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1. Introduction

We present in this paper new results for the Laplacian in a half-space subject to a periodic boundary 
condition, as introduced and described by R.L. Frank and R.G. Shterenberg in [12–14]. We derive resolvent 
expansions at embedded thresholds (which occur in an infinite number after a Floquet decomposition), we 
prove the continuity of the scattering matrix at thresholds, and we establish new representation formulas 
for the wave operators. These results belong to the intersection of two active research topics in spectral and 
scattering theory. On one hand, resolvent expansions at thresholds (which have a long history, but which 
have been more systematically developed since the seminal paper of A. Jensen and G. Nenciu [19], see also 
[11,17,20,27]). On the second hand, representation formulas for the wave operators and their application 
to the proof of index theorems in scattering theory (see [5,16,22,23,25,26,28] and references therein). These 
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results also furnish a new contribution to the very short list of papers devoted to the subtle, and still poorly 
understood, topic of spectral and scattering theory at embedded thresholds (to our knowledge only the 
references [6–8,10,15,27] deal specifically with this issue).

Before giving a more precise description of our results, we recall the definition and some of the properties 
(established in [12–14]) of the model we consider. The model consists in a scattering system {H0, HV }, 
where HV (the perturbed operator) is the Laplacian on the half-space R × R+ subject to a boundary 
condition on R × {0} given in terms of a 2π-periodic function V : R → R, and where H0 (the unperturbed 
operator) is the Neumann Laplacian on R × R+. An application of a Bloch–Floquet–Gelfand transform 
in the periodic variable shows that the pair {H0, HV } is unitarily equivalent to a family of self-adjoint 
operators {H0

k , H
V
k }k∈[−1/2,1/2] acting in the Hilbert space L2((−π, π) ×R+

)
. The operators H0

k have purely 
absolutely continuous spectrum, whereas the operators HV

k have no singular continuous spectrum but can 
have discrete spectrum (with only possible accumulation point at +∞). Under suitable conditions on V , 
it is known that the wave operators Wk,± := W±(H0

k , H
V
k ) exist and are complete, and that the full wave 

operators W± := W±(H0, HV ) exist, but may be not complete. The states belonging to the cokernel of W±
are interpreted as surface states; that is, states which propagate along the boundary R × {0}.

The completeness of the wave operators Wk,± and the intertwining property imply that the scattering 
operator Sk := W ∗

k,+Wk,− is unitary and decomposable in the spectral representation of H0
k . However, since 

the spectral multiplicity of H0
k is piecewise constant with a jump at each point of the threshold set

τk :=
{
λk,n := (n + k)2 | n ∈ Z

}
,

the scattering matrix Sk(λ) can only be defined for λ /∈ τk. Therefore, the continuity of Sk(λ) in λ can 
only be proved in a suitable sense. By introducing channels corresponding to the transverse modes on the 
interval (−π, π), we show that Sk(λ) is continuous at the thresholds if the channels we consider are already 
open, and that Sk(λ) has a limit from the right at the thresholds if a channel precisely opens at these 
thresholds (see Theorem 4.1 for a more precise statement). Also, we give explicit formulas for Sk(λ) at 
thresholds. To our knowledge, this type of results has never been obtained before except in [27], in the 
context of quantum waveguides. Our proof of the continuity properties relies on a stationary representation 
for Sk(λ) and on resolvent expansions for HV

k at embedded thresholds. The resolvent expansions are proved 
in Proposition 3.3 under the single assumption that V ∈ L∞(R; R). Information about the localization of 
the possible eigenvalues of HV

k is also given in Section 3.
Section 5 is devoted to the derivation of representation formulas for the wave operators Wk,±. The main 

result of the section are formulas

Wk,− − 1 =
(
1 ⊗R(A+)

)
(Sk − 1) + Rem and Wk,+ − 1 =

(
1 − 1 ⊗R(A+)

)
(S∗

k − 1) + Rem,

where R is the function given by R(x) := 1
2
(
1 + tanh(πx) + i cosh(πx)−1), A+ is the generator of dilations 

in R+, and Rem is a remainder term which is small in a suitable sense (see Lemma 5.7). This type of 
formulas has recently been derived for various scattering systems and is at the root of a topological approach 
of Levinson’s theorem, see [23] for more explanations on this approach. Finally, collecting the previous 
identities for all values k, we obtain in Theorem 5.8 similar representations formulas for the full wave 
operators W±(H0, HV ).

The content of this paper stops here and corresponds to the analytical part of a larger research project. 
As a motivation for further studies, we briefly sketch the sequel of the project here. Under some stronger 
assumption on V , for instance if V is a trigonometric polynomial, we expect the remainder term Rem to 
be a compact operator. In such a case, by using appropriate techniques of K-theory and C∗-algebras, one 
could relate the orthogonal projection on the bound states of HV

k to the scattering operator Sk plus some 
correction terms due to threshold effects We refer for example to [25, Sec. 3] for a presentation of the 
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algebraic techniques in a much simpler setting. Then, using direct integrals to collect the results for all 
values of k, one would automatically obtain a relation between the orthogonal projection on the surface 
states of HV and operators involved in the scattering process. This relation would be of a topological 
nature, it would have an interpretation in the general context of bulk-edge correspondence, and it would be 
completely new for such a continuous model. For discrete models, related results have been obtained in [9]
for ergodic operators and in [28] for deterministic operators.

