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1 Univ. Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut
Camille Jordan, 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex,
France

2 Graduate school of mathematics, Nagoya University, Chikusa-ku, Nagoya
464-8602, Japan

E-mail: parra@math.univ-lyon1.fr, richard@math.nagoya-u.ac.jp

Abstract

In this paper we investigate the spectral and the scattering theory of Schrödinger
operators acting on perturbed periodic discrete graphs. The perturbations considered are
of two types: either a multiplication operator by a short-range or a long-range function,
or a short-range type modification of the measure defined on the vertices and on the
edges of the graph. Mourre theory is used for describing the nature of the spectrum of the
underlying operators. For short-range perturbations, existence and completeness of local
wave operators are also proved.
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1 Introduction

The aim of this paper is to describe the spectral theory of a Schrödinger operator H acting on
a perturbed periodic discrete graph. The main strategy is to exploit the fibered decomposition
of the periodic underlying operator H0 in the unperturbed graph to get a Mourre estimate.
Then, by applying perturbative techniques, the description of the nature of the spectrum of
H can be deduced: it consists of absolutely continuous spectrum, of a finite number (possibly
zero) of eigenvalues of infinite multiplicity, and of eigenvalues of finite multiplicity which can
accumulate only at a finite set of thresholds. The scattering theory for the pair (H,H0) is also
investigated.

The study of Laplace operators on infinite graphs has recently attracted lots of attention.
Let us mention for example the problem of essential self-adjointness for very general infinite
graphs [17, 23], or the more precise study of the spectrum for bounded Laplacians [4, 30].
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For periodic graphs it is well-known that this spectrum has a band structure with at most
a finite number of eigenvalues of infinite multiplicity [19]. This structure is preserved if one
considers periodic Schrödinger operators [24, 25, 26]. Our interest is in what happens when
such periodic Schrödinger operators are perturbed.

The perturbations we consider are of two types. On the one hand we add a potential
that decays at infinity either as a short-range or as a long-range function. To the best of our
knowledge this has not been studied for general periodic graphs and only the case of Zd has
been fully investigated in [9]. In that respect, our main theorem generalizes such results to
arbitrary periodic graphs. Note that some related results on the inverse scattering problem
are available for Zd in [21] and the hexagon lattice in [3], but only compactly supported
perturbations are considered.

The second types of perturbations we consider correspond to the modification of the
graph itself. This kind of perturbations has recently been studied in [35] for investigating
the stability of the essential spectrum. In [5] results similar to ours are exhibited, but the
perturbations considered there are only compactly supported and some implicit conditions on
the Floquet-Bloch variety are assumed. These two restrictions do not appear in our work. Let
us still mention the related work [10] where compactly supported perturbation are considered
in the framework of a regular tree.

As pointed before, the two main tools that we use is the Floquet-Bloch decomposition
of periodic Schrödinger operator and Mourre theory. This decomposition is an important
tool for the analysis of the periodic graphs and we mention only a few articles that use it
[3, 5, 19, 24, 27]. For Mourre theory, we refer to [2] for the general theory and to [14] for
this theory applied to analytically fibered operators from which our work is inspired. In the
discrete setting, this theory has already been used for example in [1, 30]. In the special case
of the graph Zd, it plays a central role in [9]. Mourre theory for more general periodic graphs
has also been mentioned in [19] for proving that the Laplace operator has a purely absolutely
continuous spectrum outside some discrete spectrum. However, since no perturbation were
considered in that paper, the theory was not further developed. Our paper can thus also be
seen as an extension of that work.

Finally, we would like to stress that several definitions of periodic graphs can be found
in the literature. We have opted for the setting of topological crystals which has the advan-
tage that no embedding in the Euclidean space is needed. We refer to [37] for a thorough
introduction to topological crystals and to many examples of such structures.

Let us still mention that in this paper we restrict our attention to Laplace operators
acting on the vertices of the graph. In the companion paper [31] still in preparation, Gauss-
Bonnet operators are studied, as well as the Laplacian acting on edges [7]. Note that the
Gauss-Bonnet operator is a Dirac-type operator that acts both on vertices and edges. This
operator has recently been investigated in [6, 16].

We finally describe the content of this paper. In Section 2 we describe the framework
of our investigations and provide our main result. Under suitable assumptions it consists in
the description of the spectral type of the operators under investigation, and in the existence
of suitable wave operators. More precise information on the purely periodic setting are then
presented in Section 3 and we show that the periodic operator H0 can be decomposed into a
family of magnetic Schrödinger operators. In Section 4 it is proved that the latter operator
is unitarily equivalent to an analytically fibered operator. In order to be self-contained, a
brief review on real analyticity and a few definitions and results are provided. Section 5 is
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dedicated to the conjugate operator theory, also called Mourre theory. For completeness, we
first describe the abstract framework of this theory, and provide then a thorough construction
of the necessary conjugate operator. In fact, this construction is inspired from [14] but part
of the argumentation has been simplified for our context. In addition, we can take advantage
of the recent reference [34] which supplies a lot of information on toroidal pseudodifferential
operators. Based on all these preliminary constructions, the proof of the main theorem is given
in Section 6. A first preliminary subsection discuss the regularity of some abstract operators
with respect to the newly constructed conjugate operator, and these results are finally applied
to operators appearing in our context of the perturbation of a periodic graph.

2 Framework and main result

In this section we describe the framework of our investigations and state our main result.
A graph X =

(
V (X), E(X)

)
is composed of a set of vertices V (X) and a set of unoriented

edges E(X). Graphs with loops and parallel edges are accepted. Generically we shall use the
notation x, y for elements of V (X), and e = {x, y} for elements of E(x). If both V (X) and
E(X) are finite sets, the graph X is said to be finite.

A morphism ω : X → X between two graphs X and X is composed of two maps ω :
V (X) → V (X) and ω : E(X) → E(X) such that it preserves the adjacency relations between
vertices and edges, namely ω(e) = {ω(x), ω(y)}. Let us stress that we use the same notation
for the two maps ω : V (X) → V (X) and ω : E(X) → E(X), and that this should not lead to
any confusion. An isomorphism is a morphism that is a bijection on the vertices and on the
edges. The group of isomorphisms of a graph X into itself is denoted by Aut(X). For a vertex
x ∈ V (X) we also set E(X)x := {e ∈ E(X) | x ∈ e}. If E(X)x is finite for every x ∈ V (X) we
say that X is locally finite.

A morphism ω : X → X between two graphs is said to be a covering map if

(i) ω : V (X) → V (X) is surjective,

(ii) for all x ∈ V (X), the restriction ω|E(X)x : E(X)x → E(X)ω(x) is a bijection.

In that case we say that X is a covering graph over the base graph X. For such a covering,
we define the transformation group of the covering as the subgroup of Aut(X), denoted by Γ,
such that for every µ ∈ Γ the equality ω ◦ µ = ω holds. We now define a topological crystal,
and refer to [37, Sec. 6.2] for more details.

Definition 2.1. A d-dimensional topological crystal is a quadruplet (X,X, ω,Γ) such that:

(i) X is an infinite graph,

(ii) X is a finite graph,

(iii) ω : X → X is a covering map,

(iv) The transformation group Γ of ω is isomorphic to Zd,

(v) ω is regular, i.e. for every x, y ∈ V (X) satisfying ω(x) = ω(y) there exists µ ∈ Γ such
that x = µy.
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We will usually say that X is a topological crystal if it admits a d-dimensional topological
crystal structure (X,X, ω,Γ). Note that all topological crystal are locally finite, with an upper
bound for the number of elements in E(X)x independent of x. Indeed, the local finiteness and
the fixed upper bound follow from the definition of a covering and the assumption (ii) of the
previous definition.

From the set of unoriented edges E(X) of an arbitrary graph X we construct the set of
oriented edges A(X) by considering for every unoriented edge {x, y} both (x, y) and (y, x)
in A(X). The elements of A(X) are still denoted by e. The origin vertex of such an oriented
edge e is denoted by o(e), the terminal one by t(e), and e denotes the edge obtained from
e by interchanging the vertices, i.e. o(e) = t(e) and t(e) = o(e). For x ∈ V (X) we set
A(X)x ≡ Ax := {e ∈ A(X) | o(e) = x}. Clearly, any morphism ω between a graph X and
a graph X, and in particular any covering map, can be extended to a map sending oriented
edges of A(X) to oriented edges of A(X). For this extension we keep the convenient notation
ω : A(X) → A(X).

A measure m on a graph X is a strictly positive function defined on vertices and on
unoriented edges. On oriented edges, the measure satisfies m(e) = m(e). From now on, let us
assume that the graph X is locally finite. For such a graph the Laplace operator is defined on
the space of 0-cochains C0(X) := {f | V (X) → C} by

[∆(X,m)f ] (x) =
∑
e∈Ax

m(e)

m(x)

(
f
(
t(e)

)
− f(x)

)
, ∀f ∈ C0(X).

Furthermore, when

degm : V (X) → R+, degm(x) :=
∑
e∈Ax

m(e)

m(x)
(2.1)

is bounded, then the operator ∆(X,m) is a bounded self-adjoint operator in the Hilbert space

l2(X,m) =
{
f ∈ C0(X) | ∥f∥2 :=

∑
x∈V (X)

m(x)|f(x)|2 < ∞
}

endowed with the scalar product

⟨f, g⟩ =
∑

x∈V (X)

m(x)f(x)g(x) ∀f, g ∈ l2(X,m).

Let us now consider a topological crystal X, a Γ-periodic measure m0 and a Γ-periodic
function R0 : V (X) → R. The periodicity means that for every µ ∈ Γ, x ∈ V (X) and e ∈ E(X)
we have m0(µx) = m0(x), m0(µe) = m0(e) and R0(µx) = R0(x). We can then provide the
definition of a periodic Schrödinger operator. It consists in the operator

H0 := −∆(X,m0) +R0. (2.2)

Note that we use the same notation for the function R0 and for the corresponding multipli-
cation operator. As a consequence of our assumptions, the expression H0 defines a bounded
self-adjoint operator in the Hilbert space l2(X,m0).

Our aim is to study rather general perturbations of the operator H0. In fact, we shall
consider two types of perturbations. The first one consists in replacing the multiplication
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operator by a function R which converges rapidly enough to R0 at infinity. The precise formu-
lation will be provided in the subsequent statement. The other type of perturbation is more
substantial and consists in modifying the measure on the graph. For that purpose, we shall
consider a second strictly positive measure m on X, and which converges in a suitable sense
to the Γ-periodic measure m0. The corresponding perturbed operator acts then in the Hilbert
space l2(X,m) and has the form

H = −∆(X,m) +R. (2.3)

Let us stress that this modification of the measure naturally leads to a two-Hilbert space
problem since the measuresm0 andm enter into the definition of the underlying Hilbert spaces.
Fortunately, since the graph structure is not modified, a unitary transformation between both
spaces is at hand. Namely, we consider J : l2(X,m) → l2(X,m0) defined by

[J f ](x) =
( m(x)

m0(x)

) 1
2
f(x), f ∈ l2(X,m). (2.4)

Note that this map is well-defined and unitary since m0(x) and m(x) are assumed to be

strictly positive for any x ∈ V (X). The inverse of J is given by [J ∗f ](x) =
(m0(x)

m(x)

) 1
2 f(x).

The fact that J is unitary plays an essential role in the comparison of both operators.
We have now almost all the ingredients for stating our main result. The missing ingredient

is the definition of the entire part of a vertex and of an edge, denoted respectively by [x] ∈ Γ
and [e] ∈ Γ, see (3.1) and (3.2) for the details. Indeed, in order to properly introduce these
notions some additional definitions are necessary and we have decided to postpone them to
the next section. We still mention that the isomorphism between Γ and Zd allows us to borrow
the Euclidean norm | · | of Zd and to endow Γ with it. As a consequence of this construction,
the notations |[x]| and |[e]| are well-defined, and the notion of rate of convergence towards
infinity is available.

Theorem 2.2. Let X be a topological crystal. Let H0 and H be defined by (2.2) and (2.3)
respectively. Assume that m satisfies∫ ∞

1
dλ sup

λ<|[e]|<2λ

∣∣∣∣ m(e)

m(o(e))
− m0(e)

m0(o(e))

∣∣∣∣ < ∞ . (2.5)

Assume also that the difference R−R0 is equal to Rs +Rl which satisfy∫ ∞

1
dλ sup

λ<|[x]|<2λ
|Rs(x)| < ∞, (2.6)

and

Rl(x)
x→∞−−−→ 0, and

∫ ∞

1
dλ sup

λ<|[e]|<2λ

∣∣Rl

(
t(e)

)
−Rl

(
o(e)

)∣∣ < ∞ . (2.7)

Then, there exists a discrete set τ ⊂ R such that for every closed interval I ⊂ R\τ the following
assertions hold:

1. H0 has not eigenvalues in I and H has at most a finite number of eigenvalues in I and
each of these eigenvalues is of finite multiplicity,
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2. σsc(H0) ∩ I = σsc(H) ∩ I = ∅,

3. If Rl ≡ 0, the local wave operators

W±(H,H0;J
∗, I) = s− lim

t→±∞
eiHtJ ∗e−iH0tEH0(I)

exist and are asymptotically complete, i.e. Ran(W−) = Ran(W+) = Eac
H (I)l2(X,m).

