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We carry out the spectral analysis of matrix valued perturbations of three-
dimensional Dirac operators with variable magnetic field of constant direction.
Under suitable assumptions on the magnetic field and on the pertubations, we
obtain a limiting absorption principle, we prove the absence of singular continuous
spectrum in certain intervals and state properties of the point spectrum. Various
situations, for example, when the magnetic field is constant, periodic or diverging
at infinity, are covered. The importance of an internal-type operéotwo-
dimensional Dirac operatprs also revealed in our study. The proofs rely on com-
mutator methods. @004 American Institute of Physics.
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I. INTRODUCTION AND MAIN RESULTS

We consider a relativistic spiﬂ;-particle evolving inR3 in presence of a variable magnetic
field of constant direction. By virtue of the Maxwell equations, we may assume with no loss of

generality that the magnetic field has the foﬁfxl,xz,x3):(O,O,B(xl,xz)). So the unperturbed
system is described, in the Hilbert spdc&R3; %), by the Dirac operator

Ho: = aqll; + anll, + azP3 + Bm,

where 8= «ay, aq, @5, a3 are the usual Dirac—Pauli matrices,is the strictly positive mass of the
particle andll;: =-ig;—a; are the generators of the magnetic translations with a vector potential
a(Xqy, %o, %X3)=(a7(Xq,X2) ,8,(X1,X,),0) that satisfiesB=0,a,—d,a;. Sinceaz=0, we have written

P3: =—idz instead oflI5.

In this paper we study the stability of certain parts of the spectrubigafnder matrix valued
perturbations/. More precisely, ifV satisfies some natural hypotheses, we shall prove the absence
of singular continuous spectrum and the finiteness of the point spectrbdm=dfi,+V in intervals
of R corresponding to gaps in the symmetrized spectrum of the opektor o I1;+ 0,11,
+omin L%(R?;C?). The matricesr; are the Pauli matrices and the symmetrized specb‘&mof
HC is the union of the spectra ¢1° and -H° We stress that our analysis does not require any
restriction on the behavior of the magnetic field at infinity. Nevertheless, the pertinence of our
work depends on a certain property of the internal-type opettdfpmamely, the size and the
number of gaps irargym. We refer to Refs. 2, 7, 10, 12, and 16 for various results on the spectrum
of H, especially in the situations of physical interest, for example, vianconstant, periodic or
diverges at infinity.

Technically, this work relies on commutator methods initiated by Mdtirmad extensively
developed in Ref. 1. For brevity we shall constantly refer to the latter reference for notations and
definitions. Our choice of a conjugate operator enables us to treat Dirac operators with general
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magnetic fields provided they point in a constant direction. On the other hand, as already put into
evidence in Ref. 9, the use of a conjugate operator with a matrix structure has a few “rather
awkward consequences” for long-range perturbations. We finally mention that this study is the
counterpart for Dirac operators of Ref. 13, where only Schroédinger operators are considered.
Unfortunately, the intrinsic structure of the Dirac equation prevents us from using the possible
magnetic anisotropy to control the perturbatigease Remark 3.2 for detajls

We give now a more precise description of our results. For simplicity we impose the conti-
nuity of the magnetic field and avoid perturbations with local singularities. Hence we assume that
B is a C(R?;R)-function and choose any vector potentia# (a,,a,,0) € C(R?; R%), e.g. the one
obtained by means of the transversal gajt?gﬁhe definitions below concern the admissible per-
turbations. In the long-range case, we restrict them to the scalar type in order not to impose
unsatisfactory constraints. In the sequ#|(C*) stands for the set of 4 4 Hermitian matrices, and
|-|| denotes the norm of the Hilbert spake =L%(R3;C?%) as well as the norm aB(H), the set of
bounded linear operators ¢d. N:={0,1,2,..} is the set of natural numbers. is an arbitrary
C”([0,%))-function such tha®¥=0 near 0 and}=1 near infinity.Q; is the multiplication operator