2. Laplacian in a half-space

In this section, we recall the basic properties of the model we consider, which consists in a Laplacian on 
the half-space R × R+, with R+ := (0, ∞), subject to a periodic boundary condition on R × {0}. Most of 
the material we present here is borrowed from the papers [12,13] to which we refer for further information.

We choose a 2π-periodic function V ∈ L∞(R; R), and for each non-empty open set Ω ⊂ R
n, n ∈ N

∗, 
and each m ∈ N, we denote by Hm(Ω) the usual Sobolev space of order m on Ω. Then, we consider the 
sesquilinear form hV : H1(R × R+) ×H1(R × R+) → C given by

hV (ϕ,ψ) :=
∫

R×R+

{
(∂1ϕ)(x1, x2)(∂1ψ)(x1, x2) + (∂2ϕ)(x1, x2)(∂2ψ)(x1, x2)

}
dx1dx2

+
∫
R

V (x1)ϕ(x1, 0)ψ(x1, 0) dx1,

where the last integral is well defined thanks to the boundary trace imbedding theorem [1, Thm. 5.36]. This 
sesquilinear form is lower semibounded and closed, and therefore induces in L2(R ×R+) a lower semibounded 
self-adjoint operator HV with domain D(HV ) satisfying the equation

〈
HV ϕ,ψ

〉
L2(R×R+) = hV (ϕ,ψ), ϕ ∈ D(HV ) ⊂ H1(R× R+), ψ ∈ H1(R× R+).

In the case V ≡ 0, the operator H0 is the Neumann Laplacian on R × R+.

2.1. Direct integral decomposition of HV

Let S (R2) be the Schwartz space on R2 and S (R × R+) :=
{
ϕ | ϕ = ψ|R×R+ for some ψ ∈ S (R2)

}
. 

Let T := (−π, π), set Π := T × R+, let C̃∞(Π) be the set of functions in C∞(Π) which can be extended 
2π-periodically to functions in C∞(R ×R+), and for each m ∈ N let H̃m(Π) be the closure of C̃∞(Π) ∩Hm(Π)
in Hm(Π). Then, the Gelfand transform G : S (R × R+) →

∫ ⊕
[−1/2,1/2] L

2(Π) dk given by [12, Sec. 2.2]

(Gϕ)(k, θ, x2) :=
∑
n∈Z

e−ik(θ+2πn) ϕ(θ + 2πn, x2), ϕ ∈ S (R× R+), k ∈ [−1/2, 1/2], (θ, x2) ∈ Π,

extends to a unitary operator G : L2(R × R+) →
∫ ⊕
[−1/2,1/2] L

2(Π) dk. Moreover, one has

GHV G−1 =
⊕∫

[−1/2,1/2]

HV
k dk,

with HV
k the lower semibounded self-adjoint operator in L2(Π) associated with the lower semibounded and 

closed sesquilinear form hV
k : H̃1(Π) × H̃1(Π) → C given by
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hV
k (ϕ,ψ) =

∫
Π

{(
(−i∂1 + k)ϕ)

)
(θ, x2)

(
(−i∂1 + k)ψ)

)
(θ, x2) + (∂2ϕ)(θ, x2)(∂2ψ)(θ, x2)

}
dθdx2

+
∫
T

V (θ)ϕ(θ, 0)ψ(θ, 0) dθ.

In the case V ≡ 0, the operator H0
k reduces to

H0
k = (P + k)2 ⊗ 1 + 1 ⊗ (−	N), (2.1)

with P the self-adjoint operator of differentiation on T with periodic boundary condition and −	N the 
Neumann Laplacian on R+. Since (P+k)2 has purely discrete spectrum given by eigenvalues λk,n := (n +k)2, 
n ∈ Z, and since −	N has purely absolutely continuous spectrum σ(−	N) = [0, ∞), the operator H0

k has 
purely absolutely continuous spectrum σ(H0

k) = [k2, ∞) and its spectral multiplicity is piecewise constant 
with a jump at each point of the threshold set

τk :=
{
λk,n

}
n∈Z

.

A set of normalized eigenvectors for the operator (P + k)2 is given by the family 
{ 1√

2π
ein( · ) }

n∈Z
⊂ L2(T). 

Since this family is independent of k, we simply write {Pn}n∈Z for the corresponding set of one-dimensional 
orthogonal projections in L2(T).

2.2. Spectral representation for H0
k

We now give a spectral representation of the operator H0
k defined in (2.1) and refer to [13, Sec. 2.2] for 

the original representation. For that purpose, we fix k ∈ [−1/2, 1/2] and define the Hilbert spaces

Hk,n := L2([λk,n,∞);PnL2(T)
)

and Hk :=
⊕
n∈Z

Hk,n.

