
u(y) (1.5)

where FΞf is the symplectic Fourier transform of f and WA
�

is the magnetic Weyl
system acting on u ∈ H and for x ∈ X as

[WA
� (Y )u](x) = e−i(x+ �

2 y)·ηe−
i
�
ΓA[x,x+�y]u(x+ �y).

For A = 0 one recognizes the Weyl quantization, associating with functions or
distributions on Ξ linear operators acting on function spaces on X .

It has been shown that OpA
�
, suitably interpreted (by using rather simple duality

arguments) defines a representation of the ∗-algebra MB
�

(Ξ) by linear continuous
operators: S(X ) → S(X ). This means, of course, that

OpA
� (f�B� g) = OpA

� (f)OpA
� (g) and OpA

� (f) = OpA
� (f)∗

for any f, g ∈ MB
�

(Ξ). In addition, OpA
�

restricts to an isomorphism from S(Ξ) to
B[S∗(X ),S(X )] and extends to an isomorphism from S∗(Ξ) to B[S(X ),S∗(X )] (we
set B(R, T ) for the family of all linear continuous operators between the topological
vector spaces R and T ). The class of Hilbert-Schmidt operators in the Hilbert
space H := L2(X ) coincides with the class of operators of the form OpA

�
(f) with

f ∈ L2(Ξ).
An important property of (1.4) is gauge covariance. If A′ = A+dρ for a smooth

function ρ : X → R (the equivalent choices A and A′ would give the same magnetic
field), then OpA′

� (f) = e
i
�

ρOpA
� (f)e−

i
�

ρ. Such a unitary equivalence would not hold
for the wrong quantization appearing in the literature

[OpA,�(f)u](x) := (2π�)−N

∫
X

∫
X ∗

dydηe
i
�
(x−y)·ηf

(
x+ y

2
, η −A

(
x+ y

2

))
u(y).

The operator norm ‖ · ‖ on B(H) being relevant in Quantum Mechanics, we pull
it back by setting

‖ · ‖B
� : S(Ξ) → R+ with ‖f‖B

� := ‖OpA
� (f)‖.

By gauge covariance, it is clear that ‖ · ‖B
�

only depends on the magnetic field B

and not on the vector potential A. We denote by AB
�

the completion of S(Ξ) under
‖ · ‖B

�
. It is a C∗-algebra that can be identified with a vector subspace of S∗(Ξ)

and OpA
�

: AB
�

→ B(H) is a faithful ∗-representation, with OpA
�
[AB

�
] = K(H),

the C∗-algebra of compact operators in H. Let us mention that another approach
to introduce norms would be by using twisted C∗-dynamical systems and twisted
crossed products, as in [15–17]. To summarize, for any � ∈ (0, 1] we have defined a
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C∗-algebra AB
�

embedded into S∗(Ξ) and isomorphic by OpA
� to K(H). The product

is essentially given by (1.3).

2. Magnetic Coherent States and Pure States

Let us fix a unit vector v ∈ H := L2(X ), and for any � ∈ I := (0, 1] we define the
unit vector v� ∈ H by v�(x) := �−N

4 v( x√
�
). Using the non-magnetic Weyl system,

for every Y ∈ Ξ we set v�(Y ) := W�(−Y
�
)v�. For any choice of a continuous vector

potential A generating the magnetic field B, we then define

vA
�

(Z) := e
i
�
ΓA[z,Q]v�(Z) = e

i
�
ΓA[z,Q]W�

(
−Z

�

)
v�,

where Q = (Q1, . . . , QN ) and Qj is the operator of multiplication by the coordinate
function xj . Explicitly, this means

[vA
� (Z)](x) = e

i
�
(x− z

2 )·ζe
i
�
ΓA[z,x]v�(x− z). (2.1)

The pure state space of K(H) can be identified with the projective space P(H);
considering the isomorphism OpA

�
: AB

�
→ K(H), it is natural to introduce the

following families of pure states on the two C∗-algebras:

Definition 2.1. For any Z ∈ Ξ we define vA
�
(Z) : K(H) → C by

[vA
�
(Z)](S) := Tr(|vA

�
(Z)〉〈vA

�
(Z)|S) ≡ 〈vA

�
(Z), SvA

�
(Z)〉,

for any S ∈ K(H), and vB
�

(Z) : AB
�
→ C by

[vB
� (Z)](f) := [vA

� (Z)](OpA
� (f)) = 〈vA

� (Z),OpA
� (f)vA

� (Z)〉

for any f ∈ AB
�

.