by the coordinate; in H, and the expressiofy) corresponds ta/1+(-)2
Definition 1.1: Let V be a multiplication operator associated with an element of
L*(R3; By(CH).
(@ Vis small at infinity if lim_..||9((Q)/r)V||=0,
(b) Vs short-range iff 7] ((Qgz)/r)V||dr <co,
(c) Let\ be in C(R3;R) with x—(x3)(;V)(¥) in L*(R%;R) for j=1,2,3,then Vi=V, is

long-range if
[l (<Q3>><Q3>(a v)
1

Note that Definitions 1.1b) and 1.1(c) differ from the standard ones: The decay rate is
imposed only in the direction.

We are in a position to state our results. [E{Q)) denote the domain dfQs) in H, then the
limiting absorption principle for H is expressed in terms of the Banach space
G:=(D(Q3)),H)1/2 1 defined by real interpolatianFor convenience, we recall th&((Qs)®) is
contained ing for eachs>1/2.

Theorem 1.2: Assume that B belongs to(K?;R), and that V belongs th”(R3; B,(C%), is
small at infinity and can be written as the sum of a short-range and a long-range matrix valued
function. Then

—<:>o forj=1,2,3.

(@) The point spectrum of the operator H IPh\oS is composed of eigenvalues of finite multi-
plicity and with no accumulation point |Fk\aS

(b) The operator H has no singular continuous spectrunﬁ%lm

(©) The limitslim,_ ,o{¢y,(H-\ Fig) 1) exist for eachy e G, unlformly in\ on each compact

subset ofR\{ag,,U op(H)}.

The limiting absorption principléc), together with the inclusions mentioned before the theo-
rem, lead to locallyH-smooth operators. They imply the existence of local wave operators.

Corollary 1.3: Let V belong td_*(R3; B,(C%) and be small at infinity. Assume there exists
some $>1 such thatQ3)%V € B(H). Then for each open seCJR\{crsme opp(H)}, the local wave
operatorss-lim,_...e™oe ™HEH(J) exist and their ranges are equal td'®J), where B and B
are the spectral measures of H and,Hespectively

Remark 1.4: H-bounded perturbations (with relative bound less than one) may also be
treated with some slight adaptations of Definition 1.1. In particular Coulomb-type potentials and
Zeeman effect could be considered for certain magnetic fields and vector potentials. However, to
our knowledge, there is not any explicit class gflbbunded perturbations for arbitrary continu-
ous magnetic fields. For this reason, we concentrate on bounded potentials V only, and thus
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present a simplified version of a more general, and more complicated, perturbation .theory

The above statements seem to be new for such a general magnetic field. In the special but
important case of a nonzero constant magnetic #g|dhe admissible perturbations introduced in
Definition 1.1 are more general than those allowed in Ref. 17. We stress that in this sin:%,qon
is equal to{+\2nBy+n?:n e N}, which implies that there are plenty of gaps where our analysis
gives results. On the other hand Bfx;,x,) — 0 as|(x;,X%,)| — , our treatment gives no informa-
tion since both—c,-m] and[m, ) belong to We finally mention Ref. 3 for related work on
perturbations of magnetic Dirac operators.

0
Tsym

Il. MOURRE ESTIMATE FOR THE OPERATOR H,
A. Preliminaries

Let us start by recalling some known results. The operkitpis essentially self-adjoint on
D:=Cy(R3;C% [Ref. 5, Thm. 2.1 Its spectrum is symmetric with respect to 0 and does not
contain the interva(-m,m) [Ref. 16, Cor. 5.1} Thus the subsetlyD is dense inH sinceD is
dense inD(H,) (endowed with the graph topologgndH, is a homeomorphism fror®(H,) onto
H.