We set S (R+) :=
{
η | η = ζ|R+ for some ζ ∈ S (R)

}
, we let Fc : L2(R+) → L2(R+) be the unitary cosine 

transform given by

(Fcη)(y) :=
(

2
π

)1/2 ∞∫
0

cos(yx)η(x) dx, η ∈ S (R+), y ∈ R+, (2.2)

and we let Uk : L2(Π) → Hk be the unitary operator given for each ϕ ∈ L2(T) 
 S (R+) by

(Ukϕ)n(λ) := 2−1/2(λ− λk,n)−1/4((Pn ⊗ Fc)ϕ
)(

· ,
√
λ− λk,n

)
, n ∈ Z, λ > λk,n.

Then, the operator Uk is a spectral transformation for H0
k in the sense that UkH

0
k U ∗

k = Lk, with Lk the 
maximal multiplication operator in Hk given by

(Lkξ)n(λ) := λξn(λ), ξ ∈ D(Lk) :=
{
ξ ∈ Hk |

∑
n∈Z

∞∫
λk,n

λ2‖ξn(λ)‖2
L2(T) dλ < ∞

}
, n ∈ Z, λ > λk,n.

The operator Uk satisfies the following regularity properties: If we define the weighted spaces

Hs(R+) :=
{
η ∈ L2(R+) | 〈X〉sη ∈ L2(R+)

}
, s ≥ 0,



S. Richard, R. Tiedra de Aldecoa / J. Math. Anal. Appl. 446 (2017) 1695–1722 1699
with X the maximal operator of multiplication by the variable in L2(R+) and 〈x〉 := (1 + x2)1/2, then the 
operator

Uk(n, λ)ϕ := (Ukϕ)n(λ), n ∈ Z, λ > λk,n, ϕ ∈ L2(T) 
 S (R+),

extends to an element of B
(
L2(T) ⊗Hs(R+); PnL2(T)

)
for each s > 1/2, and the map

(λk,n,∞) � λ �→ Uk(n, λ) ∈ B
(
L2(T) ⊗Hs(R+);PnL2(T)

)
is continuous. We refer for example to [29, Prop. 2.5] for an analogue of these results on R instead of R+.

3. Spectral analysis of HV
k

In this section, we give some information on the eigenvalues of HV
k , and we derive resolvent expansions 

at embedded thresholds and eigenvalues for HV
k for any fixed value of k ∈ [−1/2, 1/2].

Following the standard idea of decomposing the perturbation into factors, we define the functions

v : T → R, θ �→ |V (θ)|1/2 and u : T → {−1, 1}, θ �→
{

1 if V (θ) ≥ 0
−1 if V (θ) < 0.

Also, we use the same notation for a function and for the corresponding operator of multiplication, and 
we note that u is both unitary and self-adjoint as a multiplication operator in L2(T). Moreover, we set 
R0

k(z) := (H0
k−z)−1 and RV

k (z) = (HV
k −z)−1 for z ∈ C \R, and we define the operator G ∈ B

(
H̃1(Π); L2(T)

)
by

(Gϕ)(θ) := v(θ)ϕ(θ, 0), θ ∈ T.

Then, the operator u + GR0
k(z)G∗ has a bounded inverse in L2(T) for each z ∈ C \ R, and the resolvent 

equation may be written as (see [12, Prop. 3.1])

RV
k (z) = R0

k(z) −R0
k(z)G∗(u + GR0

k(z)G∗)−1
GR0

k(z), z ∈ C \ R. (3.1)

Alternatively, one can deduce from [30, Eq. (1.9.14)] the equivalent formula

GRV
k (z)G∗ = u− u

(
u + GR0

k(z)G∗)−1
u. (3.2)

In view of these equalities, our goal reduces to derive asymptotic expansions for the operator 
(
u +

GR0
k(z)G∗)−1 as z → z0 ∈ τk ∪ σp(HV

k ). For this, we first choose the square root 
√
z of z ∈ C \ [0, ∞) such 

that Im(
√
z) > 0, and then use this convention to compute explicitly the kernel of the operator R0

k(z):

(
R0

k(z)
)
(θ, x, θ′, x′) = i

4π
∑
n∈Z

ein(θ−θ′)√
z − λk,n

(
ei
√

z−λk,n (x+x′) + ei
√

z−λk,n |x−x′| ), (θ, x), (θ′, x′) ∈ Π.

We also refer to [12, Eq. (3.1)] for a similar formula. A straightforward computation then leads to the 
equality

GR0
k(z)G∗ = i

∑ vPnv√
z − λk,n

, z ∈ C \ R. (3.3)

n∈Z
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In the sequel, we also use for λ ∈ [k2, ∞) the definitions

Zk(λ) :=
{
n ∈ Z | λk,n ≤ λ

}
, Zk(λ)⊥ := Z \ Zk(λ) and βk,n(λ) := |λ− λk,n|1/4,

whose interest come from the following equalities:

GR0
k(λ + i0)G∗ := u-lim

ε↘0
GR0

k(λ + iε)G∗ =
∑

n∈Zk(λ)⊥

vPnv

βk,n(λ)2 + i
∑

n∈Zk(λ)

vPnv

βk,n(λ)2 , λ ∈ R \ τk, (3.4)

where the convergence is uniform on compact subsets of R \ τk.

Lemma 3.1. Assume that V ∈ L∞(R; R) is 2π-periodic. Then, a value λ ∈ R \ τk is an eigenvalue of HV
k if 

and only if

K := ker
(
u +

∑
n∈Zk(λ)⊥

vPnv

βk,n(λ)2

)⋂(
∩n∈Zk(λ) ker(Pnv)

)
�= {0},

and in this case the multiplicity of λ is equal to the dimension of K.

