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We carry out the spectral analysis of matrix valued perturbations of three-
dimensional Dirac operators with variable magnetic field of constant direction.
Under suitable assumptions on the magnetic field and on the pertubations, we
obtain a limiting absorption principle, we prove the absence of singular continuous
spectrum in certain intervals and state properties of the point spectrum. Various
situations, for example, when the magnetic field is constant, periodic or diverging
at infinity, are covered. The importance of an internal-type operator(a two-
dimensional Dirac operator) is also revealed in our study. The proofs rely on com-
mutator methods. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1792933]

I. INTRODUCTION AND MAIN RESULTS

We consider a relativistic spin-1
2 particle evolving inR3 in presence of a variable magnetic

field of constant direction. By virtue of the Maxwell equations, we may assume with no loss of

generality that the magnetic field has the formBW sx1,x2,x3d=s0,0,Bsx1,x2dd. So the unperturbed
system is described, in the Hilbert spaceL2sR3;C4d, by the Dirac operator

H0: = a1P1 + a2P2 + a3P3 + bm,

whereb;a0,a1,a2,a3 are the usual Dirac–Pauli matrices,m is the strictly positive mass of the
particle andP j : =−i] j −aj are the generators of the magnetic translations with a vector potential
aWsx1,x2,x3d=sa1sx1,x2d ,a2sx1,x2d ,0d that satisfiesB=]1a2−]2a1. Since a3=0, we have written
P3: =−i]3 instead ofP3.

In this paper we study the stability of certain parts of the spectrum ofH0 under matrix valued
perturbationsV. More precisely, ifV satisfies some natural hypotheses, we shall prove the absence
of singular continuous spectrum and the finiteness of the point spectrum ofH : =H0+V in intervals
of R corresponding to gaps in the symmetrized spectrum of the operatorH0: =s1P1+s2P2

+s3m in L2sR2;C2d. The matricess j are the Pauli matrices and the symmetrized spectrumssym
0 of

H0 is the union of the spectra ofH0 and −H0. We stress that our analysis does not require any
restriction on the behavior of the magnetic field at infinity. Nevertheless, the pertinence of our
work depends on a certain property of the internal-type operatorH0; namely, the size and the
number of gaps inssym

0 . We refer to Refs. 2, 7, 10, 12, and 16 for various results on the spectrum
of H0, especially in the situations of physical interest, for example, whenB is constant, periodic or
diverges at infinity.

Technically, this work relies on commutator methods initiated by Mourre14 and extensively
developed in Ref. 1. For brevity we shall constantly refer to the latter reference for notations and
definitions. Our choice of a conjugate operator enables us to treat Dirac operators with general
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magnetic fields provided they point in a constant direction. On the other hand, as already put into
evidence in Ref. 9, the use of a conjugate operator with a matrix structure has a few “rather
awkward consequences” for long-range perturbations. We finally mention that this study is the
counterpart for Dirac operators of Ref. 13, where only Schrödinger operators are considered.
Unfortunately, the intrinsic structure of the Dirac equation prevents us from using the possible
magnetic anisotropy to control the perturbations(see Remark 3.2 for details).

We give now a more precise description of our results. For simplicity we impose the conti-
nuity of the magnetic field and avoid perturbations with local singularities. Hence we assume that
B is a CsR2;Rd-function and choose any vector potentialaW =sa1,a2,0dPCsR2;R3d, e.g. the one
obtained by means of the transversal gauge.16 The definitions below concern the admissible per-
turbations. In the long-range case, we restrict them to the scalar type in order not to impose
unsatisfactory constraints. In the sequel,BhsC4d stands for the set of 434 Hermitian matrices, and
i ·i denotes the norm of the Hilbert spaceH : =L2sR3;C4d as well as the norm ofBsHd, the set of
bounded linear operators onH. N : =h0,1,2, . . .j is the set of natural numbers.q is an arbitrary
C`sf0,`dd-function such thatq=0 near 0 andq=1 near infinity.Qj is the multiplication operator

by the coordinatexj in H, and the expressionk·l corresponds toÎ1+s·d2.
Definition 1.1: Let V be a multiplication operator associated with an element of

L`sR3;BhsC4dd.