Note that the operator J ∗ enters into the definition of the wave operators (instead of
the more traditional notation J ) since we have defined J from l2(X,m) to l2(X,m0). This
choice is slightly more natural in our context.

The hypothesis (2.5) and (2.6) are usually referred to as a short-range type of decay. In
particular it is satisfied for functions that decay faster than C(1+ |[x]|)−1−ϵ for some constant
C independent of x. It is worth mentioning that that condition (2.5) is quite general and is
automatically satisfied if the difference m − m0 itself satisfies a short-range type of decay.
For example if we assume that |m(e) − m0(e)| ≤ C(1 + |[e]|)−1−ϵ and |m(x) − m0(x)| ≤
C ′(1+ |[x]|)−1−ϵ, then (2.5) is satisfied. On the other hand (2.7) is usually called a long-range
decay since the difference Rl

(
t(e)

)
−Rl

(
o(e)

)
should be thought as the derivative of Rl at the

point o(e) in the direction e. To sum up we can say that we cover perturbations by short-range
and long-range potentials but only by short-range perturbation of the metric.

Remark 2.3. A more drastic modification would be to allow m(x) = 0 for some x ∈ V (X),
and this would roughly correspond to the suppression of some vertices in the graph. Recipro-
cally, it would also be natural to consider a perturbation of the operator H0 on the topological
crystal X by the addition of some vertices to X. Note that these modifications are more difficult
to encode since there would be no natural unitary operator available between the corresponding
Hilbert spaces. These perturbations will not be considered in the present paper but we intend
to come back to them in the future.

3 Periodic operator and its direct integral decomposition

The aim of this section is to provide some additional information on the periodic Schrödinger
operator and to show that this operator can be decomposed into the direct integral of magnetic
Schrödinger operators defined on the small graph X. This decomposition is an important tool
for studying its spectral properties, as shown for example in [3, 19, 24, 27].

Let us consider a topological crystal (X,X, ω,Γ). The notation x, resp. x, will be used
for the elements of V (X), resp. of V (X), and accordingly the notation e, resp. e, will be used
for the elements of E(X), resp. of E(X). It follows from the assumption (v) in Definition
2.1 that X\Γ ∼= X, and therefore we can identify V (X) as a subset of V (X) by choosing a
representative of each orbit. Namely, since by assumption V (X) = {x1, . . . , xn} for some n ∈ N,
we choose {x1, . . . , xn} ⊂ V (X) such that ω(xj) = xj for any j ∈ {1, . . . , n}. For shortness we
also use the notation x̌ := ω(x) ∈ V (X) for any x ∈ V (X), and reciprocally for any x ∈ X we
write x̂ ∈ {x1, . . . , xn} for the unique element xj in this set such that ω(xj) = x.

As a consequence of the previous identification we can also identify A(X) as a subset of
A(X). More precisely, we identify A(X) with ∪n

j=1Axj ⊂ A(X) and use notations similar to
the previous ones: For any e ∈ A(X) one sets ě = ω(e) ∈ A(X), and for any e ∈ A(X) one sets
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ê ∈ ∪n
j=1Axj for the unique element in this set such that ω(ê) = e. Let us stress that these

identifications and notations depend only on the initial choice of {x1, . . . , xn} ⊂ V (X).
We have now enough notations for defining the entire part of a vertex x as the map

[ · ] : V (X) → Γ satisfying
[x] ̂̌x = x . (3.1)

Similarly, the entire part of an edge is defined as the map [ · ] : A(X) → Γ satisfying

[e] ̂̌e = e . (3.2)

The existence of the this function [ · ] follows from the assumption (v) of Definition 2.1 on the
regularity of a topological crystal. One easy consequence of the previous construction is that
the equality [e] = [o(e)] holds for any e ∈ A(X).

Let us finally define the map

η : A(X) → Γ, η(e) := [t(e)] [o(e)]−1

and call η(e) the index of the edge e. For any µ ∈ Γ we then infer that

η(µe) = [t(µe)] [o(µe)]−1 = µ [t(e)]µ−1 [o(e)]−1 = η(e).

This periodicity enables us to define unambiguously η : A(X) → Γ by the relation η(e) := η(ê)
for every e ∈ A(X). Again, this index on A(X) depends only on the initial choice {x1, . . . , xn} ⊂
V (X) and could not be define by considering only A(X).

We now introduce the dual group of Γ, denoted by Γ̂. It consists in group homomorphisms
from Γ to the multiplicative group T ⊂ C endowed with pointwise multiplication. Since Γ is
discrete, Γ̂ is a compact Abelian group and comes with a normalized Haar measure dξ of
volume 1 [12, Proposition 4.24]. We can then define the Fourier transform F : l1(Γ) → C(Γ̂)
by

[Ff ](ξ) ≡ f̂(ξ) :=
∑
µ∈Γ

ξ(µ)f(µ) (3.3)

and it is well-known that this extends to a unitary map from l2(Γ) to L2(Γ̂) which is still
denoted by F . The adjoint map F ∗ : L2(Γ̂) → l2(Γ) is defined on elements in L1(Γ̂) by the
formula [F ∗u](µ) =

∫
Γ̂ dξ ξ(µ)u(ξ). Furthermore, by the Fourier inversion formula for any

f ∈ l1(Γ) one has [12, Theorem 4.21]:

f(µ) =

∫
Γ̂
dξ ξ(µ)f̂(ξ),

or equivalently for any u ∈ L1(Γ̂) such that F ∗u ∈ l1(Γ)

u(ξ) =
∑
µ∈Γ

ξ(µ)[F ∗u](µ).

Let us now provide the direct integral decomposition mentioned at the beginning of this
section. The framework is the following: a topological crystal (X,X, ω,Γ) and a Γ-periodic
measure m0 on X. Because of its periodicity, this measure is also well-defined on X by the
relation m0(x) := m0(x̂) and m0(e) := m0(ê). For simplicity, we keep the same notation for
this measure on X. Let us consider the Hilbert spaces l2(X,m0) and L2

(
Γ̂; l2(X,m0)

)
, and use
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the shorter notation l2(X) and L2
(
Γ̂; l2(X)

)
. We also denote by cc(X) ⊂ l2(X) the space of

0-cochains of finite support. We then define the map U : cc(X) → L2
(
Γ̂; l2(X)

)
for f ∈ cc(X),

ξ ∈ Γ̂, and x ∈ V (X) by

[U f ](ξ, x) =
∑
µ∈Γ

ξ(µ)f(µx̂). (3.4)

Clearly, the map U corresponds the composition of two maps: the identification of l2(X)
with l2

(
Γ; l2(X)

)
and the Fourier transform introduced in (3.3). As a consequence, U extends

to a unitary map from l2(X) to L2
(
Γ̂; l2(X)

)
, and we shall keep the same notation for this

continuous extension. The formula for its adjoint is then given on any u ∈ L1
(
Γ̂; l2(X)

)
by

[U ∗u](x) =

∫
Γ̂
dξ ξ([x])u(ξ, x̌).

Lemma 3.1. Let (X,X, ω,Γ) be a topological crystal and let m0 be a Γ-periodic measure on
X. Then for any u ∈ L2

(
Γ̂; l2(X)

)
, every x ∈ V (X) and almost every ξ ∈ Γ̂ the following

equality holds:

[U ∆(X,m0)U
∗u](ξ, x) =

∑
e∈Ax

m0(e)

m0(x)

[
ξ
(
η(e)

)
u
(
ξ, t(e)

)
− u(ξ, x)

]
.

Proof. For simplicity, we shall write ∆ for ∆(X,m0). Let u ∈ L2
(
Γ̂; l2(X)

)
such that U ∗u has

a compact support on X. Then for almost every ξ ∈ Γ̂ and x ∈ V (X) one has

[U ∆U ∗u](ξ, x) =
∑
µ∈Γ

ξ(µ)[∆U ∗u](µx̂)

=
∑
µ∈Γ

ξ(µ)
∑
e∈Aµx̂

m0(e)

m0(µx̂)

([
U ∗u

](
t(e)

)
− [U ∗u](µx̂)

)
=

∑
µ∈Γ

ξ(µ)
∑
e∈Ax̂

m0(e)

m0(x̂)

([
U ∗u

](
t(µe)

)
− [U ∗u](µx̂)

)
=

∑
e∈Ax̂

m0(e)

m0(x̂)

∑
µ∈Γ

ξ(µ)
([

U ∗u
](
t(µe)

)
− [U ∗u](µx̂)

)
=

∑
e∈Ax̂

m0(e)

m0(x̂)

[∑
µ∈Γ

ξ(µ)
[
U ∗u

](
t(µe)

)
− u(ξ, x)

]
.

By observing that

t(µe) = [t(µe)] ̂ω(t(µe)) = µη(e)ω̂(t(e)), (3.5)

one infers that

[U ∆U ∗u](ξ, x) =
∑
e∈Ax̂

m0(e)

m0(x̂)

[∑
µ∈Γ

ξ(µ)
[
U ∗u

](
µη(e)ω̂(t(e))

)
− u(ξ, x)

]
=

∑
e∈Ax̂

m0(e)

m0(x̂)

[
ξ
(
η(e)

)
u
(
ξ, ω(t(e))

)
− u(ξ, x)

]
=

∑
e∈Ax

m0(e)

m0(x)

[
ξ
(
η(e)

)
u
(
ξ, t(e)

)
− u(ξ, x)

]
,
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where for the last equality one has used that ω
(
t(ê)

)
= t(e). The statement follows then by a

density argument.

In order to make the connection with magnetic Laplacian, let us recall that for any
θ : A(X) → T satisfying θ(e) = θ(e) one defines a magnetic Laplace operator on X by the
formula

[∆θ(X,m0)φ](x) =
∑
e∈Ax

m0(e)

m0(x)

(
θ(e)φ(t(e))− φ(x)

)
∀φ ∈ l2(X).

Thus, if for fixed ξ ∈ Γ̂ one sets

θξ : A(X) → T, θξ(e) := ξ
(
η(e)

)
, (3.6)

then one infers that

θξ(e) = ξ
(
η(e)

)
= ξ

(
η(e)−1

)
= ξ

(
η(e)

)
= θξ(e).

As a consequence, the operator ∆θξ(X,m0) defined on any φ ∈ l2(X) by

[∆θξ(X,m0)φ](x) =
∑
e∈Ax

m0(e)

m0(x)

(
θξ(e)φ(t(e))− φ(x)

)
=

∑
e∈Ax

m0(e)

m0(x)

(
ξ
(
η(e)

)
φ(t(e))− φ(x)

)
corresponds to a magnetic Laplace operator on X.

Let us now recall that L2
(
Γ̂; l2(X)

)
=

∫ ⊕
Γ̂

dξ l2(X). As a consequence of the previous lemma
and of the construction made above, the operator U ∆(X,m0)U ∗ itself can be identified with
the direct integral operator

∫ ⊕
Γ̂

dξ∆θξ(X,m0). In other words, the Laplace operator ∆(X,m0)
is unitarily equivalent to a direct integral of magnetic Laplace operators acting on X.

In order to get a direct integral of magnetic Schrödinger operators as mentioned at the
beginning of this section, it only remains to deal with the multiplication operator R0 by a
Γ-periodic function, as introduced in (2.2). For that purpose, let us observe that for any real
Γ-periodic function defined on V (X) one can associate a well-defined function on V (X) by the
relation R0(x) := R0(x̂). For simplicity (and as already done before) we keep the same notation
for this new function. Then the following statement is obtained by a direct computation.

Lemma 3.2. Let R0 be a Γ-periodic function on V (X). Then one has U R0U ∗ = R0, or
more precisely for any u ∈ L2

(
Γ̂; l2(X)

)
, for all x ∈ X and a.e. ξ ∈ Γ̂ the following equality

holds:
[U R0U

∗u](ξ, x) = R0(x)u(ξ, x).