We now introduce a suitable representation of the Hilbert sfgéaci/e consider the partial
Fourier transformation

FiDo f Hotdt,  (F)(@): = — f & 109 ), 2.1)
R V2mJ R

whereHq,: =L%(R?;C#. This map extends uniquely to a unitary operator fraonto [ 7H,dé,
which we denote by the same symlsbl As a first application, one obtains the following direct
integral decomposition dfi:

&)
fHo?‘_1=J Ho(§)d¢,
R
whereHq(é) is a self-adjoint operator ifi(;, acting asa;I1;+ a,ll,+ azé+Bm on CH(R2;C4). In
the following remark we draw the connection between the opetd§t§) and the operatoH°
introduced in Sec. I. It reveals the importance of the internal-type oparitand shows why its
negative H, also has to be taken into account.

Remark 2.1: The operator §D) acting on G (R?;C?) is unitarily equivalent to the direct sum
operator(ﬂ?;n)@(lil};n) acting on G(R?;C?) @& C5(R?;C?), wherell,: =II,+ill,. Now, these
two matrix operators act il?(R?; C?) and are essentially self-adjoint orf,@3?;C?) [Ref. 5, Thm.
2.1]. However, the first one is nothing buf Hvhile the second one is unitarily equivalent-tsl°
(this can be obtained by means of the abstract Foldy—Wouthuysen transformation [Ref. 16, Thm.
5.13]). Therefore, i0) is essentially self-adjoint on {TR?;C*) and

o{Ho(0)] = o(H9) U o(- HO) = og,

Moreover, there exists a relation betweejiH,(£)] and agym Indeed for ¢ e R fixed, one can show

that Hy(£)?=H(0)2+ & on D(Hy(£)?) =D(H(0)?), so that

oTHo(%] = 0fHo(0)% + &1 = (aTHo(0)])* + & = (g + &, (2.2)

where the spectral theorem has been used for the second equality. Since the spectgién isf H
symmetric with respect to 0 [Ref. 16, Cor. 5.14], it follows that

oTHo(&)]= = V(09m? + E U V(092 + &.

Defineuy: =inf|a§yn4 (which is bigger or equal to m becausé Has no spectrum if-m, m) [Ref.
16, Cor. 5.14]). Then from the direct integral decomposition gf ¢he readily gets
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a(Ho) = (=, = uo] U [g, +0). (2.3

We conclude the section by giving two technical lemmas in relation with the opdﬂ@for
Proofs can be found in an Appendix.
Lemma 2.2:

(@ For each ne N, Hy"D belongs toD(Qs3),
(b) P3Hg' is a bounded self-adjoint operator equal tq,#; on D(Py). In particular, Hy'H
belongs toD(Py).

One may observe that, givenGl(R;C)-function f with f’ bounded, the operatdi(Q,) is
well-defined onD(Q3). Thusf(Qz)Hy"D is a subset of{ for eachn e N. The preceding lemma
and the following simple statement are constantly used in the sequel.

Lemma 2.3: Let f be in &R ;C) with f’ bounded, and & N. Then

(@ iHg'f(Qa)—if (Qa)Hy" is equal to—Hy asf’ (Qa)Hy" on H"D,
(b)  P3HG'(Qq) - f(Qa)P3Hy" is equal to (PsHg as—1)f'(Qg)Hg! on D.

Both right terms belong td(). For shortness we shall denote them|[ifty", f(Qz)] and
[PsH*, f(Qa)], respectively.

B. The conjugate operator

The aim of the present section is to define an appropriate operator conjudgdieTo begin
with, one observes th@3P3H51DCH as a consequence of Lemma 2.2. In particular, the formal
expression

1 _ _
A= E(Holpst +QsP3Hg Y (2.9

leads to a well-defined symmetric operator Bn

Proposition 2.4: The operator A is essentially self-adjoint®@rand its closure is essentially
self-adjoint on any core fo(Qs).