(a) V is small at infinity if limr→`iqskQl / rdVi=0,
(b) V is short-range ife1

`iqskQ3l / rdVidr ,`,
(c) Let VL be in C1sR3;Rd with x° kx3ls] jVLdsxd in L`sR3;Rd for j =1,2,3, then V: =VL is

long-range if

E
1

` IqS kQ3l
r

DkQ3ls] jVdIdr

r
, ` for j = 1,2,3.

Note that Definitions 1.1.(b) and 1.1.(c) differ from the standard ones: The decay rate is
imposed only in thex3 direction.

We are in a position to state our results. LetDskQ3ld denote the domain ofkQ3l in H, then the
limiting absorption principle for H is expressed in terms of the Banach space
G : =sDskQ3ld ,Hd1/2,1 defined by real interpolation.1 For convenience, we recall thatDskQ3lsd is
contained inG for eachs.1/2.

Theorem 1.2: Assume that B belongs to CsR2;Rd, and that V belongs toL`sR3;BhsC4dd, is
small at infinity and can be written as the sum of a short-range and a long-range matrix valued
function. Then

(a) The point spectrum of the operator H inR \ssym
0 is composed of eigenvalues of finite multi-

plicity and with no accumulation point inR \ssym
0 .

(b) The operator H has no singular continuous spectrum inR \ssym
0 .

(c) The limitslim«→+0kc ,sH−l7 i«d−1cl exist for eachcPG, uniformly in l on each compact
subset ofR \ hssym

0 øsppsHdj.

The limiting absorption principle(c), together with the inclusions mentioned before the theo-
rem, lead to locallyH-smooth operators. They imply the existence of local wave operators.

Corollary 1.3: Let V belong toL`sR3;BhsC4dd and be small at infinity. Assume there exists
some s.1 such thatkQ3lsVPBsHd. Then for each open set J,R \ hssym

0 øsppsHdj, the local wave
operatorss-limt→±`eitH0e−itHEHsJd exist and their ranges are equal to EH0sJd, where EH and EH0

are the spectral measures of H and H0, respectively.
Remark 1.4: H0-bounded perturbations (with relative bound less than one) may also be

treated with some slight adaptations of Definition 1.1. In particular Coulomb-type potentials and
Zeeman effect11 could be considered for certain magnetic fields and vector potentials. However, to
our knowledge, there is not any explicit class of H0-bounded perturbations for arbitrary continu-
ous magnetic fields. For this reason, we concentrate on bounded potentials V only, and thus
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present a simplified version of a more general, and more complicated, perturbation theory.
The above statements seem to be new for such a general magnetic field. In the special but

important case of a nonzero constant magnetic fieldB0, the admissible perturbations introduced in
Definition 1.1 are more general than those allowed in Ref. 17. We stress that in this situationssym

0

is equal toh±Î2nB0+m2:nPNj, which implies that there are plenty of gaps where our analysis
gives results. On the other hand, ifBsx1,x2d→0 asusx1,x2du→`, our treatment gives no informa-
tion since boths−` ,−mg andfm,`d belong tossym

0 . We finally mention Ref. 3 for related work on
perturbations of magnetic Dirac operators.

II. MOURRE ESTIMATE FOR THE OPERATOR H0

A. Preliminaries

Let us start by recalling some known results. The operatorH0 is essentially self-adjoint on
D : =C0

`sR3;C4d [Ref. 5, Thm. 2.1]. Its spectrum is symmetric with respect to 0 and does not
contain the intervals−m,md [Ref. 16, Cor. 5.14]. Thus the subsetH0D is dense inH sinceD is
dense inDsH0d (endowed with the graph topology) andH0 is a homeomorphism fromDsH0d onto
H.

We now introduce a suitable representation of the Hilbert spaceH. We consider the partial
Fourier transformation

F : D → E
R

%

H12dj, sFcdsjd: =
1

Î2p
E

R
e−ijx3cs·,x3ddx3, s2.1d

whereH12: =L2sR2;C4d. This map extends uniquely to a unitary operator fromH onto eR
%H12dj,

which we denote by the same symbolF. As a first application, one obtains the following direct
integral decomposition ofH0:

FH0F−1 =E
R

%

H0sjddj,

whereH0sjd is a self-adjoint operator inH12 acting asa1P1+a2P2+a3j+bm on C0
`sR2;C4d. In

the following remark we draw the connection between the operatorH0sjd and the operatorH0

introduced in Sec. I. It reveals the importance of the internal-type operatorH0 and shows why its
negative −H0 also has to be taken into account.