By adding the various results obtained in this section one can finally state:

Proposition 3.3. Let (X,X, ω,Γ) be a topological crystal and let m0 be a Γ-periodic measure
on X. Let R0 be a real Γ-periodic function defined on V (X). Then the periodic Schrödinger
operator H0 := −∆(X,m0) + R0 is unitarily equivalent to the direct integral of magnetic
Schrödinger operators acting on X defined by∫ ⊕

Γ̂
dξ

[
−∆θξ(X,m0) +R0

]
with θξ defined in (3.6).
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In the next section, we shall show that H0 is in fact unitarily equivalent to an analytically
fibered operator.

4 Analyticity of the periodic operator

Before showing that the periodic operator H0 is unitarily equivalent to an analytically fibered
operator, we shall recall a few definitions related to real analyticity as well as one version of
the classical result on stratifications of Hironaka. Doubtlessly, any reader familiar with real
analyticity can skip Section 4.1. For that purpose, let us simply mention that for any topolog-
ical space X and for any ζ ∈ X , we shall denote by VX (ζ) the set of all open neighborhoods
of ζ in X .

4.1 A brief review of real analyticity

For an open set U in Rn we say that a function Φ defined on U , and taking values in R or C,
is real analytic on U if it can be written locally as a convergent power series. More precisely,
Φ is said to be real analytic on U if for every ζ0 ∈ U there exists O ∈ VU (ζ0) and a (real or
complex) sequence {aα}α∈Nn such that

Φ(ζ) =
∑
α∈Nn

aα(ζ − ζ0)
α

for every ζ ∈ O. A vector-valued function is real analytic if each of its component is real
analytic, and analogously a matrix-valued function is real analytic if each of its entries is real
analytic. Clearly, real analyticity is preserved by the sum, the product, the quotient, and the
composition of real analytic functions when these operations are well-defined [28, Propositions
2.2.2 & 2.2.8].

Let us now recall that a real analytic manifold M of dimension n is a smooth manifold
such that each transition function is real analytic. More precisely, if {(Oj , Φj)} is an atlas for
M, then the maps Φj ◦ Φ−1

k : Φk(Oj ∩ Ok) → Φj(Oj ∩ Ok) are real analytic maps. In this
setting, a function Ψ : M → R is said to be real analytic at p ∈ M if for j such that p ∈ Oj

the function Ψ ◦ Φ−1
j is real analytic at Φj(p). The function Ψ is real analytic on M if it is

real analytic at every points of M.
Let us also recall the notion of semi-analytic subset and the more general notion of

subanalytic subsets. The following definitions are borrowed from sections 2 and 3 of [8].

Definition 4.1. Let M be a real analytic manifold. A subset S ⊂ M is said to be semi-
analytic if for every p ∈ S there exist O ∈ VM(p) and a finite family {Ψjℓ}j,ℓ of real analytic
functions defined on O such that

S ∩ O =
∪
j

∩
ℓ

{
x ∈ O | Ψjℓ(x) ◃▹jℓ 0 with ◃▹jℓ∈ {>,=}

}
.

Let us stress that a semi-analytic subset need not be a real analytic submanifold.

Definition 4.2. Let M be a real analytic manifold. A subset S ⊂ M is said to be subanalytic
if for every p ∈ S there exist O ∈ VM(p) and an additional real analytic manifold N such that
S ∩O is the image of a relatively compact semi-analytic subset of M×N under the projection
onto the first factor.
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In this context, the following definition of stratification can be recalled, see for example
[8, Sec. 2] and [11, Def. III.1.6].

Definition 4.3. A stratification of a real analytic manifold M is a partition S := {Sα}α of
M satisfying the following conditions:

(i) Each Sα is a connected subset of M and a real analytic submanifold of M,

(ii) S are locally finite at any point of M,

(iii) If Sα ∩ Sβ ̸= ∅ then Sα ⊂ Sβ.

If each Sα is semi-analytic the stratification is called semi-analytic, while if each Sα is sub-
analytic the stratification is called subanalytic.

If M is already endowed with a locally finite family {Mj}j of subsets, one says that the
stratification S of M is compatible with {Mj}j if for every j and every α one has either
Sα ∩Mj = ∅ or Sα ⊂ Mj . As shown in [8, Corol. 2.11], given a locally finite family of semi-
analytic sets on M, there always exists a semi-analytic stratification of M which is compatible
with this family. However, this result is not strong enough for our purpose, since one more
ingredient is necessary.

Definition 4.4. Let M,M′ be two real analytic manifolds, and let f : M → M′ be a real
analytic map. A (semi-analytic or subanalytic) stratification for f is a pair (S ,S ′) of (semi-
analytic or subanalytic) stratifications of M and M′ respectively such that for any Sα ∈ S
one has f(Sα) ∈ S ′ and the rank of the Jacobian matrix of f at any point of Sα is equal to
the dimension of f(Sα).

We can now state the version of the theorem of stratification of Hironaka as presented in
[11, Thm. III.1.8], see also [18, Corol. 4.4], [20, Sec. 3]. Note that we directly impose a stronger
condition on f since it simplifies the statement and since this condition will be automatically
satisfied in our application.

Theorem 4.5. Let M,M′ be two real analytic manifolds, and let f : M → M′ be a proper
real analytic map. Suppose we are given finitely many subanalytic sets Mj ⊂ M, and finitely
many subanalytic sets M′

k ⊂ M′. Then there exists a subanalytic stratification (S ,S ′) of f
such that S is compatible with {Mj} and S ′ is compatible with {M′

k}.

4.2 Analytic decomposition of the periodic operator

We shall now show that H0 is unitarily equivalent to an analytically fibered operator. We refer
to [14] and [33, Sec. XIII.16] for more general information on such operators, and restrict
ourselves to the simplest framework. In that respect, the next definition is adapted to our
setting. Note that from now on we shall use the notation Td for the d-dimensional (flat) torus,
i.e. for Td = Rd/Zd, with the inherited local coordinates system and differential structure.
We shall also use the notation Mn(C) for the n× n matrices over C.

Definition 4.6. In the Hilbert space L2(Td;Cn), a bounded analytically fibered operator
corresponds to a multiplication operator defined by a real analytic map h : Td → Mn(C).
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In order to show that the periodic operator introduced in Section 3 fits into this framework,
some identifications are necessary. More precisely, since Γ is isomorphic to Zd, as stated in the
point (iv) of Definition 2.1, we know that Γ̂ is isomorphic to Td. In fact, we consider that a
basis of Γ is chosen and then identify Γ with Zd, and accordingly Γ̂ with Td. As a consequence
of these identifications we shall write ξ(µ) = e2πi ξ·µ, where ξ · µ =

∑d
j=1 ξjµj . Accordingly,

the Fourier transform defined in (3.3) corresponds to [Ff ](ξ) ≡ f̂(ξ) =
∑

µ∈Zd e−2πi ξ·µf(µ),

and its inverse to [F ∗u](µ) ≡ ǔ(µ) =
∫
Td dξ e

2πi ξ·µu(ξ), with dξ the usual measure on Td.
Note that an other consequence of this identification is the use of the additive notation for
the composition of two elements of Zd, instead of the multiplicative notation employed until
now for the composition in Γ.

The second necessary identification is between l2(X) and Cn. Indeed, since V (X) =
{x1, . . . , xn}, as already mentioned in the previous section, the vector space l2(X) is of di-
mension n. However, since the scalar product in l2(X) is defined with the measure m0 while
Cn is endowed with the standard scalar product, one more unitary transformation has to be
defined. More precisely, for any φ ∈ l2(X) one sets I : l2(X) → Cn with

Iφ =
(
m0(x1)

1
2φ(x1),m0(x2)

1
2φ(x2), . . . ,m0(xn)

1
2φ(xn)

)
. (4.1)

This map defines clearly a unitary transformation between l2(X) and Cn. Note that we shall
use the same notation I for the map L2

(
Td; l2(X)

)
→ L2(Td;Cn) acting trivially on the first

variables and acting as above on the remaining variables.
We can now state and prove the main result of this section, where we use the usual

notation δjℓ for the Kronecker delta function.

Proposition 4.7. Let (X,X, ω,Γ) be a topological crystal and let m0 be a Γ-periodic measure
on X. Let R0 be a real Γ-periodic function defined on V (X). Then the periodic Schrödinger
operator H0 := −∆(X,m0) + R0 is unitarily equivalent to the bounded analytically fibered
operator in L2(Td;Cn) defined by the function h0 : Td → Mn(C) with

h0(ξ)jℓ := −
∑

e=(xj ,xℓ)

m0(e)

m0(xj)
1
2 m0(xℓ)

1
2

e2πi ξ·η(e) +
(
degm0

(xj) +R0(xj)
)
δjℓ (4.2)

for any ξ ∈ Td and j, ℓ ∈ {1, . . . , n}.

Proof. The proof consists simply in computing the operator I U H0U ∗I ∗, and in checking
that the resulting operator is analytically fibered. Observe first that the product U H0U ∗

has already been computed in Proposition 3.3. The conjugation with I is easily computed,
and one directly obtains (4.2) if one takes the equality ξ(µ) = e2πi ξ·µ into account. Since for
each fixed µ ∈ Zd the map Td ∋ ξ 7→ e2πi ξ·µ → C is real analytic, the matrix-valued function
defined by h0 is real analytic.

5 Mourre theory and the conjugate operator

In this section we first recall some definitions related to Mourre theory, such as some regularity
conditions as well as the meaning of a Mourre estimate. These notions will be used in the
second part of the section where a conjugate operator for H0 will be constructed. Again, any
reader familiar with the conjugate operator method can skip Section 5.1 and directly start
with Section 5.2.
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5.1 Mourre theory

In this section we provide the strictly necessary notions for our purpose, and refer to [2,
Sec. 7.2] for more information and details.

Let us consider a Hilbert space H with scalar product ⟨ · , · ⟩ and norm ∥ · ∥. Let also
S and A be two self-adjoint operators in H. The operator S is assumed to be bounded, and
we write D(A) for the domain of A. The spectrum of S is denoted by σ(S) and its spectral
measure by ES( ·). For shortness, we also use the notation ES(λ; ε) := ES

(
(λ− ε, λ+ ε)

)
for

all λ ∈ R and ε > 0.
The operator S belongs to C1(A) if the map

R ∋ t 7→ e−itASeitA ∈ B(H) (5.1)

is strongly of class C1 in H. Equivalently, S ∈ C1(A) if the quadratic form

D(A) ∋ φ 7→ ⟨iAφ, S∗φ⟩ − ⟨iSφ,Aφ⟩ ∈ C

is continuous in the topology of H. In such a case, this form extends uniquely to a continuous
form on H, and the corresponding bounded self-adjoint operator is denoted by [iS,A]. This
C1(A)-regularity of S with respect to A is the basic ingredient for any investigation in Mourre
theory.

Let us also define some stronger regularity conditions. First of all, S ∈ C2(A) if the map
(5.1) is strongly of class C2 in H. A weaker condition can be expressed as follows: S ∈ C1,1(A)
if ∫ 1

0

dt

t2
∥∥e−itASeitA + eitASe−itA − 2S

∥∥ < ∞.

It is then well-known that the following inclusions hold: C2(A) ⊂ C1,1(A) ⊂ C1(A).
For any S ∈ C1(A), let us now introduce two subsets of R which will play a central role.

Namely, one sets

µA(S) :=
{
λ ∈ R | ∃ε > 0, a > 0 s.t. ES(λ; ε)[iS,A]ES(λ; ε) ≥ aES(λ; ε)

}
as well as the larger subset of R defined by

µ̃A(S) :=
{
λ ∈ R |∃ε > 0, a > 0,K ∈ K(H) s.t.

ES(λ; ε)[iS,A]ES(λ; ε) ≥ aES(λ; ε) +K
}
.

In order to state one of the main results in Mourre theory, let us still set K :=
(
D(A),H

)
1
2
,1

for the Banach space obtained by real interpolation. We refer to [2, Sec. 3.4] for more infor-
mation about this space and for a general presentation of Besov spaces associated with the
pair

(
D(A),H

)
. Since B(H) ⊂ B(K,K∗), for any z ∈ C\R the resolvent (S−z)−1 of S belongs

to these spaces, and the following extension holds:

Theorem 5.1 ([2, Theorem 7.3.1.]). Let S be a self-adjoint element of B(H) and assume that
S ∈ C1,1(A). Then the holomorphic function C± ∋ z → (S − z)−1 ∈ B(K,K∗) extends to a
weak∗ continuous function on C± ∪ µA(S).
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Let us still mention how a perturbative scheme can be developed. Consider a “perturba-
tion” V ∈ K(H) and assume that V is self-adjoint and belongs to C1,1(A) as well. Even if µA(S)
is known, it usually quite difficult to compute the corresponding set µA(S + V ) for the self-
adjoint operator S+V . However, the set µ̃A(S) is much more stable since µ̃A(S) = µ̃A(S+V ),
as a direct consequence of [2, Thm. 7.2.9].