Proof: The claim is a consequence of Nelson'’s criterion of essential self-adjoirfiRefsl5
Thm. X.37 applied to the triple[{Q3),A,D}. Let us simply verify the two hypotheses of that
theorem. By using Lemmas 2.2 and 2.3, one first obtains that faf alD:

1
(PsHBle - E[Pch_)l:Qs]) Y| < dlQa ¥,

1At = ‘

for some constant>0 independent off. Then, for allyye D one has

(AY,(Qa) i) — ({Qayyh, A =i IM(Qaif[PsHg ,(Qa) Iy=i Re((@sPsHy" — 1)Qath, Qa(Qa) *Hg ).

A few more commutator calculations, using again Lemma 2.3 Wi@®) =(Q;)*/2, lead to the
following result: For allyy e D, there exists a constant>0 independent off such that

[(AY(Qa) 1) = ((Qa) i, A =< pl[(Qa) 2.

O
As far as we know, the operat@R.4) has never been employed before for the study of
magnetic Dirac operators. In Ref. 17, a slightly different conjugate operator has been introduced
for Dirac operators with constant magnetic field, namely
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1
A= UR(P9)P5Qs + QaPa(Po) ™) BUrw,

whereUgpy, is the Foldy—Wouthuysen transformation that diagonalidgsThough this operator
could also be used in our more general context, it presents the major drawback of making the
perturbation theory somewhat more complicated.

C. Strict Mourre estimate for H,

We now gather some results on the regularityHgfwith respect toA. We recall thatD(Ho)"
is the adjoint space ofD(Hy) and that one has the continuous dense embeddings
D(Hg) —H—D(Ho)", whereH is identified with its adjoint through the Riesz isomorphism.
Proposition 2.5:

(@ The quadratic formD(A) s ¢ (Hy'w,iAg) —(Ag,iHg ) extends uniquely to the bounded
form defined by the operaterHy'(PsH;Y)?Hy! € B(H).

(b) The group{e™},_p leavesD(H,) invariant.

(c) The quadratic form

D(A) > ¢+ (Ho (PsHgH)Hg 'iAg) = (AgiHG (PsHG ) ?H ), (2.5
extends uniquely to a bounded form &n
In the framework of Ref. 1, the statementg@fand(c) mean that, is of classC'(A) andC?(A),

respectively.
Proof:

(a8 For anyy e D, one gets

2((Ha iAW) = (A, iHG ) = ([iH", Qal, PaHo M) + (PsHg o [iH Y, Qsly)
== (Hg ¢, (azP3Hg" + Hg'asPa)Hg ), (2.6)

where we have used Lemmas 2.2 and 2.3. Furthermore, one has

Hytas = — agHgt + 2Hg*P3HG (2.7
as an operator identity i8(+). When inserting2.7) into (2.6), one obtains the equality

(Ho iAW) — (Ag,iHG ) = = (i, Ho {(PsHG ) ?Ho ). (2.9

SinceD is a core forA, the statement is obtained by density. We shall V\[I'rlfbal,A] for the
bounded extension of the quadratic fofMA) s ¢— (Hg',iAg) — (A, iH ).

(b) SinceD(Hy) is not explicitly known, one has to invoke an abstract result in order to show
the invariance. LefiH,,A] be the operator iBB(D(H,),D(Hy)") associated with the unique
extension toD(H,) of the quadratic formyr— (Hoyr,iAd)—(Ay,iHq) defined for all &

e D(Hy) N'D(A). Then D(Hy) is invariant undefe®},_ if Hy is of classCYA) and if
[iHg,AlD(H) C H [Ref. 8, Lemma P From Eq.(2.8) and[Ref. 1, Eq.(6.2.24], one obtains
the following equalities valid in form sense Gt

= Hg'(PgHgh?Hg" = [iHgY, A] = — Hy[iH o, AJHG .

Thus[iHo,A] and(PsHg1)? are equal as operators B(D(Ho) , D(Ho)"). But since the latter
belongs toB(H), [iH,A]D(Hy) is included inH.