Remark 2.1: The operator H0s0d acting on C0
`sR2;C4d is unitarily equivalent to the direct sum

operator s m P−

P+ −m
d % s m P+

P− −m
d acting on C0

`sR2;C2d % C0
`sR2;C2d, where P± : =P1± iP2. Now, these

two matrix operators act inL2sR2;C2d and are essentially self-adjoint on C0
`sR2;C2d [Ref. 5, Thm.

2.1]. However, the first one is nothing but H0, while the second one is unitarily equivalent to−H0

(this can be obtained by means of the abstract Foldy–Wouthuysen transformation [Ref. 16, Thm.
5.13]). Therefore, H0s0d is essentially self-adjoint on C0

`sR2;C4d and

sfH0s0dg = ssH0d ø ss− H0d ; ssym
0 .

Moreover, there exists a relation betweensfH0sjdg andssym
0 . Indeed, for jPR fixed, one can show

that H0sjd2=H0s0d2+j2 on DsH0sjd2d=DsH0s0d2d, so that

sfH0sjd2g = sfH0s0d2 + j2g = ssfH0s0dgd2 + j2 = sssym
0 d2 + j2, s2.2d

where the spectral theorem has been used for the second equality. Since the spectrum of H0sjd is
symmetric with respect to 0 [Ref. 16, Cor. 5.14], it follows that

sfH0sjdg = − Îsssym
0 d2 + j2 ø Îsssym

0 d2 + j2.

Definem0: = infussym
0 u (which is bigger or equal to m because H0 has no spectrum ins−m,md [Ref.

16, Cor. 5.14]). Then from the direct integral decomposition of H0, one readily gets
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ssH0d = s− `,− m0g ø fm0, + `d. s2.3d

We conclude the section by giving two technical lemmas in relation with the operatorH0
−1.

Proofs can be found in an Appendix.
Lemma 2.2:

(a) For each nPN, H0
−nD belongs toDsQ3d,

(b) P3H0
−1 is a bounded self-adjoint operator equal to H0

−1P3 on DsP3d. In particular, H0
−1H

belongs toDsP3d.

One may observe that, given aC1sR ;Cd-function f with f8 bounded, the operatorfsQ3d is
well-defined onDsQ3d. Thus fsQ3dH0

−nD is a subset ofH for eachnPN. The preceding lemma
and the following simple statement are constantly used in the sequel.

Lemma 2.3: Let f be in C1sR ;Cd with f8 bounded, and nPN. Then

(a) iH0
−1fsQ3d− i f sQ3dH0

−1 is equal to−H0
−1a3f8sQ3dH0

−1 on H0
−nD,

(b) P3H0
−1fsQ3d− fsQ3dP3H0

−1 is equal to isP3H0
−1a3−1df8sQ3dH0

−1 on D.

Both right terms belong toBsHd. For shortness we shall denote them byfiH0
−1, fsQ3dg and

fP3H0
−1, fsQ3dg, respectively.

B. The conjugate operator

The aim of the present section is to define an appropriate operator conjugate toH0. To begin
with, one observes thatQ3P3H0

−1D,H as a consequence of Lemma 2.2. In particular, the formal
expression

A: =
1

2
sH0

−1P3Q3 + Q3P3H0
−1d s2.4d

leads to a well-defined symmetric operator onD.
Proposition 2.4: The operator A is essentially self-adjoint onD and its closure is essentially

self-adjoint on any core forkQ3l.
Proof: The claim is a consequence of Nelson’s criterion of essential self-adjointness[Ref. 15

Thm. X.37] applied to the triplehkQ3l ,A,Dj. Let us simply verify the two hypotheses of that
theorem. By using Lemmas 2.2 and 2.3, one first obtains that for allcPD:

iAci = ISP3H0
−1Q3 −

1

2
fP3H0

−1,Q3gDcI ø CikQ3lci,

for some constantC.0 independent ofc. Then, for allcPD one has

kAc,kQ3lcl − kkQ3lc,Acl = i ImkQ3c,fP3H0
−1,kQ3lgcl=i Reksa3P3H0

−1 − 1dQ3c,Q3kQ3l−1H0
−1cl.