Proof. We apply [30, Lemma 4.7.8]. Once the assumptions of this lemma are checked, it implies that the 
multiplicity of an eigenvalue λ ∈ σp(HV

k ) \ τk is equal to the multiplicity of the eigenvalue 1 of the operator 
−GR0

k(λ + i0)G∗u. But, the unitarity and the self-adjointness of u together with the equality (3.4) imply 
that the following conditions are equivalent for q ∈ L2(T):

−GR0
k(λ + i0)G∗uq = q ⇐⇒ uq ∈ ker

(
u +

∑
n∈Zk(λ)⊥

vPnv

βk,n(λ)2 + i
∑

n∈Zk(λ)

vPnv

βk,n(λ)2

)
,

and the second condition is in turn equivalent to the inclusion uq ∈ K. Thus, since u is unitary we are left 
in proving that the assumptions of [30, Lemma 4.7.8] hold in a neighbourhood of λ ∈ σp(HV

k ) \ τk.
Since the multiplicity of the spectrum of H0

k is constant in each small enough neighbourhood of λ ∈
σp(HV

k ) \ τk, it is sufficient to prove that the operators G and u G are strongly H0
k -smooth with some 

exponent α > 1/2 on any compact subinterval of R \ τk (see [30, Def. 4.4.5] for the definition of strong 
H0-smoothness). However, such a property can be checked either by using [13, Lemma 2.3] or by using the 
explicit formula

(UkG
∗q)n(λ) = π−1/2βk,n(λ)−1Pn(vq) ∈ PnL2(T), n ∈ Z, λ > λk,n, q ∈ L2(T),

and the same formula with G∗ replaced by G∗u. �
Lemma 3.1 has simple, but interesting, consequences on the localization of the eigenvalues of HV

k . Indeed, 
one has for each λ ∈ R \ τk the inequality∥∥∥∥∥∥

∑
n∈Zk(λ)⊥

vPnv

βk,n(λ)2

∥∥∥∥∥∥ ≤ sup
n∈Zk(λ)⊥

‖V ‖∞
βk,n(λ)2 . (3.5)

Therefore, if m ∈ Z is such that [λ, λk,m) ∩ τk = ∅ and λk,m − λ > ‖V ‖2
∞, one infers from (3.5) and [21, 

Thm. IV.1.16] that the subspace K ≡ K(λ) of Lemma 3.1 is trivial. In other words, the possible eigenvalues 
of HV

k can only be located at a finite distance (independent of m) on the left of each threshold. On the 
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other hand, since the distance between two consecutive thresholds λk,m and λk,m′ is proportional to |m|, 
the interval free of possible eigenvalues between two consecutive thresholds is increasing as |m| → ∞.

Remark 3.2. The above localization result is sharp. Indeed, if V is a constant function with V < 0, then we 
know from [14, Ex. 4.2] that σp(HV

k ) =
{
λk,m − V 2 | m ∈ Z

}
.

3.1. Resolvent expansions for HV
k

We are now ready to derive the resolvent expansions at all points of interest by using the iterative 
procedure of [27, Sec. 3.1] and the associated inversion formulas. For that purpose, we set C+ := {z ∈ C |
Im(z) > 0} and we adapt a convention of [19] by considering values z = λ − κ2 with κ belonging to the set

O(ε) :=
{
κ ∈ C | |κ| ∈ (0, ε), Re(κ) > 0 and Im(κ) < 0

}
, ε > 0,

or the set

Õ(ε) :=
{
κ ∈ C | |κ| ∈ (0, ε), Re(κ) ≥ 0 and Im(κ) ≤ 0

}
, ε > 0.

Note that if κ ∈ O(ε), then −κ2 ∈ C+ while if κ ∈ Õ(ε), then −κ2 ∈ C+. With these notations at hand, 
the main result of this section reads as follows:

Proposition 3.3. Suppose that V ∈ L∞(R; R) is 2π-periodic, fix λ ∈ τk ∪ σp(HV
k ), and take κ ∈ O(ε) with 

ε > 0 small enough. Then, the operator 
(
u + GR0

k(λ − κ2)G∗)−1 belongs to B
(
L2(T)

)
and is continuous in 

the variable κ ∈ O(ε). Moreover, the continuous function

O(ε) � κ �→
(
u + GR0

k(λ− κ2)G∗)−1 ∈ B
(
L2(T)

)
extends continuously to a function Õ(ε) � κ �→ Mk(λ, κ) ∈ B

(
L2(T)

)
, and for each κ ∈ Õ(ε) the operator 

Mk(λ, κ) admits an asymptotic expansion in κ. The precise form of this expansion is given on the r.h.s. of 
the equations (3.14) and (3.19) below.