The intrinsic notation vB
�

(Z) is justified by a straightforward computation lead-
ing for Z = (z, ζ) to

[vB
� (Z)](f) = (2π�)−N

∫
X

∫
X

∫
X ∗

dxdydη e
i
�
(x−y)·(η−ζ)f

(
x+ y

2
, η

)

· e− i
�
ΓB〈z,x,y〉v�(x− z)v�(y − z)

= (2π�)−N

∫
X

∫
X

∫
X ∗

dxdydη e
i
�
(x−y)·ηf

(
z +

x+ y

2
, ζ + η

)

· e− i
�
ΓB〈z,x+z,y+z〉v�(x)v�(y)

= (2π)−N

∫
X

∫
X

∫
X ∗

dxdydη ei(x−y)·ηf

(
z +

√
�

2
(x + y), ζ +

√
�η

)

· e− i
�
ΓB〈z,z+

√
�x,z+

√
�y〉v(x)v(y). (2.2)

Definition 2.2. The family {vA
�

(Z) |Z ∈ Ξ, � ∈ I} given by (2.1) is called the
family of magnetic coherent vectors associated with the pair (A, v). The elements
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of the families {vA
�
(Z) |Z ∈ Ξ, � ∈ I} and {vB

�
(Z) |Z ∈ Ξ, � ∈ I} will be called the

coherent states.

Remark 2.3. Our strategy for defining coherent states is quite remote of the
standard one, consisting in propagating a given state along the orbit of a (projective)
representation, cf. for example [21]. Our main concern was to define aA-independent
family of states on the intrinsic C∗-algebras AB

�
and to end up with objects which

converge to their classical magnetic analogues in the limit � → 0. It is not clear to
us how to put our approach in the perspective of covariant quantization of phase
space [1, 12] or to compare our coherent states with the ones proposed in [8] in the
special case of a constant magnetic field.

Remark 2.4. Note, however, that for the standard Gaussian v(x) = π−N
4 e−

x2
2

and for A = 0 one gets the usual coherent states of Quantum Mechanics (see for
example [1]). We insist on the fact that the state corresponding to Z = 0 is built
upon an arbitrary unit vector of H. The standard Gaussian choice (generating a
holomorphic setting in the absence of a magnetic field) has no relevance at this
stage. For part of our results, however, some smoothness or decay properties will
be needed.

The first result, basic to any theory involving coherent states, says that∫
Ξ

dY
(2π�)N

|vA
� (Y )〉〈vA

� (Y )| = 1.

For convenience, we shall sometimes use the shorter notation γA
�

(x, y) for e−
i
�
ΓA[x,y].

Proposition 2.5. Assume that the magnetic field B is continuous and let v be a
unit vector in H. For any � ∈ I and u ∈ H with ‖u‖ = 1, one has∫

Ξ

dY
(2π�)N

|〈vA
�

(Y ), u〉|2 = 1. (2.3)

Proof. One has to show that∫
Ξ

dY
(2π�)N

|〈vA
� (Y ), u〉|2 = ‖vA

� ‖2‖u‖2,

which follows if the mapping

H⊗H � v ⊗ u �→ 〈e i
�
ΓA[·,Q]W�

(
− ·

�

)
v, u〉 ∈ L2

(
Ξ;

dY
(2π�)N

)
(2.4)

is proved to be isometric.
By using (2.1) and after a simple change of variables, one gets:〈
γ̄A

�
(y,Q)W�

(
−Y

�

)
v, u

〉
=
∫
X

dx e−
i
�

x·ηγA
�

(
y, x+

y

2

)
u
(
x+

y

2

)
v
(
x− y

2

)
= (2π)N/2[(1 ⊗F) ◦ C][βA

�
· (u⊗ v)]

(
y,
η

�

)
,
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where 1⊗F is a unitary partial Fourier transformation, C is the operator “change
of variables”

(CF )(y, x) := F
(
x+

y

2
, x− y

2

)
,

which is also unitary in L2(X ×X ) � H⊗H and βA
�

(x, y) = γA
�

(x−y, x). From this,
and since |βA

�
(x, y)| = 1 for all x, y ∈ X , the isometry of (2.4) follows immediately.