A few more commutator calculations, using again Lemma 2.3 withfsQ3d=kQ3l1/2, lead to the
following result: For allcPD, there exists a constantD.0 independent ofc such that

ukAc,kQ3lcl − kkQ3lc,Aclu ø DikQ3l1/2ci2.

h

As far as we know, the operator(2.4) has never been employed before for the study of
magnetic Dirac operators. In Ref. 17, a slightly different conjugate operator has been introduced
for Dirac operators with constant magnetic field, namely
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A =
1

2
UFW

−1 skP3l−1P3Q3 + Q3P3kP3l−1dbUFW,

whereUFW is the Foldy–Wouthuysen transformation that diagonalizesH0. Though this operator
could also be used in our more general context, it presents the major drawback of making the
perturbation theory somewhat more complicated.

C. Strict Mourre estimate for H0

We now gather some results on the regularity ofH0 with respect toA. We recall thatDsH0d*

is the adjoint space ofDsH0d and that one has the continuous dense embeddings
DsH0d�H�DsH0d* , whereH is identified with its adjoint through the Riesz isomorphism.

Proposition 2.5:

(a) The quadratic formDsAd{c° kH0
−1c , iAcl−kAc , iH0

−1cl extends uniquely to the bounded
form defined by the operator−H0

−1sP3H0
−1d2H0

−1PBsHd.
(b) The groupheitAjtPR leavesDsH0d invariant.
(c) The quadratic form

DsAd { c ° kH0
−1sP3H0

−1d2H0
−1c,iAcl − kAc,iH0

−1sP3H0
−1d2H0

−1cl, s2.5d

extends uniquely to a bounded form onH.

In the framework of Ref. 1, the statements of(a) and(c) mean thatH0 is of classC1sAd andC2sAd,
respectively.

Proof:

(a) For anycPD, one gets

2skH0
−1c,iAcl − kAc,iH0

−1cld = kfiH0
−1,Q3gc,P3H0

−1cl + kP3H0
−1c,fiH0

−1,Q3gcl

=− kH0
−1c,sa3P3H0

−1 + H0
−1a3P3dH0

−1cl, s2.6d

where we have used Lemmas 2.2 and 2.3. Furthermore, one has

H0
−1a3 = − a3H0

−1 + 2H0
−1P3H0

−1, s2.7d

as an operator identity inBsHd. When insertings2.7d into s2.6d, one obtains the equality

kH0
−1c,iAcl − kAc,iH0

−1cl = − kc,H0
−1sP3H0

−1d2H0
−1cl. s2.8d

SinceD is a core forA, the statement is obtained by density. We shall writefiH0
−1,Ag for the

bounded extension of the quadratic formDsAd{c° kH0
−1c , iAcl−kAc , iH0

−1cl.
(b) SinceDsH0d is not explicitly known, one has to invoke an abstract result in order to show

the invariance. LetfiH0,Ag be the operator inBsDsH0d ,DsH0d*d associated with the unique
extension toDsH0d of the quadratic formc° kH0c , iAcl−kAc , iH0cl defined for allc
PDsH0dùDsAd. Then DsH0d is invariant underheitAjtPR if H0 is of classC1sAd and if
fiH0,AgDsH0d,H [Ref. 8, Lemma 2]. From Eq.(2.8) and[Ref. 1, Eq.(6.2.24)], one obtains
the following equalities valid in form sense onH:

− H0
−1sP3H0

−1d2H0
−1 = fiH0

−1,Ag = − H0
−1fiH0,AgH0

−1.

ThusfiH0,Ag andsP3H0
−1d2 are equal as operators inBsDsH0d ,DsH0d*d. But since the latter

belongs toBsHd, fiH ,AgDsH0d is included inH.
(c) The boundedness onD of the quadratic form(2.5) follows by inserting(2.4) into the r.h.s.

term of(2.5) and by applying repeatedly Lemma 2.3 withfsQ3d=Q3. Then one concludes by
using the density ofD in DsAd. h
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From now on we shall simply denote the closure inH of fiH0,Ag by T=sP3H0
−1d2PBsHd.