We recall that the relation between the asymptotic expansions given of Proposition 3.3 and the resolvent 
of HV

k is given by formula (3.2). The proof of Proposition 3.3 is mainly based on an inversion formula which 
we reproduce here for completeness (see also [20, Prop. 1] for an earlier version):

Proposition 3.4 (Prop. 2.1 of [27]). Let O ⊂ C be a subset with 0 as an accumulation point, and let H be 
an Hilbert space. For each z ∈ O, let A(z) ∈ B(H) satisfy

A(z) = A0 + zA1(z),

with A0 ∈ B(H) and ‖A1(z)‖B(H) uniformly bounded as z → 0. Let also S ∈ B(H) be a projection such 
that (i) A0 + S is invertible with bounded inverse, (ii) S(A0 + S)−1S = S. Then, for |z| > 0 small enough 
the operator B(z) : SH → SH defined by

B(z) := 1
z

(
S − S

(
A(z) + S

)−1
S
)
≡ S(A0 + S)−1

(∑
j≥0

(−z)j
(
A1(z)(A0 + S)−1)j+1

)
S
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is uniformly bounded as z → 0. Also, A(z) is invertible in H with bounded inverse if and only if B(z) is 
invertible in SH with bounded inverse, and in this case one has

A(z)−1 =
(
A(z) + S

)−1 + 1
z

(
A(z) + S

)−1
SB(z)−1S

(
A(z) + S

)−1
.

Proof of Proposition 3.3. For each λ ∈ R, ε > 0 and κ ∈ O(ε), one has Im(λ − κ2) �= 0. Thus, the operator (
u + GR0

k(λ − κ2)G∗)−1 belongs to B
(
L2(T)

)
and is continuous in κ ∈ O(ε) due to (3.1). For the other 

claims, we distinguish the cases λ ∈ τk and λ ∈ σp(HV
k ) \ τk, treating first the case λ ∈ τk. All the operators 

defined below depend on the choice of λ, but for simplicity we do not always mention these dependencies.
(i) Assume that λ ∈ τk, take ε > 0, set N := {n ∈ Z | λk,n = λ}, and write P :=

∑
n∈N Pn for the (one 

or two-dimensional) orthogonal projection associated with the eigenvalue λ of the operator (P + k)2. Then, 
(3.3) implies for κ ∈ O(ε) that

(
u + GR0

k(λ− κ2)G∗)−1 = κ

{
vPv + κ

(
u + i

∑
n/∈N

vPnv√
λ− κ2 − λk,n

)}−1

.

Moreover, direct computations show that the function

O(ε) � κ �→ u + i
∑
n/∈N

vPnv√
λ− κ2 − λk,n

∈ B
(
L2(T)

)
extends continuously to a function Õ(ε) � κ �→ M1(κ) ∈ B

(
L2(T)

)
with ‖M1(κ)‖B(L2(T)) uniformly bounded 

as κ → 0. Thus, one has for each κ ∈ O(ε)

(
u + GR0

k(λ− κ2)G∗)−1 = κI0(κ)−1 with I0(κ) := vPv + κM1(κ). (3.6)

Now, since N0 := I0(0) = vPv is a finite-rank operator, 0 is not a limit point of its spectrum. Also, N0
is self-adjoint, therefore the orthogonal projection S0 on ker(N0) is equal to the Riesz projection of N0
associated with the value 0. We can thus apply Proposition 3.4 (see [27, Cor. 2.8]), and obtain for κ ∈ Õ(ε)
with ε > 0 small enough that the operator I1(κ) : S0L2(T) → S0L2(T) defined by

I1(κ) :=
∑
j≥0

(−κ)jS0
{
M1(κ)

(
I0(0) + S0

)−1}j+1
S0 (3.7)

is uniformly bounded as κ → 0. Furthermore, I1(κ) is invertible in S0L2(T) with bounded inverse satisfying 
the equation

I0(κ)−1 =
(
I0(κ) + S0

)−1 + 1
κ

(
I0(κ) + S0

)−1
S0I1(κ)−1S0

(
I0(κ) + S0

)−1
.

It follows that for κ ∈ O(ε) with ε > 0 small enough, one has

(
u + GR0

k(λ− κ2)G∗)−1 = κ
(
I0(κ) + S0

)−1 +
(
I0(κ) + S0

)−1
S0I1(κ)−1S0

(
I0(κ) + S0

)−1
, (3.8)

with the first term vanishing as κ → 0.
To describe the second term of 

(
u + GR0

k(λ − κ2)G∗)−1 as κ → 0 we note that the equality (
I0(0) + S0

)−1
S0 = S0 and the definition (3.7) imply for κ ∈ Õ(ε) with ε > 0 small enough that

I1(κ) = S0M1(0)S0 + κM2(κ), (3.9)
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with

M2(κ) := i

κ
S0

∑
n/∈N

(
1√

λ− κ2 − λk,n

− 1√
λ− λk,n

)
vPnvS0

−
∑
j≥0

(−κ)jS0
{
M1(κ)

(
I0(0) + S0

)−1}j+2
S0.