(c) The boundedness dh of the quadratic forn{2.5) follows by inserting(2.4) into the r.h.s.
term of (2.5) and by applying repeatedly Lemma 2.3 wftiQ3) =Qs. Then one concludes by
using the density oD in D(A). O
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From now on we shall simply denote the closureHnof [iHy,A] by T=(P3H51)2 e B(H).
One interest of this operator is th&TF* is boundedly decomposablRef. 6, Prop. 3. more
precisely:

52
FTF 1= f T(H)dE with T(&) = EHo(9) 72 € B(H4).
R

In the following definition, we introduce two functions giving the optimal value to a Mourre-
type inequality. Remark that slight modifications have been done with regard to the usual defini-
tion [Ref. 1, Sec. 7.2]1

Definition 6: Let H be a self-adjoint operator in a Hilbert spagéand assume that S is a
symmetric operator i3(D(H),D(H)"). Let B'(\;&):=E"((A—&,\+¢)) be the spectral projec-
tion of H for the interval(A\—&,\+¢). Then, for allx e R and&>0, we set

ot(\;e):=suda e R : EM(\;e)SE'(\ ;) = aE"(\;¢)},

o(\): = suppR(\;8).
>0

Let us make three observations: The inequa@ﬁ()\;g’)s Qﬁ()\;s) holds whenevee’ = ¢,
Qﬁ()\): +oo if X does not belong to the spectrum léf and Qa()\)BO forall A e R if S=0. We
also mention that in the case of two self-adjoint operatbendA in 7, with H of classC*(A) and
S: =[iH,A], the functiong3(-) is equal to the functiorf;(-) defined in[Ref. 1, Eq. 7.2.% Taking
advantage of the direct integral decompositiorHgfand T, one obtains for alh e R ande >0:

ol (\ie) =ess iang?g)(x g). (2.9
éeR

Now we can deduce a lower bound fgﬁo(-).
Proposition 2.7: One has

2 2

. A
gLOo\)sz{ )\ZM : ,ueagymﬂ[O,D\H}, (2.10

with the convention that the infimum over an empty setds
Proof: We first consider the case=0.

0) Recall from(2.3) that,uozinf|crgym|:inf{cr(Ho)ﬂ[O, +)}. Thus, for € [0,u) the L.h.s.
term of (2.10 is equal to +0, since\ does not belong to the spectrumktdf. Hence(2.10
is satisfied o0, u).

@iy If )\eagym, then the r.h.s. term 0of2.10 is equal to 0. However, sincé is positive,
QLO()\)ZO. Hence the relatio2.10) is again satisfied.

(i)  Let 0<e<ug<\. Direct computations using the explicit form @f¢) and the spectral

theorem for the operatdtly(£€) show that for¢ fixed, one has

2

L& &
ohla(Ne) = mf{; tpe(N-gNte)N o{Ho(f)]} = o) (21D

On the other hand, one h@%(j(>§)()\;g):+oo if (A\—g,N+e)Na{Hy(é)]=9, anda fortiori

ol (hie) =+ if (A= )%(+£)) N olHo(&2] = D.

Thus, by taking into account Eg&.9) and (2.11), the previous observation and relation
(2.2), one obtains that
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ol (\;e) =ess in{ 1€ e((N-8)2(\+8)) - (o3 } (2.12

(N +e)?

Suppose now thaxqzcrg define u: =sudo, Symﬁ[O,)\]} and chooses>0 such that
n<A-—e. Then the inequallt3(2.12) implies that

(\—e)* - u?
(A +e)?

Hence the relatiort2.10 follows from the above formula whea— 0.

oh (Nie) =

For A <0, similar arguments lead to the inequality

2 2

“
> IME Ugymﬂ [)\,0]}.