Proposition 2.6. Assume that the magnetic field B is continuous and let v be a
unit vector in H. For any Y, Z ∈ Ξ, one has

lim
�→0

|〈vA
�

(Z), vA
�

(Y )〉|2 = δZY .

Proof. Since the case Z = Y is trivial, we can assume that Z 
= Y . A short
computation shows that the expression 〈vA

�
(Z), vA

�
(Y )〉 is equal to

e
i
2�

(z·ζ−y·η)γA
� (z, y)

∫
X

dxe
i
�

x·(η−ζ)e−
i
�
ΓB〈x,y,z〉

�
−N

2 v

(
x− z√

�

)
v

(
x− y√

�

)
.

After the change of variables x−z√
�

= t, one gets

∣∣〈vA
�

(Z), vA
�

(Y )〉
∣∣ =

∣∣∣∣
∫
X

dteit· η−ζ√
� e−

i
�
ΓB〈z+

√
�t,y,z〉v(t)v

(
t+

z − y√
�

)∣∣∣∣ . (2.5)

Now, if z 
= y, the R.H.S. of (2.5) is dominated by
∫
X dt|v(t)||v(t + z−y√

�
)|. It

is easily shown that this one converges to 0 as � → 0 by a simple approximation
argument using functions with compact support. On the other hand, if z = y but
η 
= ζ, then the R.H.S. of (2.5) is equal to∣∣∣∣

∫
X

dteit· η−ζ√
� |v(t)|2

∣∣∣∣ = (2π)N/2

∣∣∣∣(F∗|v|2)
(
η − ζ√

�

)∣∣∣∣
which converges to 0 as � → 0 by the Riemann–Lebesgue lemma.

The next property of the magnetic coherent states is an important one, hav-
ing consequences on the behavior of the magnetic Berezin quantization for � → 0.
Unfortunately, some extra assumptions on the magnetic field B and on the state
v will be needed. On the other hand, notice that the result is valid for any
bounded continuous function g; no compact support assumption is required (see
[11, Sec. II.1.3]).

Proposition 2.7. Let Bjk ∈ BC∞(X ) for j, k ∈ {1, . . . , N} and assume that
v ∈ S(X ). For any g : Ξ → C bounded continuous function and any Z ∈ Ξ one has

lim
�→0

∫
Ξ

dY
(2π�)N

|〈vA
�

(Z), vA
�

(Y )〉|2g(Y ) = g(Z).
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Proof. By taking (2.3) into account one has to show that∫
Ξ

dY
(2π�)N

|〈vA
�

(Z), vA
�

(Y )〉|2[g(Y ) − g(Z)] (2.6)

converges to 0 for � → 0. By using the expression already obtained in (2.5) together
with the change of variables x = (z−y)√

�
and ξ = (η−ζ)√

�
, one gets that (2.6) is equal

to

(2π)−N

∫
X

∫
X ∗

dxdξ[g(z −
√

�x, ζ +
√

�ξ) − g(z, ζ)]|F�,z(x, ξ)|2, (2.7)

with

F�,z(x, ξ) :=
∫
X

dteit·ξe−
i
�
ΓB〈z,z+

√
�t,z−√

�x〉v(t)v(t+ x).

We are now going to apply the Dominated Convergence theorem to show that
(2.7) converges to 0 when � → 0. First, since g is continuous one has for any fixed
(x, ξ) ∈ Ξ that

lim
�→0

[g(z −
√

�x, ζ +
√

�ξ) − g(z, ζ)] = 0.

In addition, for any � ∈ I and any (x, ξ) ∈ Ξ one has |F�,z(x, ξ)|2 ≤ ‖v‖4, so the
integrand of (2.7) converges to 0.