Also, we note that the expansion

1√
λ− κ2 − λk,n

= 1√
λ− λk,n

(
1 + κ2

2(λ− λk,n) + O(κ4)
)
, n /∈ N, (3.10)

implies that ‖M2(κ)‖B(S0L2(T)) is uniformly bounded as κ → 0.
Now, we have

M1(0) = u +
∑

n∈Zk(λ)⊥

vPnv

βk,n(λ)2 + i
∑

n∈Zk(λ)−

vPnv

βk,n(λ)2 , (3.11)

with Zk(λ)− := {n ∈ Z | λk,n < λ}. Therefore, M1(0) is the sum of the unitary and self-adjoint operator u, 
the self-adjoint and compact operator 

∑
n∈Zk(λ)⊥

vPnv
βk,n(λ)2 , and the compact operator with non-negative 

imaginary part i 
∑

n∈Zk(λ)−
vPnv

βk,n(λ)2 . So, since S0 is an orthogonal projection with finite-dimensional kernel, 
the operator I1(0) = S0M1(0)S0 acting in the Hilbert space S0L2(T) can also be written as the sum of 
a unitary and self-adjoint operator, a self-adjoint and compact operator, and a compact operator with 
non-negative imaginary part. Thus, the result [27, Cor. 2.8] applies with S1 the finite-rank orthogonal 
projection on ker

(
I1(0)

)
, and Proposition 3.4 can be applied to I1(κ) as it was done for I0(κ).

Therefore, for κ ∈ Õ(ε) with ε > 0 small enough, the operator I2(κ) : S1L2(T) → S1L2(T) defined by

I2(κ) :=
∑
j≥0

(−κ)jS1
{
M2(κ)

(
I1(0) + S1

)−1}j+1
S1

is uniformly bounded as κ → 0. Furthermore, I2(κ) is invertible in S1L2(T) with bounded inverse satisfying 
the equation

I1(κ)−1 =
(
I1(κ) + S1

)−1 + 1
κ

(
I1(κ) + S1

)−1
S1I2(κ)−1S1

(
I1(κ) + S1

)−1
.

This expression for I1(κ)−1 can now be inserted in (3.8) in order to get for κ ∈ O(ε) with ε > 0 small 
enough (

u + GR0
k(λ− κ2)G∗)−1

= κ
(
I0(κ) + S0

)−1 +
(
I0(κ) + S0

)−1
S0
(
I1(κ) + S1

)−1
S0
(
I0(κ) + S0

)−1

+ 1
κ

(
I0(κ) + S0

)−1
S0
(
I1(κ) + S1

)−1
S1I2(κ)−1S1

(
I1(κ) + S1

)−1
S0
(
I0(κ) + S0

)−1
, (3.12)

with the first two terms bounded as κ → 0.
We now concentrate on the last term and check once more that the assumptions of Proposition 3.4 are 

satisfied. For this, we recall that 
(
I1(0) + S1

)−1
S1 = S1, and observe that for κ ∈ Õ(ε) with ε > 0 small 

enough

I2(κ) = S1M2(0)S1 + κM3(κ), (3.13)
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with

M2(0) = −S0M1(0)
(
I0(0) + S0

)−1
M1(0)S0 and M3(κ) ∈ O(1).

The inclusion M3(κ) ∈ O(1) follows from simple computations taking the expansion (3.10) into account. As 
observed above, one has M1(0) = Y + iZ∗Z, with Y, Z bounded self-adjoint operators in L2(T). Therefore, 
I1(0) = S0M1(0)S0 = S0Y S0 + i(ZS0)∗(ZS0), and one infers from [27, Cor. 2.5] that ZS0S1 = 0 = S1S0Z

∗. 
Since S1S0 = S1 = S0S1, it follows that ZS1 = 0 = S1Z

∗. Therefore, we have

I2(0) = −S1M1(0)
(
I0(0) + S0

)−1
M1(0)S1

= −S1(Y + iZ∗Z)
(
I0(0) + S0

)−1(Y + iZ∗Z)S1

= −S1Y
(
I0(0) + S0

)−1
Y S1,

and thus −I2(0) is a positive operator.
Since S1L2(T) is finite-dimensional, 0 is not a limit point of σ

(
I2(0)

)
. So, the orthogonal projection S2

on ker
(
I2(0)

)
is a finite-rank operator, and Proposition 3.4 applies to I2(0) + κ M3(κ). Thus, for κ ∈ Õ(ε)

with ε > 0 small enough, the operator I3(κ) : S2L2(T) → S2L2(T) defined by

I3(κ) :=
∑
j≥0

(−κ)jS2
{
M3(κ)

(
I2(0) + S2

)−1}j+1
S2

is uniformly bounded as κ → 0. Furthermore, I3(κ) is invertible in S2L2(T) with bounded inverse satisfying 
the equation

I2(κ)−1 =
(
I2(κ) + S2

)−1 + 1
κ

(
I2(κ) + S2

)−1
S2I3(κ)−1S2

(
I2(κ) + S2

)−1
.