Based on this observation, the following adaptation of [2, Thm. 7.4.2] can be stated in
our context:

Theorem 5.2. Let S be a self-adjoint element of B(H) and assume that S ∈ C1,1(A). Let
V ∈ K(H) and assume that V is self-adjoint and belongs to C1,1(A). Then, for any closed
interval I ⊂ µ̃A(S) the operator S + V has at most a finite number of eigenvalues in I, and
no singular continuous spectrum in I.

Let us finally mention that under additional condition on the perturbation V , information
on the local wave operators can be deduced. We shall come back on this topic later on.

5.2 The conjugate operator

In this section, we construct a conjugate operator for a self-adjoint bounded analytically
fibered operator h in L2(Td;Cn). At the end of the day, the operator h will be the operator h0
introduced in Proposition 4.7, but we prefer to provide an abstract construction. Note that
the following content is inspired from an analog construction of [14]. However, our setting is
slightly simpler, and in addition we provide here much more details.

Let us recall that a self-adjoint bounded analytically fibered operator corresponds to a
multiplication operator by a real analytic function h : Td → Mn(C) with h(ξ) Hermitian for
any ξ ∈ Td. For consistency, the multiplication operator will also be denoted by h. For such
an operator we introduce some notations. For any Borel set V ⊂ R and any ξ ∈ Td, let us
denote by πV(ξ) the spectral projection Eh(ξ)(V), i.e. the projection in Cn onto the vector
space generated by eigenvectors associated with the eigenvalues of h(ξ) that lie in V. We also
recall that σ

(
h(ξ)

)
denotes the set of eigenvalues of h(ξ). Furthermore, we set:

• Σ :=
{
(λ, ξ) ∈ R× Td, λ ∈ σ

(
h(ξ)

)}
,

• mul : R× Td → N defined by (λ, ξ) → dimπ{λ}(ξ)Cn ,

• Σj := {(λ, ξ) ∈ R× Td,mul(λ, ξ) = j} for any j ∈ {0, 1 . . . , n}.

The set Σ is called the Bloch variety (or the set of energy-momentum) of h and will be the
central object of this section. We also denote by pR : Σ → R and pTd : Σ → Td the projection
on each coordinate of Σ. Some properties of h and the above related objects are gathered in
the next lemma. We also refer to [14, Lemma 3.4] for a similar statement in a more general
setting.

Lemma 5.3. The application mul : R × Td → N is upper semicontinuous. Furthermore, for
all (λ0, ξ0) ∈ R× Td, there exist an interval I0 ∈ VR(λ0) and T0 ∈ VTd(ξ0) such that:

(i) πI0(ξ0) = π{λ0}(ξ0),

(ii) The map ξ → πI0(ξ) ∈ Mn(C) is real analytic in T0.
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Before providing the proof we want to stress that the theory of hyperbolic polynomials
allows us to show that the eigenvalues behave well on ξ, and this will be used to choose some
convenient neighborhoods. More precisely, for h as above, the eigenvalues of h(ξ) are given by
the roots of δ(λ, ξ) := det

(
λIn − h(ξ)

)
. Since each entry of the matrix h(ξ) is real analytic as

function of ξ, δ(λ, ξ) can be written as follows:

δ(λ, ξ) = det
(
λIn − h(ξ)

)
= λn +

n∑
j=1

an−j(ξ)λ
n−j (5.2)

where each function an−j is real analytic because it is the product of finitely many real analytic
functions. Let us denote by {λ1(ξ), . . . , λn(ξ)} the family of eigenvalues of h(ξ) that correspond
to the roots of (5.2). Then, it can be shown that the map ξ →

(
λ1(ξ), . . . , λn(ξ)

)
∈ Rn is

locally Lipschitz [29, Theorem 4.1].

Proof of Lemma 5.3. Let us fix (λ0, ξ0) ∈ R× Td. It is clear that if λ0 is not an eigenvalue of
h(ξ0), then both conditions hold trivially since we can find I0 and T0 such that I0∩σ

(
h(ξ)

)
= ∅

for every ξ ∈ T0.
Suppose now that λ0 is an eigenvalue of h(ξ0). We choose I0 such that its closure contains

no other eigenvalue of h(ξ0), which implies in particular that π{λ0}(ξ0) = πI0(ξ0). In fact, by
choosing an interval I0 = (a0, b0) small enough, we can also choose a neighborhood T0 of ξ0
such that for any ξ ∈ T0 we have σ

(
h(ξ)

)
∩ {a0, b0} = ∅. Around I0 we choose a positively

oriented closed curve Γ0 in C, sufficiently close to I0 such that it does not intersect the
spectrum of h(ξ) for every ξ ∈ T0. Hence, for every ξ ∈ T0, the eigenvalues of h(ξ) that lay
inside Γ0 correspond to λ0, or more precisely if λj(ξ) lies inside Γ0 we have λj(ξ0) = λ0.

As a consequence of this construction it follows that

πI0(ξ) =
1

2πi

∮
Γ0

dz
(
z − h(ξ)

)−1
. (5.3)

Finally, since (z, ξ) →
(
z − h(ξ)

)−1
is analytic in the two variables on any domain in which

z is not equal to any eigenvalues of h(ξ), as shown for example in [22, Thm II.1.5], we infer
from (5.3) that the map ξ → πI0(ξ) is real analytic.

We now recall that a real valued function defined on a topological space X is said to be
upper semicontinuous at x0 if for every ϵ > 0 there exists U ∈ VX (x0) such that supx∈U f(x) ≤
f(x0) + ϵ. If we pick I0 × T0 as neighborhood of (λ0, ξ0) we have for (λ, ξ) ∈ I0 × T0 that

mul(λ, ξ) = dimπ{λ}(ξ)Cn ≤ dimπI0(ξ)Cn = dimπI0(ξ0)Cn = dimπ{λ0}(ξ0)C
n, (5.4)

where dimπI0(ξ)Cn = dimπI0(ξ0)Cn is due to the analyticity of the map ξ → πI0(ξ).

The first step towards the construction of the conjugate operator is to provide a stratifi-
cation of the Bloch variety. The following proposition will enable us to derive it from Theorem
4.5. Before its statement, observe that R×Tn is a (n+1)-dimensional real analytic manifold.

Proposition 5.4. {Σj}nj=1 is a family of semi-analytic sets in R× Td.

Proof. For any (λ0, ξ0) ∈ R × Td we set O = I0 × T0 ∈ VR×Td(λ0, ξ0) as in Lemma 5.3.
Then, for every j > mul(λ0, ξ0) we have Σj ∩ O = ∅ by (5.4), so we only need to consider
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j ≤ mul(λ0, ξ0). Let us also recall that δ(λ, ξ) = det
(
λIn − h(ξ)

)
. By the discussion after

the statement of Lemma 5.3, δ admits real analytic derivatives on each variable. In addition,
Σj ∩ O is described as follows:

Σj ∩ O =
{
(λ, ξ) ∈ O | λ is an eigenvalue of multiplicity j of h(ξ)

}
=
{
(λ, ξ) ∈ O | δ(λ, ξ) = ∂δ

∂λ
(λ, ξ) = · · · = ∂j−1δ

∂λj−1
(λ, ξ) = 0,

∂jδ

∂λj
(λ, ξ) ̸= 0

}
.

Then we deduce from Definition 4.1 that each Σj is semi-analytic in R× Td.

We have just shown that {Σj}nj=0 is a finite family of semi-analytic subsets of R × Td.

Since pR : R × Td → R is proper and real analytic we can apply Theorem 4.5 to get a
stratification (S ,S ′) of pR such that S is compatible with {Σj}nj=1. We recall that each
Sα ∈ S is contained in only one Σj and that S ′ is a stratification of R. We will denote by τ
the set of thresholds, and this set is given by the union of the elements of dimension 0 of S ′.
The thresholds are the levels of energy where one can not construct a conjugate operator.

Definition 5.5. Let h be a real analytic function Td → Mn(C) with h(ξ) Hermitian for any
ξ ∈ Td. The set of thresholds τ ≡ τ(h) is defined by

τ :=
∪

dimS′
β=0

S ′
β ,

where S ′ = {S ′
β}β is the partition of R given by Theorem 4.5 applied to the proper real

analytic function pR and the family of semi-analytic subsets {Σj}nj=1.

Note that τ is a discrete subset of R because S ′ is locally finite, i.e. only a finite numbers
of S ′

β intersects the neighborhood of a given λ ∈ R. It is also easily observed that τ contains
the energy levels corresponding to flat bands, i.e. a value λ ⊂ R satisfying λj(ξ) = λ for all ξ
and some fixed j ∈ {1, . . . , n}.

We start now the construction of the conjugate operator for a fixed closed interval I ⊂
R\τ . This is done in three steps: first we construct Aλ0,ξ0 for fixed λ0 ∈ I and ξ0 ∈ Td; then
we sum over all the eigenvalues λ of h(ξ0) that lie in I and obtain Aξ0 ; finally we define AI

by smoothing a finite family of such Aξ0 .
Let (λ0, ξ0) be fixed with λ0 ∈ I. We denote by O the neighborhood of (λ0, ξ0) constructed

as in Lemma 5.3, i.e. O = I0 × T0. Then (λ0, ξ0) ∈ Sα ⊂ Σj for a unique α. Without loss of
generality we can assume that Σj∩O = Sα∩O. Let s denote the dimension of the submanifold
Sα. Furthermore, since pTd |Sα is injective the subset pTd(Sα ∩ O) ⊂ Td has also dimension s.
This enables us to find a neighborhood W0 of the identity in Rd diffeomorphic to T0, or more
precisely there exists a diffeomorphism

ι0 : T0 → W0 with ι0
(
pTd(Sα ∩ O)

)
⊂ Rs × 0, (5.5)

see for example [36, Theorem 2.10.(2)]. Let us then set x = (x′, x′′) ∈ W0 with x′ ∈ Rs and
x′′ ∈ Rd−s. We also define f : I0 ×W0 → R by

f(λ, x) :=
∂j−1δ

∂λj−1

(
λ, ι−1

0 (x)
)
.
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It follows from the proof of Proposition 5.4 that f(λ, x′, 0) = 0 and ∂f
∂λ(λ, x

′, 0) ̸= 0 if λ is such
that

(
λ, ι−1

0 (x)
)
∈ Sα. By the implicit function theorem as for example presented in [28, Theo.

2.3.5.] and maybe in a smaller subset W0, we get that there exists a real analytic function
λ : W0 → R such that f

(
λ(x), x

)
= 0 for every x ∈ W0. Then we have

Sα ∩ O =
{(

λ(x′, 0), ι−1
0 (x′, 0)

)
| (x′, 0) ∈ W0

}
. (5.6)

Let us denote by (ι−1
0 )∗ the pullback by ι−1

0 defined for φ with support on T0 and for
any x ∈ W0 by [(ι−1

0 )∗φ](x) = φ
(
ι−1
0 (x)

)
. Analogously the pullback ι∗0 is defined by [ι∗0g](ξ) =

g
(
ι0(ξ)

)
for any g defined on W0. We denote by Dj = −i∂j the operator of differentiation with

respect to the j−variable in Rd. We also set ∂(s) = (∂1, . . . , ∂s) and D(s) = (D1, . . . , Ds). If
we keep the notation πI0 for the matrix-valued multiplication operator acting on L2(Td;Cn)
we can define Aλ0,ξ0 on C∞

c (T0;Cn) ⊂ L2(Td;Cn) by

Aλ0,ξ0 := 1
2πI0ι

∗
0

[
(∂(s)λ) ·D(s) +D(s) · (∂(s)λ)

]
(ι−1

0 )∗πI0 .

By repeating this construction for each eigenvalue λj of h(ξ0) lying in I we can define

Aξ0 :=
∑

λj∈σ(h(ξ0))∩I

Aλj ,ξ0 . (5.7)

It follows that for every ξ0 ∈ Td we can find a neighborhood T0, given by the intersection of
the neighborhoods constructed for each pair (λj , ξ0), and an operator Aξ0 defined by (5.7) on
C∞
c (T0;Cn).

We now define UI := pTd(p−1
R (I)). Since we chose I closed, UI is compact. We can then

consider finitely many pairs (ξℓ, Tℓ) such that Aξℓ acts on C∞
c (Tℓ;Cn) and such that UI ⊂

∪
Tℓ.