Since g is also bounded, it will be enough to find functions a ∈ L1(X ; R+),
b ∈ L1(X ∗; R+) such that for all �, x and ξ

|F�,z(x, ξ)| ≤ a(x) and |F�,z(x, ξ)| ≤ b(ξ). (2.8)

The first estimation is simple. For arbitrary positive numbers n, m one has

|F�,z(x, ξ)| ≤
∫
X

dt|v(t)‖v(t + x)| ≤ C

∫
X

dt〈t〉−m〈t+ x〉−n

≤ C′
[∫

X
dt〈t〉−m〈t〉n

]
〈x〉−n,

and it is then enough to choose n > N and m > N + n.
The second inequality in (2.8) is more involved. Relying on a basic property of

Fourier transformation, it consists essentially in showing that the function

w�(t; z, x) := e−
i
�
ΓB〈z,z+

√
�t,z−√

�x〉v(t)v(t+ x)

belongs to the Schwartz’s space with respect to t, uniformly with respect to the
parameters z, x, �. First of all, since v ∈ S(X ), for any α, β ∈ NN and any k, l ∈ N

one has

|(∂αv)(t)(∂βv)(t + x)| ≤ Cα,β
k,l 〈t〉−k〈x〉−l.

Thus it will be enough to show that the map e−
i
�
ΓB〈z,z+

√
�·,z−√

�x〉 : X → C is
in C∞

pol(X ), and that the polynomial bounds on each of its derivatives are uniform
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in � ∈ I and z ∈ X , with growth at most polynomial in x ∈ X . For this, we need
to recall the natural parametrizations of the flux of the magnetic field B:

ΓB〈a, b, c〉 =
∑
j,k

(bj − aj)(ck − bk)
∫ 1

0

dµ
∫ 1

0

dνµBjk(a+ µ(b− a) + µν(c− b)).

By using this parametrization, one obtains

e−
i
�
ΓB〈z,z+

√
�t,z−√

�x〉

= exp


i
∑
j,k

tj(xk + tk)
∫ 1

0

dµ
∫ 1

0

dνµBjk(z + µ
√

�t− µν
√

�(x+ t))


 .

The needed estimates follow then quite straightforwardly from this representation
and from the assumption that all the derivatives of the magnetic field are bounded.

We now take into consideration the maps vA
�

: (Ξ, σB) → (H,Σ�) and vA
�

:
(Ξ, σB) → (P(H),Σ′

�
) between symplectic manifolds. We refer to [11, Sec. I.2.5]

for a detailed presentation of the symplectic structures of H and of the projective
space P(H) and simply recall some key elements. Note that our convention differs
from that reference by a minus sign.

On the Hilbert space H, the (constant) symplectic form is defined at the point
w ∈ H by

Σ�,w(u, v) := −2� Im〈u, v〉

for each u, v ∈ H and � ∈ I. For the space P(H), recall first that each of its elements
can be identified with the one-dimensional orthogonal projections v = |v〉〈v| defined
by some unit vector v ∈ H, with the known phase ambiguity. Then, the Fubini–
Study symplectic form Σ′

�
is explicitly given at the point v ∈ P(H) by

Σ′
�,v(iSv, iT v) = i�v([S, T ]) = i�〈v, [S, T ]v〉

for any self-adjoint element S, T of B(H). This relies among others on identifying
the tangent space TvP(H) to a quotient (depending on v) of the real vector space
{iSv | S = S∗ ∈ B(H)} of Hermitian bounded operators.

We would like now to show that the pull-back by vA
�

of the form Σ′
�

converges
to σB when � → 0. But Σ� is already the pull-back of Σ′

�
by the canonical map

H → P(H), so we only need to show the next result:

Proposition 2.8. Let Bjk ∈ BC∞(X ) for j, k ∈ {1, . . . , N} and assume that
v ∈ S(X ). The pull-back by vA

�
of Σ� converges to σB in the limit � → 0.