One interest of this operator is thatFTF−1 is boundedly decomposable[Ref. 6, Prop. 3.6], more
precisely:

FTF−1 =E
R

%

Tsjddj with Tsjd = j2H0sjd−2 P BsH12d.

In the following definition, we introduce two functions giving the optimal value to a Mourre-
type inequality. Remark that slight modifications have been done with regard to the usual defini-
tion [Ref. 1, Sec. 7.2.1].

Definition 6: Let H be a self-adjoint operator in a Hilbert spaceH and assume that S is a
symmetric operator inBsDsHd ,DsHd*d. Let EHsl ;«d : =EHssl−« ,l+«dd be the spectral projec-
tion of H for the intervalsl−« ,l+«d. Then, for alllPR and «.0, we set

%H
Ssl;«d: = supha P R : EHsl;«dSEHsl;«d ù aEHsl;«dj,

%H
Ssld: = sup

«.0
%H

Ssl;«d.

Let us make three observations: The inequality%H
Ssl ;«8dø%H

Ssl ;«d holds whenever«8ù«,
%H

Ssld= +` if l does not belong to the spectrum ofH, and%H
Ssldù0 for all lPR if Sù0. We

also mention that in the case of two self-adjoint operatorsH andA in H, with H of classC1sAd and
S: =fiH ,Ag, the function%H

Ss·d is equal to the function%H
As·d defined in[Ref. 1, Eq. 7.2.4]. Taking

advantage of the direct integral decomposition ofH0 andT, one obtains for alllPR and«.0:

%H0

T sl;«d = ess inf
jPR

%H0sjd
Tsjd sl;«d. s2.9d

Now we can deduce a lower bound for%H0

T s·d.
Proposition 2.7: One has

%H0

T sld ù infHl2 − m2

l2 : m P ssym
0 ù f0,ulugJ , s2.10d

with the convention that the infimum over an empty set is+`.
Proof: We first consider the caselù0.

(i) Recall from(2.3) that m0; infussym
0 u=infhssH0dù f0, +`dj. Thus, forlP f0,m0d the l.h.s.

term of (2.10) is equal to +̀ , sincel does not belong to the spectrum ofH0. Hence(2.10)
is satisfied onf0,m0d.

(ii ) If lPssym
0 , then the r.h.s. term of(2.10) is equal to 0. However, sinceT is positive,

%H0

T sldù0. Hence the relation(2.10) is again satisfied.
(iii ) Let 0,«,m0,l. Direct computations using the explicit form ofTsjd and the spectral

theorem for the operatorH0sjd show that forj fixed, one has

%H0sjd
Tsjd sl;«d = infH j2

r2 : r P sl − «,l + «d ù sfH0sjdgJ ù
j2

sl + «d2 . s2.11d

On the other hand, one has%H0sjd
Tsjd sl ;«d= +` if sl−« ,l+«dùsfH0sjdg=x, anda fortiori

%H0sjd
Tsjd sl;«d = + ` if ssl − «d2,sl + «d2d ù sfH0sjd2g = x.

Thus, by taking into account Eqs.s2.9d and s2.11d, the previous observation and relation
s2.2d, one obtains that
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%H0

T sl;«d ù ess infH j2

sl + «d2 : j2 P ssl − «d2,sl + «d2d − sssym
0 d2J . s2.12d

Suppose now thatl¹ssym
0 , define m : =suphssym

0 ù f0,lgj and choose«.0 such that
m,l−«. Then the inequalitys2.12d implies that

%H0

T sl;«d ù
sl − «d2 − m2

sl + «d2 .

Hence the relations2.10d follows from the above formula when«→0.

For l,0, similar arguments lead to the inequality

%H0

T sld ù infHl2 − m2

l2 : m P ssym
0 ù fl,0gJ .

The claim is then a direct consequence of the symmetry ofssym
0 with respect to 0. h

The above proposition implies that we have a strict Mourre estimate, i.e.,%H0

T s·d.0, on
R \ssym

0 . Moreover it is not difficult to prove that%H0

T sld=0 wheneverlPssym
0 . It follows that the

conjugate operatorA does not allow to get spectral informations onH0 in the subsetssym
0 .