A
eh,(N) = inf{

The claim is then a direct consequence of the symmetnyog,i; with respect to 0. O
The above proposition implies that we have a strict Mourre esumate g,.p( ;)>0, on

R\o; Sym Moreover it is not difficult to prove tha@H (N\)=0 wheneven e o, Sym It follows that the

conjugate operatof does not allow to get spectral informations kg in the subset? Uy

IIl. MOURRE ESTIMATE FOR THE PERTURBED HAMILTONIAN

In the sequel, we consider the self-adjoint operéto=H,+V with a potentialV that belongs
to L*(R3; B,(C%). The domain oH is equal to the domai®(H,) of Ho. We first give a result on
the difference of the resolventsi—z) - (H,—2)~* and, as a corollary, we obtain the localization
of the essential spectrum &f.

Proposition 3.1: Assume that V is small at infinity. Then for all @\(o(H) U o(Hg)) the
difference (H-2)"1-(Hy—2)™' is a compact operator. It follows in particular thadr..{H)
=0es{Ho).

Proof: SinceV is bounded and small at infinity, it is enough to check thigtis locally
compact[Ref. 16, Sec. 4.3}4 However, the continuity ofi implies thatD(Ho)C’Hﬂo’c2 [Ref. 4,
Thm. 1.3. Hence the statement follows by usual arguments. O

Remark 3.2: In the study of an analogous problem for Schrodinger opetjzftme, authors
prove a result similar to Proposition 3.1 without assuming that the perturbation is small at infinity
(it only has to be small with respect to B in a suitable sense). Their proof mainly relies on the
structural inequalities Hg; :H§+H§+ P2= +B. In the Dirac case, the counterpart of these turn
out to be

H3= 2B - diag0,1,0,1 and H=-2B-diag1,0,1,0,

wherediag(...) stands for a diagonal matrix. If we assume that the magnetic field is bounded from
below, the first inequality enables us to treat pertubations of the dyggV,,V,,V3,V,) with V,,
V, small with respect to the magnetic field angd V5 small at infinity in the original sense. If the
magnetic field is bounded from above, the second inequality has to be used and the ©l¥ 0f V
and V4, V; are interchanged. However, the unnatural character of these perturbations motivated
us not to include their treatment in this paper.
In order to obtain a limiting absorption principle fét, one has to invoke some abstract
results. An optimal regularity condition &f with respect toA has to be satisfied. We refer to Ref.
1, Chap. 5 for the definitions @A) andCY{(A; D(Hy),D(Hy)"), and for more explanations on
regularity conditions.
Proposition 3.3: Let V be a short-range or a long-range potential. Then H is of clad®).
Proof: Since{e"},_y leavesD(H)=D(H,) invariant, it is equivalent to prove th&t belongs
to CYHA; D(Hy) ,D(Hp)") [Ref. 1, Thm. 6.3.4b)]. But in Proposition 2.%c), it has already been
shown thatH,, is of classC?(A), so thatH, is of classCY{A; D(H,),D(Hy)"). Thus it is enough to
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prove thatV belongs taCHYA; D(H),D(Hp)"). In the short-range case, we shall use Ref. 1, Thm.
7.5.8, which implies tha¥ belongs toC*%A;D(H,),D(Hy)"). The conditions needed for that
theorem are obtained in pointig and(ii) below. In the long-range case, the claim follows by Ref.
1, Thm. 7.5.7, which can be applied because of pdintgiii), (iv), and(v) below.

(i) We first check thaf{e“®},_. is a polynomially boundedCy-group in D(Hy) and in
D(Hp)". Lemma 2.3a) (with n=0 andf(Q;)=(Qs)) implies thatH, is of classC({Qy)).
Furthermore, by an argument similar to that given in ghytof the proof of Proposition
2.5, one shows thd&@, .. leavesD(H,) invariant. SinceH €@ -&Q@H ,, defined on
D, extends continuously to the operatdn;Qy(Qg) e e B(H), one gets that
€492 5p(4) < Const(t) for all teR, ie., the polynomial bound of th€s-group in
D(Ho). By duality, {4}, _ . extends to a polynomially bound&zj-group inD(Ho)" [Ref.
1, Prop. 6.3.1 The generators of thes&-groups are densely defined and close®iiit)
and inD(H,)", respectively; both are simply denoted (g5).