Proof. One has to calculate, for any X,Y, Z ∈ Ξ, the expression

Σ�,vA
�

(X)(T [vA
�

(X)](Y ), T [vA
�

(X)](Z)) = −2� Im〈T [vA
�

(X)](Y ), T [vA
�

(X)](Z)〉
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where T denotes the tangent map (total derivative). For that purpose, let us recall
that

vA
�

(X) = e
i
�
ΓA[x,Q]W�

(
−X

�

)
v� = e

i
�
(Q− x

2 )·ξe
i
�
ΓA[x,Q]e−ix·Dv�,

with D = (D1, . . . , DN) and Dj := −i∂j. It then follows that

T [vA
�

(X)](Y ) = ie
i
�
(Q− x

2 )·ξe
i
�
ΓA[x,Q]e−ix·DM�(Y ;Q,D)v�

with (obvious formal notations)

M�(Y ;Q,D) :=
1
�


−y

2
· ξ +

(
Q+

x

2

)
· η +

∂ΓA[x, q]
∂x

∣∣∣∣∣
q=Q+x

(Y )


− y ·D

and with

∂ΓA[x, q]
∂x

∣∣∣∣
q=Q+x

(Y ) = −y ·
∫ 1

0

dsA(x+ sQ)

+
∑
j,k

Qjyk

∫ 1

0

ds(1 − s)∂kAj(x + sQ).

A similar expression holds for T [vA
�

(X)](Z). Thus, one has to calculate

−2� Im〈T [vA
�

(X)](Y ), T [vA
�

(X)](Z)〉
= −2� Im〈M�(Y ;Q,D)v�,M�(Z;Q,D)v�〉

= −2� Im

〈
M�

(
Y ;

√
�Q,

1√
�
D

)
v,M�

(
Z;

√
�Q,

1√
�
D

)
v

〉

= i�

〈
v,

[
M�

(
Y ;

√
�Q,

1√
�
D

)
,M�

(
Z;

√
�Q,

1√
�
D

)]
v

〉
. (2.9)

A rather lengthy calculation then gives[
M�

(
Y ;

√
�Q,

1√
�
D

)
,M�

(
Z;

√
�Q,

1√
�
D

)]

= − i

�
σ(Y, Z) − i

�

∑
j,k

yjzk

∫ 1

0

dssBjk(x + s
√

�Q)

− i

�

∑
j,k

yjzk

∫ 1

0

ds(1 − s)Bjk(x+ s
√

�Q)

+
i

�

√
�

∑
j,k,	

(y	zk − ykz	)Qj

∫ 1

0

dss(1 − s)∂2
	kAj(x+ s

√
�Q).

Finally, by inserting these expressions into (2.9) and by an application of the Dom-
inated Convergence theorem, one obtains the statement of the proposition.

The following result can be interpreted as the convergence of the quantum
pure state vB

�
(Z) to a corresponding classical pure state in the semiclassical limit.
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For that purpose, we shall consider functions g : I×Ξ and write g�(X) for g(�, X).
We assume that � �→ g�(X) is continuous for any X ∈ Ξ and that g� ∈ S(Ξ)
for all �.

Proposition 2.9. Let Bjk ∈ BC∞(X ) for j, k ∈ {1, . . . , N} and assume that
v ∈ S(X ). Then for any g as above and any Z ∈ Ξ one has

lim
�→0

[vB
� (Z)](g�) = δZ(g0) = g0(Z). (2.10)

Proof. Let � ∈ I. Starting from the last expression obtained in (2.2) and perform-
ing the change of variables y′ = x− y, one finds that

[
vB

�
(Z)
]
(g�) is equal to

1
(2π)N

∫
X

∫
X

∫
X ∗

dxdydη eiy·ηg�

(
z +

√
�

(
x− y

2

)
, ζ +

√
�η

)
×ϕ�(z;x, y)v(x− y)v(x) (2.11)

with ϕ�(z;x, y) := e−
i
�
ΓB〈z,z+

√
�x,z+

√
�(x−y)〉. The expression (2.11) can be rewrit-

ten as

1
(2π)

N
2

∫
X

dx
∫
X

dy
�

N
2
G�

(
x, y,

y√
�

)
ϕ�(z;x, y)v(x− y)v(x), (2.12)

where

G�(x, y,y) := (1 ⊗F∗)[Θ(z, ζ)g�]
(√

�

(
x− y

2

)
,y
)

and Θ(z, ζ)g� = g�(· + y, · + ζ). The map X � y �→ G�(x, y,y) ∈ C clearly belongs
to L1(X ).

Now, in order to have a better understanding of the expression (2.12), let us
observe that

ϕ�(z;x, y) = exp


i
∑
j,k

xjyk

∫ 1

0

dµ
∫ 1

0

dνµBjk(z + µ
√

�x− µν
√

�y)


 .