III. MOURRE ESTIMATE FOR THE PERTURBED HAMILTONIAN

In the sequel, we consider the self-adjoint operatorH : =H0+V with a potentialV that belongs
to L`sR3;BhsC4dd. The domain ofH is equal to the domainDsH0d of H0. We first give a result on
the difference of the resolventssH−zd−1−sH0−zd−1 and, as a corollary, we obtain the localization
of the essential spectrum ofH.

Proposition 3.1: Assume that V is small at infinity. Then for all zPC \ sssHdøssH0dd the
difference sH−zd−1−sH0−zd−1 is a compact operator. It follows in particular thatsesssHd
=sesssH0d.

Proof: Since V is bounded and small at infinity, it is enough to check thatH0 is locally
compact[Ref. 16, Sec. 4.3.4]. However, the continuity ofaW implies thatDsH0d,Hloc

1/2 [Ref. 4,
Thm. 1.3]. Hence the statement follows by usual arguments. h

Remark 3.2: In the study of an analogous problem for Schrödinger operators,13 the authors
prove a result similar to Proposition 3.1 without assuming that the perturbation is small at infinity
(it only has to be small with respect to B in a suitable sense). Their proof mainly relies on the
structural inequalities HSch: =P1

2+P2
2+P3

2ù ±B. In the Dirac case, the counterpart of these turn
out to be

H0
2 ù 2B · diags0,1,0,1d and H0

2 ù − 2B · diags1,0,1,0d,

wherediags. . .d stands for a diagonal matrix. If we assume that the magnetic field is bounded from
below, the first inequality enables us to treat pertubations of the typediagsV1,V2,V3,V4d with V2,
V4 small with respect to the magnetic field and V1, V3 small at infinity in the original sense. If the
magnetic field is bounded from above, the second inequality has to be used and the role of V2, V4

and V1, V3 are interchanged. However, the unnatural character of these perturbations motivated
us not to include their treatment in this paper.

In order to obtain a limiting absorption principle forH, one has to invoke some abstract
results. An optimal regularity condition ofH with respect toA has to be satisfied. We refer to Ref.
1, Chap. 5 for the definitions ofC1,1sAd andC1,1sA;DsH0d ,DsH0d*d, and for more explanations on
regularity conditions.

Proposition 3.3: Let V be a short-range or a long-range potential. Then H is of classC1,1sAd.
Proof: SinceheitAjtPR leavesDsHd=DsH0d invariant, it is equivalent to prove thatH belongs

to C1,1sA;DsH0d ,DsH0d*d [Ref. 1, Thm. 6.3.4.(b)]. But in Proposition 2.5.(c), it has already been
shown thatH0 is of classC2sAd, so thatH0 is of classC1,1sA;DsH0d ,DsH0d*d. Thus it is enough to

4170 J. Math. Phys., Vol. 45, No. 11, November 2004 S. Richard and R. Tiedra de Aldecoa

Downloaded 23 Dec 2004 to 129.194.8.73. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



prove thatV belongs toC1,1sA;DsH0d ,DsH0d*d. In the short-range case, we shall use Ref. 1, Thm.
7.5.8, which implies thatV belongs toC1,1sA;DsH0d ,DsH0d*d. The conditions needed for that
theorem are obtained in points(i) and(ii ) below. In the long-range case, the claim follows by Ref.
1, Thm. 7.5.7, which can be applied because of points(i), (iii ), (iv), and(v) below.

(i) We first check thatheitkQ3ljtPR is a polynomially boundedC0-group in DsH0d and in
DsH0d* . Lemma 2.3.(a) (with n=0 and fsQ3d=kQ3l) implies thatH0 is of classC1skQ3ld.
Furthermore, by an argument similar to that given in part(b) of the proof of Proposition
2.5, one shows thatheitkQ3ljtPR leavesDsH0d invariant. SinceH0e

itkQ3l−eitkQ3lH0, defined on
D, extends continuously to the operatorta3Q3kQ3l−1eitkQ3lPBsHd, one gets that
ieitkQ3liBsDsH0ddøConst.ktl for all tPR, i.e., the polynomial bound of theC0-group in
DsH0d. By duality,heitkQ3ljtPR extends to a polynomially boundedC0-group inDsH0d* [Ref.
1, Prop. 6.3.1]. The generators of theseC0-groups are densely defined and closed inDsH0d
and inDsH0d* , respectively; both are simply denoted bykQ3l.