Considering a smooth partition of unity on Td, we can find a family of smooth functions χℓ

satisfying
∑

χ2
ℓ (ξ) = 1 for ξ ∈ UI and such that each χℓ has support contained in Tℓ. The

candidate for our conjugate operator is then given by

AI =
∑
ℓ

χℓAξℓχℓ (5.8)

and is defined on C∞(Td;Cn). Note that AI depends on the covering {Tℓ} of UI and we will
impose later on another condition on this covering to ensure the positivity of the commutator
of [ih,AI ] once suitably localized.

In order to further analyze this operator, let us recall that there exist at least three com-
plementary ways of considering operators acting on Td. For example, one can take advantage
of the group structure of Td (with dual group Zd) and develop a pseudodifferential calculus
in this context. A related approach consists in using a periodic version of the usual pseu-
dodifferential operator of Rd, as already sketched in the Appendix of [15]. Since Td is also a
compact smooth manifold, a more geometrical approach can be used. Note that these various
approaches and their relations have been thoroughly studied in [34, Chap. 3-5]. We provide in
the next paragraphs a few essential definitions or results, and refer to this reference for more
information.
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Let us first recall that for any s ∈ R the Sobolev space Hs(Td) consists in the space of
distributions u ∈ D′(Td) such that ∥u∥Hs(Td) is finite, with

∥u∥Hs(Td) :=
( ∑

µ∈Zd

(1 + |µ|2)s|ǔ(µ)|2
)1/2

and with |µ| the inherited Euclidean norm on Zd. Note that the use of ǔ instead of the more
conventional notation û comes from our initial choice of the Fourier transform, from l2(Zd)
to L2(Td). We also recall that the Fourier transform is a bijective map between the Schwartz
space S(Zd) and the space C∞(Td). In analogy with pseudodifferential operators acting on
Rd the toroidal pseudodifferential operators are then defined by the formula

[Op(a)u](ξ) =
∑
µ∈Zd

e−2πiξ·µa(ξ, µ) ǔ(µ) (5.9)

for suitable symbol a : Td × Zd → C and any functions u ∈ C∞(Td). For example, for any
m ∈ R a convenient class of symbols Sm(Td × Zd) is defined by those functions a : Td × Zd

which are smooth in the first variables and which satisfy∣∣△α∂βa(ξ, µ)
∣∣ ≤ c⟨µ⟩m−|α|1 ∀ξ ∈ Td, µ ∈ Zd (5.10)

for some constant c which depend on the symbol a, on α, β ∈ Nd and on m. In (5.10) we have
used the notations ⟨µ⟩s for (1+ |µ|2)s/2, ∂ for the differentiation with respect to the ξ-variable,
and △ for the difference operator defined on f : Zd → C by

[△jf ](µ) = f(µ+ δj)− f(µ) ≡ f
(
µ1, . . . , µj−1, µj + 1, µj+1, . . . , µd

)
− f(µ).

For any α ∈ Nd we have also used the notations △α =
∏d

j=1(△j)
αj and |α|1 for

∑d
j=1 αj .

As mentioned before, another convenient approach consists in considering Td as a smooth
manifold and by defining differentiable operators through localizations. In this framework an
operator A : C∞(Td) → C∞(Td) is a differential operator of order ℓ ≥ 0 if for any chart (O, Φ)
(also called local coordinates) one has

A = Φ∗
∑

|α|1≤ℓ

bαD
α(Φ−1)∗

where the notation for the pullback has been used again, and where bα are multiplication op-
erators by smooth functions on Rd. We denote the class of such differential operators of order ℓ
by Diffℓ(Td). These operators are special instances of the more general set of pseudodifferential
operators of order ℓ on Td, denoted by Ψℓ(Td).

Our interest in having recalled these frameworks relies in the following two results: Firstly,
any operators A ∈ Ψℓ(Td) is equal to Op(a) for some a ∈ Sℓ(Td × Zd), as shown in a much
more general context in [34, Thm. 5.4.1]. Secondly, if a ∈ Sm(Td×Zd), then Op(a) extends to
a bounded linear operator from Hs(Td) to Hs−m(Td) for every s ∈ R [34, Prop. 4.2.3]. Now,
by performing a tensor product of the spaces constructed above with the matrices Mn(C),
one directly infers that the operator AI introduced in (5.8) is a differential operator of order
1 and that this operator extends to a bounded operator from Hs(Td;Cn) to Hs−1(Td;Cn) for
every s ∈ R.

We have now introduced enough material for providing a simple proof of the following
statement.
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Lemma 5.6. The operator AI defined in (5.8) is essentially self-adjoint on C∞(Td;Cn).

Proof. This proof is based on an application of Nelson’s commutator theorem, as presented
in [32, Thm. X.37]. For its application, we denote by ∆Td

the Laplace operator on L2(Td),
which is a self-adjoint operator with domain H2(Td) and which is essentially self-adjoint on
C∞(Td). We also set Λ :=

(
I−∆Td

)
⊗ In which is now a self-adjoint operator in L2(Td;Cn)

with domain H2(Td;Cn) and which is essentially self-adjoint on C∞(Td;Cn). Let us note that
these operators can also be seen as second order differential operators on [0, 1]d with periodic
boundary conditions.

Now, it is easily observed that AI is symmetric on C∞(Td;Cn). In addition, since AI

extends to a bounded operator from H1(Td;Cn) to H0(Td;Cn) ≡ L2(Td;Cn), as mentioned
before the statement, this operator is a fortiori bounded from H2(Td;Cn) to L2(Td;Cn). As
a consequence, one infers that there exist c, c′ > 0 such that for any f ∈ C∞(Td;Cn)

∥AIf∥L2(Td;Cn) ≤ c∥f∥H2(Td;Cn)∥ ≤ c′ ∥Λf∥L2(Td;Cn) .

We refer also to [34, Rem. 4.8.4] for the second inequality. Then, either from a direct compu-
tation performed on C∞(Td;Cn) or from an application of the abstract result [34, 4.7.10] one
deduces that the commutator [AI ,Λ] corresponds to a differential operator of order 2. It thus
follows that there exists c > 0 such that for any f ∈ C∞(Td;Cn) one has∣∣⟨AIf,Λf⟩ − ⟨Λf,AIf⟩

∣∣ ≤ c⟨f,Λf⟩ = c∥Λ1/2f∥2.

The statement of the lemma follows then from the mentioned Nelson’s commutator theorem.

We are now in a suitable position for proving a Mourre estimate, or in other words the
positivity of [ih,AI ] when suitably localized. As mentioned at the beginning of this section, a
similar result already appeared in [14, Thm. 3.1], but the above construction and the following
proof have been adapted to our context.

Theorem 5.7. Let h be a real analytic function Td → Mn(C) with h(ξ) Hermitian for any
ξ ∈ Td, and let also h denote the corresponding multiplication operator in L2(Td;Cn). Let τ
be the set of thresholds provided by Definition 5.5 and let I be any closed interval in R \ τ .
Then, there exist a finite family of pairs {(Tℓ, ξℓ)} with ξℓ ∈ Tℓ such that for the operator AI

defined by (5.8) the following two properties hold:

(i) the operator h belongs to C2(AI),

(ii) there exists a constant aI > 0 such that

Eh(I) [ih,AI ]Eh(I) ≥ aIEh(I) . (5.11)

Before providing the proof, let us restate part of the previous statement with the notations
introduced in Section 5.1. As a consequence of (5.11), for any closed interval I ≡ [a, b] ⊂ R\τ ,
one has

(a, b) ⊂ µAI (h) ⊂ µ̃AI (h). (5.12)
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Proof. Let (λ0, ξ0) ∈ Td×R be fixed with λ0 ∈ I, and let ι0 be the associated diffeomorphism
introduced in (5.5). For shortness we also set π0 := πI0 , λ̃0 := ι∗0λ(ι

−1
0 )∗, ∇0 = ι∗0D

(s)(ι−1
0 )∗

and ∂0 = ι∗0∂
(s)(ι−1

0 )∗. With these notations one has

Aλ0,ξ0 = 1
2πI0ι

∗
0

[
(∂(s)λ) ·D(s) +D(s) · (∂(s)λ)

]
(ι−1

0 )∗πI0

= 1
2π0

[
(∂0λ̃0) · ∇0 +∇0 · (∂0λ̃0)

]
π0

= π0
(
(∂0λ̃0) · ∇0

)
π0 +

i
2π0(∆0λ̃0)π0

where −∆0 := ι∗0
(∑s

j=0 ∂
2
j

)
(ι−1

0 )∗.
Now, since both operators h and Aλ0,ξ0 leave C∞(T0;Cn) invariant, the commutator

[ih,Aλ0,ξ0 ] can be defined as an operator on C∞(T0;Cn). On this set one has

[ih,Aλ0,ξ0 ] = [ih, π0
(
(∂0λ̃0) · ∇0

)
π0]− 1

2 [h, π0(∆0λ̃0)π0]

Note also that the second term in the r.h.s. vanishes since ∆0λ̃0 is scalar and since h commutes
with π0. Furthermore we have for φ ∈ C∞(T0;Cn) that([

ih, π0
(
(∂0λ̃0) · ∇0

)
π0

]
φ
)
(ξ)

= ih(ξ)π0(ξ)(∂0λ̃0)(ξ) ·
(
(∇0π0)(ξ)π0(ξ)φ(ξ) + π0(ξ)

(
∇0(π0φ)

)
(ξ)

)
− iπ0(ξ)(∂0λ̃0)(ξ) ·

((
∇0(π0h)

)
(ξ)π0(ξ)φ(ξ) + π0(ξ)h(ξ)

(
∇0(π0φ)

)
(ξ)

)
.

Since h commutes with each (scalar) component of ∂0λ̃0 the second terms of the parenthesis
cancel each others. Consequently, one infers that [h, iAλ0,ξ0 ] corresponds to a bounded fibered
operator Bλ0,ξ0 with its fibers defined by

bλ0,ξ0(ξ) = iπ0(ξ)(∂0λ̃0)(ξ) ·
(
h(ξ)(∇0π0)(ξ)−

(
∇0(π0h)

)
(ξ)

)
π0(ξ) .

The first term in the parenthesis vanishes because π(·)π′(·)π(·) = 0 for any differentiable
family of projections. For the second term one has by construction π0(ξ)h(ξ) = λ̃0(ξ)π0(ξ) for
ξ ∈ T0, and therefore

bλ0,ξ0(ξ) = iπ0(ξ)(∂0λ̃0)(ξ) ·
(
∇0(λ̃0π0)

)
(ξ)π0(ξ) = π0(ξ)|(∂0λ̃0)(ξ)|2π0(ξ) .

We now recall that by the definition of the set of thresholds τ and the properties of the
stratification one has dim(pR|Sα) = 1 with Sα the real analytic submanifold of R × Td with
(λ0, ξ0) ∈ Sα. Combining this with (5.6) we have that

1 = dim(pR|Sα) = dim
(
λ(W0, 0)

)
= rank(∂0λ̃0)

from which we deduce that ∂0λ̃0 does not vanish on T0. We get then bλ0,ξ0(ξ0) ≥ c0,0πI0(ξ0),
with c0,0 > 0, and since for fixed ξ0 there are at most n constants we infer

bξ0(ξ0) :=
∑

λi∈σ(h(ξ0))∩I

bλi,ξ0(ξ0) ≥ min{ci,0}
∑

πIi(ξ0) = c0πI(ξ0) (5.13)
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with c0 > 0. By continuity of both bξ0 and πI at ξ0 and using (5.13) we can find a possibly
smaller neighborhood T0 satisfying the properties of Lemma 5.3 such that for ξ ∈ T0 we have

πI(ξ)bξ0(ξ)πI(ξ) ≥ 1
2c0πI(ξ) . (5.14)

Since we chose ξ0 arbitrarily in Td, we can construct T0 satisfying (5.14) for every ξ0.
It follows that one can find a covering of the closed set UI := pTd(p−1

R (I)) composed of a
finite number of such T0. We have thus defined the covering {Tℓ} already mentioned before
the equation (5.8) and mentioned in the above statement. To finish, observe that [ih,AI ] is a
bounded fibered operator with fiber b given for any ξ ∈ UI by

b(ξ) =
∑
ℓ

χℓ(ξ)bξℓ(ξ)χℓ(ξ) .

Therefore, the operator Eh(I)[ih,AI ]Eh(I) is a bounded fibered operator with fiber equal to
πI(ξ)b(ξ)πI(ξ). We also infer that∑

ℓ

πI(ξ)χℓ(ξ)bξℓ(ξ)χℓ(ξ)πI(ξ) ≥ 1
2 min

ℓ
{cℓ}πI(ξ)

for every ξ ∈ Td. By setting aI = 1
2 minℓ{cℓ} we conclude that

Eh(I)[ih,AI ]Eh(I) ≥ aIEh(I).