(i)  Since {€"},_; leavesD(Hy) invariant, one may also consider ti@-group in D(Ho)
obtained by restriction and th@&,-group inD(H,)" obtained by extension. The generator of
each of these Cygroups will be denoted by A. Let D(A;D(Hy):={¢
e D(Ho) ND(A):Ap € D(Hp)} be the domain ofA in D(Hg), and letD(A%; D(Hy)): ={¢
e D(Ho) N D(A?): Ap,A%p € D(Hp)} be the domain ofA? in D(Hy). We now check that
(Q3)7*A and(Q)~?A?, defined orD(A; D(H,)) and onD(A?; D(H,)), respectively, extend
to operators i3(D(Hy)). After some commutator calculations performed®and involv-
ing Lemma 2.3, one first obtains thadz) A and(Q,)~?A are, respectively, equal dR to
some operator§; andSXQs)"t in B(H), whereS, andS, are polynomials irHg*, PsHg?,
a3 and f(Q) for bounded functions with bounded derivatives. Sinc® is a core forA,
these equalities even hold d(A). Hence one has oR(A?):

(Qa)2A%=((Qa) 2A)A=S(Qy) 'A=S,S,.

In consequenceQs) A and(Qz) ?A? are equal orD(A) and onD(A?), respectively, to
operators expressed only in termsrd)gl, P3H51, a3, and f(Q,) for bounded functions
with bounded derivatives. Moreover, one easily observes that these operators and their
products belong td3(D(Hy)). Thus, it follows that(Qz)™*A and (Qs)~?A? are equal on
D(A; D(Hp)) and onD(A?; D(H,)), respectively, to some operators belonging3t®(Ho)).

(i) By duality, the operatof(Qs)™*A)" belongs toB(D(Hy)"). Now, for e D(Hy)" and ¢
e D(A;D(Hyp)), one has

((Qa™'A) 1 @) = (#1(Qa)*Ag) = (Qa) "1, A), (3.13

where(-, ) denotes the duality betwedP(Ho) andD(H)". Since(Qs)™t is a homeomor-
phism fromD(H)" to the domain ofQ3) in D(H,)", it follows from (3.13 that the domain
of (Q3) in D(Hy)" is included in the domain oA in D(H)" (the adjoint of the operatok
in D(Hy) is equal to the operatorA-in D(Ho)").

(iv) The inequalityr||(<Q3>+ir)‘1||B(D(HO)*)sConst. for allr >0 is obtained from relatiofAl),
given in the proof of Lemma 2.3, with(Qg)=((Qg)+ir) ™.

(v)  Assume thaV is a long-rangéscalaj potential. Then the following equality holds in form
sense orD:

2[iV,A] = - Qa(d3V)Hg = HyQs(daV) +[iV,Hgt1QsPs + PaQd[iV,Hp'],  (3.14)

with [iV,Hg1=27 Hg'e;(9V)Hg". Using Lemma 2.3a, one gets that the last two terms in
(3.14 are equal in form sense dh to
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2 ReX, Ho'aQa(d,V)PsHg - 2 Im X Holay(d,V)Hg asPsHg
j=1 j=1

It follows that[iV,A], defined in form sense of, extends continuously to an operator in
B(H). Now let 9 be as in Definition 1.1. Then a direct calculation using the explicit form
of [iV,A] obtained above implies that

MESe

r

3

<c)

=1

ﬂ<@)<Qg><a,-V)

D
+ _1
r r

for all r>0 and some positive constantsandp. O

As a direct consequence, one obtains that

Lemma 3.4: If V satisfies the hypotheses of Theorem 1.2, then A is conjugate ﬂB\H&;H.