This expression for I2(κ)−1 can now be inserted in (3.12) in order to get for κ ∈ O(ε) with ε > 0 small 
enough (

u + GR0
k(λ− κ2)G∗)−1

= κ
(
I0(κ) + S0

)−1 +
(
I0(κ) + S0

)−1
S0
(
I1(κ) + S1

)−1
S0
(
I0(κ) + S0

)−1

+ 1
κ

(
I0(κ) + S0

)−1
S0
(
I1(κ) + S1

)−1
S1
(
I2(κ) + S2

)−1
S1
(
I1(κ) + S1

)−1
S0
(
I0(κ) + S0

)−1

+ 1
κ2

(
I0(κ) + S0

)−1
S0
(
I1(κ) + S1

)−1
S1
(
I2(κ) + S2

)−1
S2I3(κ)−1S2

(
I2(κ) + S2

)−1
S1

×
(
I1(κ) + S1

)−1
S0
(
I0(κ) + S0

)−1
. (3.14)

Fortunately, the iterative procedure stops here. The argument is based on the relation (3.2) and the 
fact that HV

k is a self-adjoint operator. Indeed, if we choose κ = ε
2 (1 − i) ∈ O(ε), then the inequality ∥∥κ2(HV

k − λ + κ2)−1
∥∥

B(L2(Π)) ≤ 1 holds, and thus

lim sup
κ→0

∥∥κ2(u + GR0
k(λ− κ2)G∗)−1∥∥

B(L2(T)) < ∞. (3.15)

So, if we replace 
(
u +GR0

k(λ −κ2)G∗)−1 by the expression (3.14) and if we take into account that all factors 
of the form 

(
Ij(κ) + Sj

)−1 have a finite limit as κ → 0, we infer from (3.15) that

lim sup
∥∥I3(κ)−1∥∥

B(S2L2(T)) < ∞. (3.16)

κ→0
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Therefore, it only remains to show that this relation holds not just for κ = ε
2 (1 − i) but for all κ ∈ Õ(ε). 

For that purpose, we consider I3(κ) once again, and note that

I3(κ) = S2M3(0)S2 + κM4(κ) with M4(κ) ∈ O(1). (3.17)

The precise form of M3(0) can be computed explicitly, but is irrelevant.
Now, since I3(0) acts in a finite-dimensional space, 0 is an isolated eigenvalue of I3(0) if 0 ∈ σ

(
I3(0)

)
, in 

which case we write S3 for the corresponding Riesz projection. Then, the operator I3(0) + S3 is invertible 
with bounded inverse, and (3.17) implies that I3(κ) +S3 is also invertible with bounded inverse for κ ∈ Õ(ε)
with ε > 0 small enough. In addition, one has 

(
I3(κ) + S3

)−1 =
(
I3(0) + S3

)−1 + O(κ). By the inversion 

formula given in [19, Lemma 2.1], one infers that S3 − S3
(
I3(κ) + S3

)−1
S3 is invertible in S3L2(T) with 

bounded inverse and that the following equalities hold

I3(κ)−1 =
(
I3(κ) + S3

)−1 +
(
I3(κ) + S3

)−1
S3
{
S3 − S3

(
I3(κ) + S3

)−1
S3
}−1

S3
(
I3(κ) + S3

)−1

=
(
I3(κ) + S3

)−1 +
(
I3(κ) + S3

)−1
S3
{
S3 − S3

(
I3(0) + S3

)−1
S3 + O(κ)

}−1
S3
(
I3(κ) + S3

)−1
.

This implies that (3.16) holds for some κ ∈ Õ(ε) if and only if the operator S3 − S3
(
I3(0) + S3

)−1
S3 is 

invertible in S3L2(T) with bounded inverse. But, we already know from what precedes that (3.16) holds for 
κ = ε

2 (1 − i). So, the operator S3 − S3
(
I3(0) + S3

)−1
S3 is invertible in S3L2(T) with bounded inverse, and 

thus (3.16) holds for all κ ∈ Õ(ε). Therefore, (3.14) implies that the function

O(ε) � κ �→
(
u + GR0

k(λ− κ2)G∗)−1 ∈ B
(
L2(T)

)
extends continuously to the function Õ(ε) � κ �→ Mk(λ, κ) ∈ B

(
L2(T)

)
, with Mk(λ, κ) given by the r.h.s. 

of (3.14).
(ii) Assume that λ ∈ σp(HV

k ) \ τk, take ε > 0, let κ ∈ Õ(ε), and set J0(κ) := T0 + κ2T1(κ) with

T0 := u +
∑

n∈Zk(λ)⊥

vPnv

βk,n(λ)2 + i
∑

n∈Zk(λ)

vPnv

βk,n(λ)2

and

T1(κ) := i

κ2

∑
n∈Z

(
1√

λ− κ2 − λk,n

− 1√
λ− λk,n

)
vPnv.

Then, one infers from the expansion (3.10) that ‖T1(κ)‖B(L2(T)) is uniformly bounded as κ → 0. Also, the 
assumptions of [27, Cor. 2.8] hold for the operator T0, and thus the Riesz projection S associated with the 
value 0 ∈ σ(T0) is an orthogonal projection. It thus follows from Proposition 3.4 that for κ ∈ Õ(ε) with 
ε > 0 small enough, the operator J1(κ) : SL2(T) → SL2(T) defined by

J1(κ) :=
∑
j≥0

(−κ2)jS
{
T1(κ)(T0 + S)−1}j+1

S

is uniformly bounded as κ → 0. Furthermore, J1(κ) is invertible in SL2(T) with bounded inverse satisfying 
the equation

J0(κ)−1 =
(
J0(κ) + S

)−1 + 1
κ2

(
J0(κ) + S

)−1
SJ1(κ)−1S

(
J0(κ) + S

)−1
.