(ii ) Since heitAjtPR leavesDsH0d invariant, one may also consider theC0-group in DsH0d
obtained by restriction and theC0-group inDsH0d* obtained by extension. The generator of
each of these C0-groups will be denoted by A. Let DsA;DsH0dd : =hw
PDsH0dùDsAd :AwPDsH0dj be the domain ofA in DsH0d, and letDsA2;DsH0dd : =hw
PDsH0dùDsA2d :Aw ,A2wPDsH0dj be the domain ofA2 in DsH0d. We now check that
kQ3l−1A andkQ3l−2A2, defined onDsA;DsH0dd and onDsA2;DsH0dd, respectively, extend
to operators inBsDsH0dd. After some commutator calculations performed onD and involv-
ing Lemma 2.3, one first obtains thatkQ3l−1A andkQ3l−2A are, respectively, equal onD to
some operatorsS1 andS2kQ3l−1 in BsHd, whereS1 andS2 are polynomials inH0

−1, P3H0
−1,

a3 and fsQ3d for bounded functionsf with bounded derivatives. SinceD is a core forA,
these equalities even hold onDsAd. Hence one has onDsA2d:

kQ3l−2A2 = skQ3l−2AdA = S2kQ3l−1A = S2S1.

In consequence,kQ3l−1A and kQ3l−2A2 are equal onDsAd and onDsA2d, respectively, to
operators expressed only in terms ofH0

−1, P3H0
−1, a3, and fsQ3d for bounded functionsf

with bounded derivatives. Moreover, one easily observes that these operators and their
products belong toBsDsH0dd. Thus, it follows thatkQ3l−1A and kQ3l−2A2 are equal on
DsA;DsH0dd and onDsA2;DsH0dd, respectively, to some operators belonging toBsDsH0dd.

(iii ) By duality, the operatorskQ3l−1Ad* belongs toBsDsH0d*d. Now, for cPDsH0d* and w
PDsA;DsH0dd, one has

kskQ3l−1Ad*c,wl = kc,kQ3l−1Awl = kkQ3l−1c,Awl, s3.13d

wherek· , ·l denotes the duality betweenDsH0d andDsH0d* . SincekQ3l−1 is a homeomor-
phism fromDsH0d* to the domain ofkQ3l in DsH0d* , it follows from s3.13d that the domain
of kQ3l in DsH0d* is included in the domain ofA in DsH0d* sthe adjoint of the operatorA
in DsH0d is equal to the operator −A in DsH0d*d.

(iv) The inequalityriskQ3l+ ir d−1iBsDsH0d* døConst. for allr .0 is obtained from relation(A1),
given in the proof of Lemma 2.3, withfsQ3d=skQ3l+ ir d−1.

(v) Assume thatV is a long-range(scalar) potential. Then the following equality holds in form
sense onD:

2fiV,Ag = − Q3s]3VdH0
−1 − H0

−1Q3s]3Vd + fiV,H0
−1gQ3P3 + P3Q3fiV,H0

−1g, s3.14d

with fiV ,H0
−1g=o j=1

3 H0
−1a js] jVdH0

−1. Using Lemma 2.3a, one gets that the last two terms in
s3.14d are equal in form sense onD to
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2 Reo
j=1

3

H0
−1a jQ3s] jVdP3H0

−1 − 2 Imo
j=1

3

H0
−1a js] jVdH0

−1a3P3H0
−1.