Clearly, this functions has a limit as � → 0. More precisely, one has

lim
�→0

ϕ�(z;x, y) = exp


 i

2

∑
j,k

ykzjBjk(z)




but one also has lim�→0 ϕ�(z;x,
√

�y) = 1, both convergences being locally uniform.
By taking these information into account, one easily shows that

1

(2π)
N
2

∫
X

dy

�
N
2
G�

(
x, y,

y√
�

)
ϕ�(z;x, y)v(x − y)

=
1

(2π)
N
2

∫
X

dyG�(x,
√

�y, y)ϕ�(z;x,
√

�y)v(x−
√

�y) (2.13)
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converges as � → 0 to

(2π)−
N
2

∫
X

dyG0(0, 0, y)v(x) = g0(z, ζ)v(x),

locally uniformly in x.
In order to conclude, one still has to show that for the expression (2.12) the

limit � → 0 and the integration with respect to x can be exchanged. However, this
follows from the Dominated Convergence theorem and the observation that the
expression (2.13) is bounded in x ∈ X and in � ∈ I.

3. Strict Quantization

We start by recalling from [15] the classical limit of the magnetic Weyl calculus.
With the definitions and the notations introduced in Sec. 1, and in the language of
[11, 23, 24], a particular case of the results of [15] states that

Theorem 3.1. If Bjk ∈ BC∞(X ) for j, k = 1, . . . , N, then the embeddings (QB
�

:
S(Ξ; R) → [AB

�
]R)�∈Ī form a strict deformation quantization of the Poisson algebra

(S(Ξ; R), {·, ·}B).

To explain this, observe first that S(Ξ; R) is really a Poisson subalgebra of
C∞(Ξ; R) for the pointwise product and the Poisson bracket {·, ·}B defined in (1.2).
The embedding QB

�
just interprets f ∈ S(Ξ; R) as a self-adjoint element in the C∗-

algebra AB
�

. The self-adjoint part [AB
�

]R is a Jordan–Lie–Banach algebra under the
C∗-norm and the operations

f ◦B
�
g :=

1
2
(f�B

�
g + g�B

�
f) and [f, g]B

�
:=

1
i�

(f�B
�
g − g�B

�
f).

Then the above theorem says that the following are verified for any f, g ∈ S(Ξ; R):

(1) I � � �→ ‖f‖B
�
∈ R+ is continuous (Rieffel’s axiom),

(2) ‖f ◦B
�
g − fg‖B

�
→ 0 as � → 0 (von Neumann’s axiom),

(3) ‖[f, g]B
�
− {f, g}B‖B

�
→ 0 as � → 0 (Dirac’s axiom).

In our framework, a pure state quantization would be a family of smooth
injections {v� : Ξ → P(H)}�∈I satisfying the three axioms stated in [11,
Definition II.1.3.3]. In fact, by setting

v�(X) := vA
�
(X) ≡ |vA

�
(X)〉〈vA

�
(X)| (3.1)

for any suitable unit vector v ∈ H and any X ∈ Ξ, the three axioms correspond
to our Propositions 2.5, 2.7 and 2.8. Actually, it seems to us that the content of
Proposition 2.6 is more intuitive than the one of Proposition 2.7, and could replace
the latter statement.
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Recalling the definition (0.1) of the quantum transition probabilities, let us still
rewrite some of the results obtained so far in this language. In that framework,
Proposition 2.5 reads ∫

Ξ

dY
(2π�)N

pqu(vA
� (Y ), u) = 1 (3.2)

for any unit vector v ∈ H, any � ∈ I and any u ∈ P(H). Proposition 2.6 is then
equivalent to

lim
�→0

pqu(vA
�
(Z), vA

�
(Y )) = pcl(Z, Y ) (3.3)

for any Y, Z ∈ Ξ. Finally, under the stated conditions on Bjk and v, Proposition 2.7
reads

lim
�→0

∫
Ξ

dY
(2π�)N

pqu(vA
� (Z), vA

� (Y ))g(Y ) = g(Z)

for any Z ∈ Ξ and g ∈ BC(Ξ). Obviously, these relations could be rewritten on the
pure states space of the intrinsic algebra AB

�
simply by transporting the transition

probability on this structure and by replacing vA
�

with vB
�

.
By collecting these results together with Proposition 2.8 one has obtained:

Theorem 3.2. If Bjk ∈ BC∞(X ) and v ∈ S(X ), the family {vA
�
}�∈I forms a pure

state quantization of the Poisson space with transition probabilities (Ξ, σB , pcl).