Proof: Proposition 3.3 implies that bothl, and H are of classC*%A). Furthermore, the
difference(H+i)1—(Hy+i) ! is compact by Proposition 3.1, a@d'O>0 onR\og,, due to Propo-
sition 2.7. Hence the claim follows byRref. 1, Thm. 7.2.9 & Prop. 7.2]6 O

We can finally give the proof of Theorem 1.2.

Proof of Theorem 1.2SinceA is conjugate tdd on R\ogym by Lemma 3.4, the assertio(®)
and (b) follow by the abstract conjugate operator metti@f. 1, Cor. 7.2.11 & Thm. 7.4]2

The limiting absorption principle directly obtained via Ref. 1, Thm. 7.4.1 is expressed in terms
of some interpolation space, associated Vi), and of its adjoint. Since both are not standard
spaces, one may use Ref. 1, prop. 7.4.4 for the Friedrichs c6D{€5)),H) to get the statement
(c). In order to verify the hypotheses of that proposition, one has to check that forzeach
e C\o(H) the inclusion(H-2)"D((Q3)) C D(A) holds. However, sinc®({Qg)) is included in
D(A) by Proposition 2.4, it is sufficient to prove that for each C\o(H) the operato(H-2z)™*
leavesD({Qy)) invariant. SinceD(H)=D(H,) is left invariant by the grouge{?3},_,, (see Propo-
sition 3.3(i)) one easily gets from Ref. 1, Thm. 6.3a).thatH is of classC'((Q3)), which implies
the required invariance dP({Qs)) [Ref. 1, Thm. 6.2.1Qb)]. O
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APPENDIX
Proof of Lemma 2.2(a) Let ¢, ¢ be inD. Using the transformatio(2.1), one gets
(H3"0.Qath) = | (Ho(&) (F)(£), (19 %) (&), AE.
R

Now the mapR s {—Hg(§)™" e B(H,) is norm differentiable with its derivative equal to
=L Ho(§) TagHo(§) ™% Hence{a{Ho(&)"(Fe) (9T ccr belongs toffH;,dé Thus one can
perform an integration by partsvith vanishing boundary contributiopnand obtain

(H"e.Qath = | (104 Ho( "(Fe)(OL(FU) (@), e
R

It follows that [(Hy"¢, Q31| < const ||| for all e D. SinceQ; is essentially self-adjoint o,
this implies thatH,"¢ belongs toD(Q5).
(b) The boundedness ch3H5l is a consequence of the estimate

Downloaded 23 Dec 2004 to 129.194.8.73. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 45, No. 11, November 2004 On perturbations of Dirac operators 4173

5
[H0(0)2+ 52]1/2 B(Hl

and of the direct integral formalisiiRef. 6, Prop. 3.6 & 3.J The remaining assertions follow by
standard arguments. O
Proof of Lemma 2.3¢(a) One first observes that the following equality holds®n

iHG f(Qa)Ho = — Hoarsf' (Qa) +if(Qy). (A1)
Now, for ¢, ¢ e D and » € H,"D, one has
(@,iH™ (Qa) ) — (@,if (Qa)Hg 7
=(,iH5 f(Qa)Hot) + (@,iH3(Q3) (7= Hot)) — (F(Qg) @,iH5 1)
== (@,Hp asf' (Qa)Hg ) — (¢, Hg asf (Qa)Ho (Hoyr — 7))

+(f(Q)@,iHg (Hotr = 7)) + (F(Qa)Hg e,i(7 = Hot)),

where we have use@1) in the last equality for the terrtp,iHy f(Qs)Hoy). Hence there exists
a constant (depending onp) such that

Ke,iHGM (Qa) ) — (@, if (Qa)Hg 1) + (¢, Ho af (Qa)Hg ™ m)| < |7 — Howi.

Then the statement is a direct consequence of the denskigfandD in H.
(b) This is a simple corollary of the poirgg). O
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