It follows that fiV ,Ag, defined in form sense onD, extends continuously to an operator in
BsHd. Now let q be as in Definition 1.1. Then a direct calculation using the explicit form
of fiV ,Ag obtained above implies that

IqS kQ3l
r

DfiV,AgI ø Co
j=1

3 IqS kQ3l
r

DkQ3ls] jVdI +
D

r
,

for all r .0 and some positive constantsC andD. h

As a direct consequence, one obtains that
Lemma 3.4: If V satisfies the hypotheses of Theorem 1.2, then A is conjugate to H onR \ssym

0 .
Proof: Proposition 3.3 implies that bothH0 and H are of classC1,1sAd. Furthermore, the

differencesH+ id−1−sH0+ id−1 is compact by Proposition 3.1, and%H0

T .0 onR \ssym
0 due to Propo-

sition 2.7. Hence the claim follows by[Ref. 1, Thm. 7.2.9 & Prop. 7.2.6]. h

We can finally give the proof of Theorem 1.2.
Proof of Theorem 1.2:SinceA is conjugate toH on R \ssym

0 by Lemma 3.4, the assertions(a)
and (b) follow by the abstract conjugate operator method[Ref. 1, Cor. 7.2.11 & Thm. 7.4.2].

The limiting absorption principle directly obtained via Ref. 1, Thm. 7.4.1 is expressed in terms
of some interpolation space, associated withDsAd, and of its adjoint. Since both are not standard
spaces, one may use Ref. 1, prop. 7.4.4 for the Friedrichs couplesDskQ3ld ,Hd to get the statement
(c). In order to verify the hypotheses of that proposition, one has to check that for eachz
PC \ssHd the inclusionsH−zd−1DskQ3ld,DsAd holds. However, sinceDskQ3ld is included in
DsAd by Proposition 2.4, it is sufficient to prove that for eachzPC \ssHd the operatorsH−zd−1

leavesDskQ3ld invariant. SinceDsHd=DsH0d is left invariant by the groupheitkQ3ljtPR (see Propo-
sition 3.3(i)) one easily gets from Ref. 1, Thm. 6.3.4.(a) thatH is of classC1skQ3ld, which implies
the required invariance ofDskQ3ld [Ref. 1, Thm. 6.2.10.(b)]. h
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APPENDIX

Proof of Lemma 2.2:(a) Let w, c be in D. Using the transformation(2.1), one gets

kH0
−nw,Q3cl =E

R
kH0sjd−nsFwdsjd,si]jFcdsjdlH12

dj.

Now the mapR{j°H0sjd−nPBsH12d is norm differentiable with its derivative equal to
−o j=1

n H0sjd−ja3H0sjd j−n−1. Hence h]jfH0sjd−nsFwdsjdgjjPR belongs toeR
%H12dj. Thus one can

perform an integration by parts(with vanishing boundary contributions) and obtain

kH0
−nw,Q3cl =E

R
ki]jfH0sjd−nsFwdsjdg,sFcdsjdlH12

dj.

It follows that ukH0
−nw ,Q3cluøconst.ici for all cPD. SinceQ3 is essentially self-adjoint onD,

this implies thatH0
−nw belongs toDsQ3d.

(b) The boundedness ofP3H0
−1 is a consequence of the estimate
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ess sup
jPR

ijH0sjd−1iBsH12d = ess sup
jPR

I uju
fH0s0d2 + j2g1/2I

BsH12d
, `

and of the direct integral formalism[Ref. 6, Prop. 3.6 & 3.7]. The remaining assertions follow by
standard arguments. h

Proof of Lemma 2.3:(a) One first observes that the following equality holds onD:

iH0
−1fsQ3dH0 = − H0

−1a3f8sQ3d + i f sQ3d. sA1d

Now, for w ,cPD andhPH0
−nD, one has

kw,iH0
−1fsQ3dhl − kw,i f sQ3dH0

−1hl

=kw,iH0
−1fsQ3dH0cl + kw,iH0

−1fsQ3dsh − H0cdl − k f̄sQ3dw,iH0
−1hl

=− kw,H0
−1a3f8sQ3dH0

−1hl − kw,H0
−1a3f8sQ3dH0

−1sH0c − hdl

+ k f̄sQ3dw,iH0
−1sH0c − hdl + k f̄sQ3dH0

−1w,ish − H0cdl,

where we have used(A1) in the last equality for the termkw , iH0
−1fsQ3dH0cl. Hence there exists

a constantC (depending onw) such that

ukw,iH0
−1fsQ3dhl − kw,i f sQ3dH0

−1hl + kw,H0
−1a3f8sQ3dH0

−1hlu ø Cih − H0ci.

Then the statement is a direct consequence of the density ofH0D andD in H.
(b) This is a simple corollary of the point(a). h
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