Remark 3.3. We stress that the conditions (3.2) and (3.3) have been obtained for
every continuous magnetic field and for every unit vector v. We also mention that
Ref. [11] imposes the axiom on the symplectic forms as a limit for � → 0, but says
on p. 114 that in all the examples of this book the equality holds without the limit.
In might be interesting that we really need a limit.

We also set vB
�=0(Z) := δZ . Let us now show that the family {vB

�
(Z) | � ∈ I, Z ∈

Ξ} forms a continuous field of pure states associated with a continuous field of
C∗-algebras, see [11, Secs. II.1.2 and II.1.3] for the abstract presentation.

We recall some results from [15] and hinted in Theorem 3.1. For � ∈ I the C∗-

algebra AB
�

is isomorphic to CB
�

, the twisted crossed product algebras C0(X )×ωB
�

θ�
X ,

where the group 2-cocycle ωB
�

is defined in terms of ΓB (cf. [15] for details) and
[θ�(x)f ](y) = f(y + �x) for any x, y ∈ X and f ∈ C0(X ). Furthermore, let us
consider the twisted action (Θ,ΩB) of X on C0(I × X ), where [Θ(x)g](�, y) :=
g(�, y + �x) for all g ∈ C0(I × X ) and [ΩB(x, y)](�, z) := ωB

�
(z;x, y). The corre-

sponding twisted crossed product algebra C0(I × X ) �ΩB

Θ X is simply denoted by
CB. Now, it is proved in [15, Sec. VI] that (CB, {CB

�
, ϕ�}�∈I) is a continuous field

of C∗-algebras, where ϕ� : CB → CB
�

is the surjective morphism corresponding to
the evaluation map [ϕ�(Φ)](x) = Φ(x, �) ∈ C0(X ) for any Φ ∈ L1(X ;C0(I × X )).
By performing a partial Fourier transform, with respect to the variable in L1(X ),
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one again obtains a continuous field of C∗-algebras (AB, {AB
�
, ψ�}�∈I). In this rep-

resentation, the C∗-algebra AB
0 corresponding to � = 0 is simply equal to C0(Ξ).

Proposition 3.4. Let Bjk ∈ BC∞(X ) for j, k ∈ {1, . . . , N} and assume that
v ∈ S(X ). Then the family {vB

�
(Z) | � ∈ I, Z ∈ Ξ} forms a continuous field of pure

states relative to the continuous field of C∗-algebras (AB, {AB
�
, ψ�}�∈I).

Proof. Since vB
�

(Z) is a pure state on AB
�

for each Z ∈ X and � ∈ I and since δZ
is a pure state on AB

0 ≡ C0(Ξ), the proof simply consists in verifying that the two
conditions stated in [11, Definition II.1.3.1] are satisfied.

The first condition stipulates that for any g ∈ AB, the map � �→ [vB
�

(Z)](ψ�(g))
belongs to C(I). If g� ∈ S(Ξ), ∀ �, then the continuity in � ∈ I follows from the
explicit formula (2.2) and the continuity at � = 0 has been proved in Proposition 2.9.
The general case follows then by density and approximation.

The second condition requires that ∩Z∈Ξ ker[πB
�

(Z)] = {0} for any � ∈ I, where
πB

�
(Z) is the GNS representation associated with vB

�
(Z). The GNS representation

of a pure state is irreducible, every irreducible representation of AB
�
∼= K(H) is uni-

tarily equivalent to the identity representation, which is faithful. So the mentioned
condition holds for � ∈ I. For � = 0, this condition is also clearly satisfied.

Remark 3.5. According to the terminology of [7], the magnetic Weyl quantization
is positive, meaning that any pure state δZ of the classical C∗-algebra C0(Ξ) can
be deformed for each � to a pure state vB

�
(Z) of the quantum C∗-algebra AB

�
in the

precise sense given by Proposition 3.4 (cf. also (2.10)).
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