Since the operator B := [ih,AI ] has been computed on C∞(Td;Cn) which is a core for AI ,
and since the resulting operator is bounded, one deduces from the results stated in Section
5.1 that h belongs to C1(AI). Then, since the operator B is again an analytically fibered
operator, the computation of [iB,AI ] can be performed similarly on C∞(Td;Cn) and the
resulting operator is once again bounded. It then follows that h belongs to C2(AI).

Remark 5.8. When studying a particular graph one can usually find analytic families of
eigenvalues λi and associated eigenprojections Πi outside a discrete subset of Td. Then, a more
natural conjugate operator is given formally by

∑
Πi

(
(∂λi)·∇+∇·(∂λi)

)
Πi as used for example

in [3] (see also [13] for a related construction). In fact it is a classical result due to Rellich that
for every one-dimensional analytic family of (not necessarily bounded) operators, such analytic
eigenprojections can be found. For dimension 2, the theory of hyperbolic polynomials shows
that this choice can be made outside a discrete set [29, Remark 5.6]. For arbitrary dimension,
there seems to be no argument to ensure that analytic eigenprojections can be chosen and so
we shall use the conjugate operator given by (5.8).

6 Proof of the main theorem

In this section we provide the proof of our main theorem. It will be divided into two sub-
sections. In the first one we derive some abstract results which are not directly linked with
topological crystals. However, the form of the operators we consider is inspired by the oper-
ators coming from the initial problem. In the second subsection we show how the abstract
results can be applied to the perturbation of the initial periodic operator on a crystal lattice.

Before starting with the first subsection let us recall that the general formula for a toroidal
pseudodifferential operator on L2(Td) has been introduced in (5.9). Subsequently, we shall
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need a slightly more general formula. Namely, the notion a toroidal pseudodifferential operator
Op(a) acting on u ∈ C∞(Td;Cn) and given by

[Op(a)u](ξ) :=
∑
µ∈Zd

e−2πiξ·µa(ξ, µ) ǔ(µ), ξ ∈ Td,

where a : Td × Zd → Mn(C) is called its symbol.

6.1 A few regular operators

In the first lemma we derive the symbol corresponding to the adjoint of a special class of
symbols.

Lemma 6.1. For a bounded a : Zd → Mn(C) and a fixed ν ∈ Zd, we consider the symbol
aν : Td × Zd → Mn(C) defined by

aν(ξ, µ) = e2πiξ·νa(µ), ∀ξ ∈ Td, µ ∈ Zd, (6.1)

and the symbol a†ν : Td × Zd → Mn(C) defined by

a†ν(ξ, µ) = e−2πiξ·νa(µ+ ν)∗, ∀ξ ∈ Td, µ ∈ Zd. (6.2)

Then the following equality holds in B
(
L2(Td;Cn)

)
: Op(aν)

∗ = Op(a†ν).

Proof. For any u, v ∈ C∞(Td;Cn) one has

⟨Op(aν)u, v⟩ =
∫
Td

dξ
⟨ ∑

µ∈Zd

e−2πiξ·µ
∫
Td

dζe2πiζ·µaν(ξ, µ)u(ζ), v(ξ)
⟩

=

∫
Td

dξ
∑
µ∈Zd

e−2πiξ·(µ−ν)

∫
Td

dζe2πiζ·µ⟨a(µ)u(ζ), v(ξ)⟩

=

∫
Td

dξ
∑
µ∈Zd

e−2πiξ·µ
∫
Td

dζe2πiζ·(µ+ν)⟨a(µ+ ν)u(ζ), v(ξ)⟩

=

∫
Td

dζ
∑
µ∈Zd

e2πiζ·(µ+ν)⟨a(µ+ ν)u(ζ), v̌(µ)⟩

=

∫
Td

dζ
⟨
u(ζ),

∑
µ∈Zd

e−2πiζ·µe−2πiζ·νa(µ+ ν)∗v̌(µ)
⟩

=⟨u,Op(a†ν)v⟩.

Some additional operators will be necessary. We denote by N = (N1, N2, . . . , Nd) the
position operators in l2(Zd;Cn) acting as [Njf ](µ) = µjf(µ) for any f : Zd → Cn with
compact support and for any µ ∈ Zd. For any ν ∈ Zd we also set Sν for the shift operator by
ν acting on any f ∈ l2(Zd;Cn) as [Sνf ](µ) = f(µ+ ν). It is easily observed that the operators
Nj extend to self-adjoint operators in l2(Zd;Cn) while Sν is a unitary operator in this Hilbert
space. We start by treating the short range type of assumption on the symbol that ensures
the regularity of the pseudodifferential operator.
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Lemma 6.2. Let a : Zd → Mn(C) be such that∫ ∞

1
dλ sup

λ<|µ|<2λ
∥a(µ)∥ < ∞ . (6.3)

Then for any fixed ν ∈ Zd the operator Op(aν + a†ν) belongs to C1,1(AI), where aν and a†ν
have been defined respectively in (6.1) and in (6.2).

Before the proof, let us mention that the interval on which the supremum is taken in (6.3)
is rather arbitrary. Indeed, it is easily observed that this condition is equivalent to∫ ∞

1
dλ sup

cλ<|µ|<c′λ
∥a(µ)∥ < ∞

for any constants c, c′ satisfying 0 < c < c′. This flexibility will be useful several times in the
following proofs.

Proof. This proof consists in an application of an abstract result for short-range type pertur-
bations presented in [2, Theorem 7.5.8]. We shall thus check the assumptions of this theorem

with G = H = L2(Td;Cn) and Λ = (1 − ∆Td)
1
2 ⊗ In. Condition (1) corresponds to the

boundedness of the unitary group generated by the self-adjoint operator Λ in H . Condi-
tion (2) corresponds to the boundedness of the closure of the operator Λ−2A2

I defined on the
domain D(A2

I). Indeed, thanks to the material presented before Lemma 5.6 we know that
A2

I is bounded from H0(Td;Cn) to H−2(Td;Cn) while Λ−2 is bounded from H−2(Td;Cn) to
H(Td;Cn). Since L2(Td;Cn) = H0(Td;Cn) the mentioned condition is satisfied.

Since Op(aν + a†ν) is symmetric by Lemma 6.1 it only remains to show that there exists
θ ∈ C∞

c

(
(0,∞)

)
not identically zero such that∫ ∞

1
dλ

∥∥∥θ (Λλ )Op(aν + a†ν)
∥∥∥
B(H )

< ∞. (6.4)

For that purpose, let us first compute the operators F ∗Op(aν)F and F ∗Op(a†ν)F , with
F ≡ F⊗In the unitary Fourier transform from l2(Zd;Cn) to L2(Td;Cn). A direct computation
leads then to the equality

F ∗Op(aν)F = Sνa(N) and F ∗Op(a†ν)F = a(N)∗S−ν

with S±ν the translation operator introduced before the statement, and a(N), resp. a(N)∗, the
operator of multiplication by a, resp. a∗, in l2(Zd;Cn). By using the unitarity of the Fourier
transform one then obtains for any function θ ∈ C∞(R+; [0, 1]) with support contained in
(
√
2, 2) that∥∥∥θ (Λλ )Op(aν + a†ν)

∥∥∥
B(H )

≤
∥∥∥θ ( ⟨N⟩

λ

)
F ∗Op(aν)F

∥∥∥
B(l2(Zd;Cn))

+
∥∥∥θ ( ⟨N⟩

λ

)
F ∗Op(a†ν)F

∥∥∥
B(l2(Zd;Cn))

=
∥∥∥θ ( ⟨N−ν⟩

λ

)
a(N)

∥∥∥
B(l2(Zd;Cn))

+
∥∥∥θ ( ⟨N⟩

λ

)
a(N)∗

∥∥∥
B(l2(Zd;Cn))

≤ sup
2λ2−1<|µ−ν|2<4λ2−1

∥a(µ)∥+ sup
2λ2−1<|µ|2<4λ2−1

∥a(µ)∗∥ .
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By using this final estimate and the comment made before the proof one readily obtains that
(6.4) is finite. One has thus checked all the assumptions of [2, Theorem 7.5.8], from which one

deduces that Op(aν + a†ν) belongs to C1,1(AI).

In the next lemma, we prove a slightly technical result which will be useful for the existence
and the completeness of the wave operators. For its statement the interpolation space N :=(
D(⟨N⟩), l2(Zd;Cn)

)
1
2
,1
is necessary. Note that a precise description of this space is given in [2,

Thm. 3.6.2], and that the following proof is inspired by a similar proof for Theorem 7.6.10 of
the same reference.

Lemma 6.3. Let a : Zd → Mn(C) satisfy (6.3) and let ν ∈ Zd be fixed. Then the operator
Sνa(N) belongs to B(N∗◦,N) where N∗◦ denotes the closure of l2(Zd;Cn) in N∗.

Proof. We observe that for fixed ν ∈ Zd one can find θ, θ̃ ∈ C∞
c

(
(0,∞)

)
not identically zero

such that the equality θ
( ⟨µ−ν⟩

λ

)
θ̃
( ⟨µ⟩

λ

)
= θ

( ⟨µ−ν⟩
λ

)
holds for any µ ∈ Zd and λ ≥ 1. Then one

infers that ∫ ∞

1

dλ

λ

∥∥∥λ1/2θ
(
⟨N⟩
λ

)
Sνa(N)f

∥∥∥ (6.5)

=

∫ ∞

1

dλ

λ

∥∥∥λ1/2θ
(
⟨N−ν⟩

λ

)
a(N)f

∥∥∥
≤

(∫ ∞

1
dλ sup

µ

∥∥∥θ ( ⟨µ−ν⟩
λ

)
a(µ)

∥∥∥)× sup
λ>1

∥∥∥λ−1/2θ̃
(
⟨N⟩
λ

)
f
∥∥∥ . (6.6)

The term (6.5) corresponds to the norm of Sνa(N)f in the space N while the second factor
in (6.6) corresponds to the norm of f in N∗. Since the first factor in (6.6) is bounded (by the
assumption and the remark made before the proof of Lemma 6.2), one deduces the statement.

Before turning our attention to the long range type of assumption we state a simple result
that can be thought of as a discrete version of the fundamental theorem of calculus. In its
statement, we use the norm | · |1 on Zd, namely |µ|1 =

∑d
j=1 |µj |. For any ν ∈ Zd and any

f : Zd → C we also set

[△νf ](µ) = f(µ+ ν)− f(µ), ∀µ ∈ Zd.

Lemma 6.4. For any fixed ν ∈ Zd there exist {jℓ}
|ν|1
ℓ=1 ⊂ {1, . . . , d} and {γℓ}

|ν|1
ℓ=1 ⊂ Zd with

|γℓ| ≤ |ν| such that for any f : Zd → C one has

△νf =

|ν|1∑
ℓ=1

sgn(νjℓ)(Sγℓ△jℓf) . (6.7)

Lemma 6.5. Let b : Zd → R be such that lim|µ|→∞ b(µ) = 0, and assume that for every
j ∈ {1, . . . , d} ∫ ∞

1
dλ sup

λ<|µ|<2λ
|(△jb)(µ)| < ∞ . (6.8)

Then, by setting [b](ξ, µ) := b(µ)In for any ξ ∈ Td and µ ∈ Zd, the operator Op(b) is self-
adjoint and belongs to C1,1(AI).
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Proof. Since b is real-valued, it directly follows from Lemma 6.1 that Op(b) is self-adjoint.
We shall now show that the commutator [Op(b), AI ], defined as a difference of operators

on C∞(Td;Cn), extends to an element of B
(
L2(Td;Cn)

)
. Since AI is a differential operator

of order 1, the exists a toroidal symbol a ∈ S1
(
Td × Zd;Mn(C)

)
such that AI = Op(a), see

Section 5.2. It is then easily observed that the operator Op(a)Op(b) coincides with Op(ab)
with the symbol ab given by a(ξ, µ)b(µ) for any ξ ∈ Td and µ ∈ Zd. On the other hand, a few
more computations show that the operator Op(b)Op(a) is also a toroidal pseudodifferential
operator Op(b ⋄ a) with symbol

b ⋄ a(ξ, µ) =
∑
ν∈Zd

e−2πiξ·νb(µ+ ν) ǎ(ν, µ) (6.9)

where ǎ(ν, µ) =
∫
Td dζe

2πiζ·νa(ζ, µ). Note that (6.9) is well-defined since the map ζ 7→ a(ζ, µ)
is smooth, and thus its inverse Fourier transform is of Schwartz class on Zd. We then observes
that r.h.s of (6.9) allows us to express the symbol c of [Op(b),Op(a)]. Indeed one gets

c(ξ, µ) := b ⋄ a(ξ, µ)− b(µ)a(ξ, µ) =
∑
ν∈Zd

e−2πiξ·ν [△νb](µ) ǎ(ν, µ)

= F
[
ν 7→ [△νb](µ) ǎ(ν, µ)

]
(ξ) .

A few computations show that

[F ∗Op(c)Ff ](µ) =
∑
ν∈Zd

č(µ− ν, ν)f(ν) =
∑
ν∈Zd

[△µ−νb](ν) ǎ(µ− ν, ν)f(ν).

Thus, the operator K := F ∗Op(c)F is bounded if the map (ν, µ) 7→ [△νb](µ) ǎ(ν, µ) belongs
to l1

(
Zd; l∞(Zd)

)
, with l1 for the ν variable and l∞ for the µ variable. In order to show this

property, recall that a ∈ S1
(
Td × Zd;Mn(C)

)
and by taking the equality (6.7) into account,

observe that for any q ∈ N

|[△νb](µ) ǎ(ν, µ)| =
∣∣∣ |ν|1∑
ℓ=1

sgn(νjℓ)[Sγℓ△jℓb](µ) ǎ(ν, µ)
∣∣∣

≤
|ν|1∑
ℓ=1

∣∣[Sγℓ△jℓb](µ)⟨µ⟩⟨ν⟩
−q

∣∣ ∣∣⟨ν⟩q⟨µ⟩−1ǎ(ν, µ)
∣∣

≤ Cq

|ν|1∑
ℓ=1

∣∣[Sγℓ⟨·⟩△jℓb](µ)
∣∣ [⟨µ+ γℓ⟩−1⟨µ⟩]⟨ν⟩−q

≤ Cq

|ν|1∑
ℓ=1

{
sup

|µ|−|γℓ|≤|β|≤|µ|+|γℓ|
⟨β⟩

∣∣[△jℓb](β)
∣∣}⟨γℓ⟩⟨ν⟩−q

≤ Cq

d∑
j=1

{
sup

|µ|−|ν|≤|β|≤|µ|+|ν|
⟨β⟩

∣∣[△jb](β)
∣∣}|νj |⟨ν⟩−q+1 (6.10)

≤ Cq⟨ν⟩−q+2

where Cq is a constant which depends on a and b but not on µ or ν, and which can be different
from one line to another one. Note that we have also used that supβ∈Zd⟨β⟩

∣∣[△jb](β)
∣∣ < ∞
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for any j ∈ {1, . . . , d}, as a consequence of condition (6.8). By choosing q large enough, this
expression belong to l1(Zd), which concludes the proof that K, and consequently [Op(b), AI ],
extend to bounded operators.

In order to apply [9, Theorem 6.1] we still need to show that∫ ∞

1

dλ
λ

∥∥θ (Λλ ) [iOp(b), AI ]
∥∥
B(L2(Td;Cn))

< ∞ (6.11)

for some function θ ∈ C∞
c

(
(0,∞)

)
not identically zero and for the operator Λ introduced in

the proof of Lemma 6.3. In fact, by using the unitarity of the Fourier transform one then
obtains for any function θ ∈ C∞(R+; [0, 1]) that∥∥θ (Λλ ) [iOp(b), AI ]

∥∥
B(L2(Td;Cn))

=
∥∥θ (Λλ )Op(c)

∥∥
B(L2(Td;Cn))

=
∥∥∥θ ( ⟨N⟩

λ

)
K
∥∥∥
B(l2(Zd;Cn))

=
∥∥∥Kθ

(
⟨N⟩
λ

)∥∥∥
B(l2(Zd;Cn))

,

where we have used in the last equality that iK and θ
(
⟨N⟩
λ

)
are self-adjoint.

Let us thus consider θ with support contained in (r, s) with r = 11
8 and s = 13

8 , and let

Kλ denote the operator Kθ
( ⟨N⟩

λ

)
. We shall again estimate the norm of Kλ by estimating the

norm l1 − l∞ of the map

(ν, µ) 7→ θ
(
⟨µ⟩
λ

)
[△νb](µ) ǎ(ν, µ) .

By the previous computation we know that λ → ∥Kλ∥1,∞ is bounded so we need only to
study its behavior when λ → ∞. For that purpose, observe first that

∥Kλ∥1,∞ =
∑
ν∈Zd

sup
µ∈Zd

|θ
(
⟨µ⟩
λ

)
[△νb](µ) ǎ(ν, µ)|

=
∑
ν∈Zd

sup√
r2λ2−1<|µ|<

√
s2λ2−1

|[△νb](µ) ǎ(ν, µ)|,
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and let us divide this sum in two parts. For the first we use the estimate (6.10):∑
|ν|<λ

4

sup√
r2λ2−1<|µ|<

√
s2λ2−1

|[△νb](µ) ǎ(ν, µ)|

≤
∑
|ν|<λ

4

sup√
r2λ2−1<|µ|<

√
s2λ2−1

Cq

d∑
j=1

{
sup

|µ|−|ν|≤|β|≤|µ|+|ν|
⟨β⟩

∣∣[△jb](β)
∣∣}|νj |⟨ν⟩−q+1


≤ Cq

∑
|ν|<λ

4

sup√
r2λ2−1<|µ|<

√
s2λ2−1

⟨µ⟩
d∑

j=1

{
sup

|µ|−|ν|≤|β|≤|µ|+|ν|

∣∣[△jb](β)
∣∣}|νj |⟨ν⟩−q+2


≤ Cqλ

∑
|ν|<λ

4

sup√
r2λ2−1<|µ|<

√
s2λ2−1

 d∑
j=1

{
sup

|µ|−|ν|≤|β|≤|µ|+|ν|

∣∣[△jb](β)
∣∣}|⟨ν⟩−q+3


≤ Cqλ

∑
ν<λ

4

d∑
j=1

sup√
r2λ2−1−|ν|<|β|<

√
s2λ2−1+|ν|

(∣∣[△jb](β)
∣∣) |⟨ν⟩−q+3

≤ Cqλ

d∑
j=1

sup√
r2λ2−1−λ

4
<|β|<

√
s2λ2−1+λ

4

∣∣[△jb](β)
∣∣,

where, for q = d+ 4, the estimate∑
|ν|<λ

4

⟨ν⟩−q+3 ≤
∑
ν∈Zd

⟨ν⟩−q+3 < ∞

has been used. Note that in the previous computation, Cq is a constant which does not depend
on µ or ν, but which can be different from one line to another one.

For the other part of the summation, we just compute∑
|ν|≥λ

4

sup√
r2λ2−1<|µ|<

√
s2λ2−1

|[△νb](µ) ǎ(ν, µ)|

≤
∑
|ν|≥λ

4

sup√
r2λ2−1<|µ|<

√
s2λ2−1

|ν|1∑
ℓ=1

|[Sγℓ△jℓb](µ) ǎ(ν, µ)|

≤ max
j

∥△jb∥∞
∑
|ν|≥λ

4

sup√
r2λ2−1<|µ|<

√
s2λ2−1

⟨µ⟩⟨ν⟩−q+1
∣∣⟨ν⟩q⟨µ⟩−1ǎ(ν, µ)

∣∣
≤ C ′

qλ
∑
|ν|≥λ

4

⟨ν⟩−q+1

with C ′
q a constant which does not depend on µ or ν. Hence for λ large enough and still for
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q = d+ 4 we get

∥Kλ∥1,∞ ≤ Cqλ

d∑
j=1

sup√
r2λ2−1−λ

4
<|β|<

√
s2λ2−1+λ

4

∣∣[△jb](β)
∣∣+ C ′

qλ
∑
|ν|≥λ

4

⟨ν⟩−d−3

≤ Cqλ

d∑
j=1

sup
λ<|β|<2λ

∣∣[△jb](β)
∣∣+ C ′

qλ
−2.

By finally taking into account the inequality
∥∥θ (Λλ ) [iOp(b), AI ]

∥∥
B(L2(Td;Cn))

≤ ∥Kλ∥1,∞ and

the assumption (6.8) one concludes that (6.11) is finite. By applying the statement of [9,
Theorem 6.1], one deduces that Op(b) belongs to C1,1(AI).

6.2 Regularity of the perturbations and proof of Theorem 2.2

Since the operator H0 is unitarily equivalent to a bounded analytically fibered operator in the
Hilbert space L2(Td;Cn), the second step consists in performing a similar transformation to
the operator JHJ ∗, where J was introduced in (2.4). For that purpose, recall first that
the maps U and I have been introduced respectively in (3.4) and in (4.1).

Proposition 6.6. The difference I U
(
∆(X,m0)−J∆(X,m)J ∗)U ∗I ∗ is a toroidal pseu-

dodifferential operator. Moreover, its symbol b : Td × Zd → Mn(C) is given by

b(ξ, µ) :=
∑

e∈A(X)

(
[T (e)](µ)− e2πiξ·η(e)[K(e)](µ)

)
(6.12)

with K(e) : Zd → Mn(C) and T (e) : Zd → Mn(C) defined by

[K(e)] (µ)jℓ :=


(

m((µ−η(e))̂e)

m((µ−η(e))o(̂e))
1
2m((µ−η(e))t(̂e))

1
2
− m0(e)

m0(o(e))
1
2m0(t(e))

1
2

)
if e = (xj , xℓ)

0 otherwise
(6.13)

and

[T (e)] (µ)jℓ :=

{(
m(µê)

m(µo(̂e)) −
m0(e)

m0(o(e))

)
if o(e) = xj and j = ℓ

0 otherwise
(6.14)

Before the proof, let us introduce the following convenient map:

ı : V (X) → {1, . . . , n}, xı(x) := ̂̌x,
which associates to any x ∈ V (X) the index of the representative xj ∈ V (X) which belongs
to the same orbit under the action of Zd.

Proof. By a direct computation one first obtains an explicit expression for the operator
J∆(X,m)J ∗, namely for any f ∈ l2(X,m0) and x ∈ V (X),

[J∆(X,m)J ∗f ](x) =
∑
e∈Ax

m(e)

m(x)
1
2m(t(e))

1
2

m0(t(e))
1
2

m0(x)
1
2

f
(
t(e)

)
− degm(x)f(x) .
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In particular, by using the unique decomposition introduced in Section 3 as well as the equal-
ities (3.5) one has for x = µxj

[J∆(X,m)J ∗f ](µxj) =
∑

e∈Aµxj

m(e)

m(µxj)
1
2m(t(e))

1
2

m0(t(e))
1
2

m0(µxj)
1
2

f
(
t(e)

)
− degm(µxj)f(µxj)

=
∑

e∈Axj

m(µe)

m(µo(e))
1
2m(µt(e))

1
2

m0(µt(e))
1
2

m0(µo(e))
1
2

f
(
µt(e)

)
− degm(µxj)f(µxj)

=
∑
e∈Axj

m(µê)

m(µo(ê))
1
2m(µt(ê))

1
2

m0(t(e))
1
2

m0(o(e))
1
2

f
(
µt(ê)

)
− degm(µxj)f(µxj) .

Now, by taking into account the explicit form of U and I , and by identifying u ∈
C∞(Td;Cn) with (u1, . . . , un) with each uj ∈ C∞(Td) one infers that

[I U J∆(X,m)J ∗U ∗I ∗u]j(ξ)

=
∑
µ∈Zd

e−2πiξ·µ
∑
e∈Axj

m(µê)

m(µo(ê))
1
2m(µt(ê))

1
2

ǔı(t(e))
(
µ+ η(e)

)
−

∑
µ∈Zd

e−2πiξ·µ degm(µxj)ǔj(µ)

=
∑
µ∈Zd

e−2πiξ·µ
∑
e∈Axj

m((µ− η(e))ê)

m((µ− η(e))o(ê))
1
2m((µ− η(e))t(ê))

1
2

e2πiξ·η(e)ǔı(t(e))(µ)

−
∑
µ∈Zd

e−2πiξ·µ
( ∑

e∈Axj

m(µê)

m(µo(ê))

)
ǔj(µ) ,

where the definition of the degree provided in (2.1) has used for the last equality. Clearly,
this operator corresponds to a toroidal pseudodifferential operator. It then only remains
to combine this expression with (4.2) and one deduces that the operator I U

(
∆(X,m0) −

J∆(X,m)J ∗)U ∗I ∗ is also a toroidal pseudodifferential operator whose symbol is given by
(6.12).

The precise formula for the symbol b is useful because one can now apply Lemma 6.2 to
see that I U

(
∆(X,m0)− J∆(X,m)J ∗)U ∗I ∗ belongs to C1,1(AI).

Lemma 6.7. Assume that the measure m satisfies the condition (2.5). Then the difference
I U

(
∆(X,m0)− J∆(X,m)J ∗)U ∗I ∗ belongs to C1,1(AI).

Proof. Observe first that the symbol b of the previous statement satisfies

b(ξ, µ) =
∑

e∈A(X)

(
[T (e)](µ)− e2πiξ·η(e)[K(e)](µ)

)
=

∑
e∈A(X)

[T (e)](µ)− 1

2

∑
e∈A(X)

(
e2πiξ·η(e)[K(e)](µ) + e2πiξ·η(̄e)[K(ē)](µ)

)
.
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By keeping in mind that

η(e)ê = ê, η(e)o(ê) = t(ê), and η(e)t(ê) = o(ê) (6.15)

one observes that for e = (xj , xℓ)

[K(ē)](µ)ℓj =
m((µ− η(ē))ˆ̄e)

m((µ− η(ē))o(ˆ̄e))
1
2m((µ− η(ē))t(ˆ̄e))

1
2

− m0(ē)

m0(o(ē))
1
2m0(t(ē))

1
2

=
m((µ+ η(e))ˆ̄e)

m((µ+ η(e))o(ˆ̄e))
1
2m((µ+ η(e))t(ˆ̄e))

1
2

− m0(e)

m0(t(e))
1
2m0(o(e))

1
2

=
m(µê)

m(µt(ê))
1
2m(µo(ê))

1
2

− m0(e)

m0(t(e))
1
2m0(o(e))

1
2

=
m(µê)

m(µo(ê))
1
2m(µt(ê))

1
2

− m0(e)

m0(o(e))
1
2m0(t(e))

1
2

= [K(e)](µ+ η(e))jℓ .

By using the notation of Lemma 6.1 one also deduces that

e2πiξ·η(e)[K(e)](µ) + e2πiξ·η(̄e)[K(ē)](µ) = e2πiξ·η(e)[K(e)](µ) + e−2πiξ·η(e)([K(e)](µ+ η(e))
)∗

=
[
K(e)η(e)

]
(ξ, µ) +

[
K(e)†η(e)

]
(ξ, µ)

=
(
K(e)η(e) +K(e)†η(e)

)
(ξ, µ) ,

and by summing up these information, one has thus obtained that

b =
∑

e∈A(X)

(
T (e)− 1

2

(
K(e)η(e) +K(e)†η(e)

))
. (6.16)

We are thus in a suitable position for using Lemma 6.2, and it remains to show that
the condition (2.5) implies the condition (6.3) for the corresponding function a. Since the
sum in (6.16) is finite, we can consider the contribution due to each e separately. Let us fix

e ∈ A(X) and set for any µ ∈ Zd: f(µ) := m((µ−η(e))̂e)
m((µ−η(e))o(̂e)) , g(µ) :=

m(µê)

m(µo(̂e))
, f0(µ) :=

m0(e)
m0(o(e))

and

g0(µ) :=
m0(e)

m0(o(e))
, the last two expressions being clearly independent of µ. Then, by taking the

relations (6.15) into account one deduces that

∥[K(e)] (µ)∥ =
∣∣∣f(µ) 1

2 g(µ)
1
2 − f0(µ)

1
2 g0(µ)

1
2

∣∣∣
=

∣∣∣∣∣(f(µ)− f0(µ)
) g(µ)

1
2

f(µ)
1
2 + f0(µ)

1
2

+
(
g(µ)− g0(µ)

) f0(µ)
1
2

g(µ)
1
2 + g0(µ)

1
2

∣∣∣∣∣ .
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Since the functions g
1
2

f
1
2+f

1
2
0

and
f

1
2
0

g
1
2+g

1
2
0

are bounded on Zd we finally obtain

sup
λ<|µ|<2λ

∥[K(e)] (µ)∥ ≤ C
(

sup
λ<|µ|<2λ

|f(µ)− f0(µ)|+ sup
λ<|µ|<2λ

|g(µ)− g0(µ)|
)

≤ C
(

sup
λ<|µ|<2λ

∣∣∣ m((µ− η(e))ê)

m((µ− η(e))o(ê))
− m0(e)

m0(o(e))

∣∣∣
+ sup

λ<|µ|<2λ

∣∣∣ m(µê)

m(µo(ê))
− m0(e)

m0(o(e))

∣∣∣).
By taking into account the invariance of condition (2.5) under a finite shift, one deduces from
this condition and from the previous computation that∫ ∞

1
dλ sup

λ<|µ|<2λ
∥[K(e)] (µ)∥ < ∞. (6.17)

As a consequence of Lemma 6.2 it means that Op
(
K(e)η(e) +K(e)†η(e)

)
∈ C1,1(AI).

For T (e) the situation is much simpler. Clearly, [T (e)](µ) is a self-adjoint matrix for
any µ ∈ Zd. By using again the notation introduced in Lemma 6.1 one infers that T (e) ≡
T (e)0 = T (e)†0 which implies that Op

(
T (e)

)
is self-adjoint. In addition, it easily follows from

the assumption (6.3) that ∫ ∞

1
dλ sup

λ<|µ|<2λ
∥[T (e)] (µ)∥ < ∞, (6.18)

which corresponds to the condition (6.3) of Lemma 6.2. It thus follows that Op(b) belongs to
C1,1(AI), which corresponds to the statement of the lemma.

We now turn our attention to the multiplicative perturbation. Since JRJ ∗ = R we can
directly consider the operator R−R0 in l2(X,m0).

Lemma 6.8. Assume that the difference R−R0 is equal to Rs +Rl and that these functions
satisfy (2.6) and (2.7). Then I U (R−R0)U ∗I ∗ belongs to C1,1(AI).

Proof. Let us first set for any x ∈ V (X)

R̃s(x) := Rs(x) +
(
Rl(x)−Rl([x]x1)

)
and R̃l(x) := Rl([x]x1)

which implies that R = R̃s + R̃l. Note that a similar decomposition in the continuous case
was already used in [15]. The terms R̃s and R̃l will be treated separately, starting with R̃s.

By some easy computations we get that I U R̃sU ∗I ∗ = Op(rs), with the symbol rs :
Zd → Mn(C) (and thus independent of the variable ξ) given by

rs(µ)jℓ =
(
Rs(µxj) +Rl(µxj)−Rl(µx1)

)
δjℓ. (6.19)

Since rs(µ) = rs(µ)
∗ for any µ ∈ Zd, we only need to show that rs satisfies (6.3) in order

to apply the content of Lemma 6.2. In fact, a sufficient condition is to show that for any
j ∈ {1, . . . , n} one has ∫ ∞

1
dλ sup

λ<|µ|<2λ
|rs(µ)jj | < ∞. (6.20)
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For that purpose, let us consider for any j ∈ {2, 3, . . . n} a fixed finite path αj = {ej,p}
Nj

p=1

between x1 and xj . By applying µ to each edge in αj we get a path between µx1 and µxj . We
will then use the fact that for a path α = {ep}Np=1 between two vertices x and y, i.e. o(e1) = x,

t(ep) = o(ep+1) and t(eN ) = y, the following formula holds for every f ∈ C0(X):

f(y)− f(x) =
∑
e∈α

(
f
(
t(e)

)
− f

(
o(e)

))
.

Keeping this notation in mind we can compute

|rs(µ)jj | = |Rs(µxj) +Rl(µxj)−Rl(µx1)|

≤ |Rs(µxj)|+
Nj∑
p=1

∣∣Rl

(
t(µej,p)

)
−Rl

(
o(µej,p)

)∣∣.
Clearly, as a consequence of assumption (2.6) the first term satisfies∫ ∞

1
dλ sup

λ<|µ|<2λ
|Rs(µxj)| ≤

∫ ∞

1
dλ sup

λ<|[x]|<2λ
|Rs(x)| < ∞.

On the other hand, as a consequence of assumption (2.7) and its invariance under translations
one also infers that ∫ ∞

1
dλ sup

λ<|µ|<2λ

∣∣Rl

(
t(µej,p)

)
−Rl

(
o(µej,p)

)∣∣ < ∞ (6.21)

for any ej,p. One then deduces that the estimate (6.20) holds, and by applying Lemma 6.2
one gets that the operator Op(rs) belongs to C1,1(AI).

For the term R̃l we first observe with the notations of Lemma 6.5 that I U R̃lU
∗I ∗ =

Op(rlIn), with the symbol rl : Zd → R defined by

rl(µ) = Rl(µx1) . (6.22)

It remains to show that rl satisfies the conditions of Lemma 6.5. For that purpose let {δj}dj=1

denote the canonical base of Zd. We fix βj = {ej,p}
Nj
p a path between x1 and δjx1. By applying

µ to each edge in βj we get a path between µx1 and (µ+ δj)x1. Therefore we have

|[△jrl](µ)| = |Rl

(
(µ+ δj)x1

)
−Rl(µx1)| ≤

Nj∑
p=1

∣∣Rl

(
t(µej,p)

)
−Rl

(
o(µej,p)

)∣∣.
By invoking the same argument as before it follows from (6.21) that the assumption (6.8) of
Lemma 6.5 is satisfied. By applying this lemma, it follows that Op(rlIn) belongs to C1,1(AI),
as expected.

Proof of Theorem 2.2. As a consequence of the previous lemmas the difference

I U
(
JHJ ∗ −H0

)
U ∗I ∗ (6.23)

belongs to C1,1(AI). Moreover, it follows from the arguments presented in the proofs of these
lemmas that the difference (6.23) can be written as a finite sum of simpler operators, each of
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them being compact and self-adjoint. One thus infers that the operator (6.23) is a compact
operator and self-adjoint in L2(Td;Cn). We are thus in a suitable position for using Theorem
5.2 with S = h0 and V defined by (6.23). For µ̃AI (h), one can use the result obtained in (5.12),
by considering a slightly bigger interval I ′ with I ⊂ I ′ ⊂ R \ τ . Then, the points 1. and 2. of
Theorem 2.2 follow from Theorem 5.2 by taking into account the conjugation by the unitary
transform I U .

For the existence and asymptotic completeness of the wave operators, observe first that
since J is unitary, these properties for W±(H,H0;J ∗, I) are equivalent to the same proper-
ties for W±(JHJ ∗, H0; I). Then, by using again the unitary transform I U , one observes
that this is still equivalent to the existence and the asymptotic completeness of

W±(I U JHJ ∗U ∗I ∗,I U H0U
∗I ∗; I). (6.24)

Such properties will now be deduced from [2, Theorem 7.4.3]. Indeed, according to that state-
ment, if the difference (6.23) belongs to B(K∗◦,K), with K =

(
D(AI), L

2(Td;Cn)
)

1
2
,1
and K∗◦

the closure of L2(Td;Cn) in K∗, then the local wave operators (6.24) exist and are asymptot-
ically complete.

In order to check this condition, recall that the operator Λ :=
(
I−∆Td

)
⊗In had been intro-

duced in the proof of Lemma 5.6, and as a consequence of Nelson’s commutator theorem one
has D(Λ) ⊂ D(AI). It then follows that L :=

(
D(Λ), L2(Td;Cn)

)
1
2
,1
⊂

(
D(AI), L

2(Td;Cn)
)

1
2
,1
,

as shown for example in [2, Corol. 2.6.3], and then B(L∗◦,L) ⊂ B(K∗◦,K). However, we
shall still consider the Fourier transform version of the spaces. More precisely, let us set
N := F ∗(D(Λ), L2(Td;Cn)

)
1
2
,1

which is equal to
(
D(⟨N⟩), l2(Zd;Cn)

)
1
2
,1
. Accordingly, one

has to show that
F ∗I U

(
JHJ ∗ −H0

)
U ∗I ∗F ∈ B(N∗◦,N). (6.25)

Fortunately, the l.h.s. has already been computed and corresponds to∑
e∈A(X)

(
[T (e)](N)− Sη(e)[K(e)](N)

)
+ rs(N) (6.26)

with K(e) and T (e) introduced respectively in (6.13) and (6.14), and rs introduced in (6.19)
when Rl = 0. We also recall that Sη(e) denotes the shift operator by η(e). In addition, each of
these terms satisfy an estimate of the form∫ ∞

1
dλ sup

λ<|µ|<2λ
∥V (µ)∥ < ∞,

with V replacing K(e), T (e) or rs, as shown in (6.17), (6.18), and (6.20). Thus, we can
apply Lemma 6.3 and deduce that all operator Sη(e)[K(e)](N), [T (e)](N) and rs(N) belong to
B(N∗◦,N). Since the summation in (6.26) is finite, one concludes that the inclusion in (6.25)
indeed holds.
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