It follows that for κ ∈ O(ε) with ε > 0 small enough one has
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(
u + GR0

k(λ− κ2)G∗)−1 =
(
J0(κ) + S

)−1 + 1
κ2

(
J0(κ) + S

)−1
SJ1(κ)−1S

(
J0(κ) + S

)−1
. (3.18)

Fortunately, the iterative procedure already stops here. Indeed, the argument is similar to the one presented 
above once we observe that

J1(κ) = ST1(0)S + κT2(κ) with T2(κ) ∈ O(1).

Therefore, (3.18) implies that the function

O(ε) � κ �→
(
u + GR0

k(λ− κ2)G∗)−1 ∈ B
(
L2(T)

)
extends continuously to the function Õ(ε) � κ �→ Mk(λ, κ) ∈ B

(
L2(T)

)
, with Mk(λ, κ) given by

Mk(λ, κ) =
(
J0(κ) + S

)−1 + 1
κ2

(
J0(κ) + S

)−1
SJ1(κ)−1S

(
J0(κ) + S

)−1
. � (3.19)

The non-accumulation of eigenvalues of HV
k (except possibly at +∞) can easily be inferred from these 

asymptotic expansions (see for example [27, Corol. 3.3] in the framework of quantum waveguides). However, 
since such a result is already known in the present context [14, Thm. 4.1], we do not prove it again here.

We close this section with some auxiliary results which can all be deduced from the expansions of 
Proposition 3.3. The notations are borrowed from the proof of Proposition 3.3 (with the only change that 
we extend by 0 the operators defined originally on subspaces of L2(T) to get operators defined on all 
of L2(T)). The proofs are skipped since they can be copied mutatis mutandis from the corresponding ones 
in [27, Sec. 3.1].

Lemma 3.5. Take 2 ≥ � ≥ m ≥ 0 and κ ∈ Õ(ε) with ε > 0 small enough. Then, one has in B
(
L2(T)

)
[
S�,

(
Im(κ) + Sm

)−1] ∈ O(κ).

Given λ ∈ τk, we recall that N =
{
n ∈ Z | λk,n = λ

}
and P =

∑
n∈N Pn.

Lemma 3.6. Take λ ∈ τk and let Y be the real part of the operator M1(0).

(a) For each n ∈ N , one has PnvS0 = 0 = S0vPn.
(b) For each n ∈ Zk(λ), one has PnvS1 = 0 = S1vPn.
(c) One has Y S2 = 0 = S2Y .
(d) One has M1(0)S2 = 0 = S2M1(0).

4. Continuity properties of the scattering matrix

We prove in this section continuity properties of the channel scattering matrices associated with the 
scattering pair {H0

k , H
V
k }. As before, the value of k ∈ [−1/2, 1/2] is fixed throughout the section.

First, we note that under the assumption that V ∈ L∞(R; R) is 2π-periodic the wave operators

Wk,± := s-lim
t→±∞

eitHV
k e−itH0

k

exist and are complete (see [12, Thm. 2.1]). As a consequence, the scattering operator

Sk := W ∗
k,+Wk,−
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is a unitary operator in L2(Π) which commutes with H0
k , and thus Sk is decomposable in the spectral 

representation of H0
k . To give an explicit formula for Sk in that representation, that is, for the operator 

UkSkU
∗
k in Hk, we recall from Proposition 3.3, Lemma 3.1, and formula (3.4), that the operator

Mk(λ, 0) ≡ lim
ε↘0

(
u + GR0

k(λ + iε)G∗)−1 (4.1)

belongs to B
(
L2(T)

)
for each λ ∈ [k2, ∞) \ {τk ∪ σp(HV

k )}. We also define for n, n′ ∈ Z the operator 
δnn′ ∈ B

(
Pn′ L2(T); PnL2(T)

)
by δnn′ = 1 if n = n′ and δnn′ = 0 otherwise. Then, a computation using 

stationary formulas as presented in [30, Sec. 2.8] shows that

(
UkSkU

∗
k ξ
)
n
(λ) :=

∑
n′∈Zk(λ)

Sk(λ)nn′ ξn′(λ), ξ ∈ Hk, n ∈ Z, λ ∈ [λk,n,∞) \ {τk ∪ σp(HV
k )},

with Sk(λ)nn′ the channel scattering matrix given by

Sk(λ)nn′ = δnn′ − 2iβk,n(λ)−1PnvMk(λ, 0)vPn′βk,n′(λ)−1. (4.2)

Moreover, the explicit formula (3.4) implies for each n, n′ ∈ Z the continuity of the map

[k2,∞) \ {τk ∪ σp(HV
k )} � λ �→ Sk(λ)nn′ ∈ B

(
Pn′L2(T),PnL2(T)

)
, λk,n, λk,n′ < λ.

Therefore, in order to completely determine the continuity properties of the channel scattering matrices 
Sk(λ)nn′ , it only remains to describe the behaviour of Sk(λ)nn′ as λ → λ0 ∈ τk ∪ σp(HV

k ). In the sequel, 
we consider separately the behaviour of Sk(λ)nn′ at thresholds and at embedded eigenvalues, starting with 
the thresholds.

For that purpose, we first note that for each λ ∈ τk, a channel can either be already open (in which case 
one has to show the existence and the equality of the limits from the right and from the left), or can open 
at the energy λ (in which case one has only to show the existence of the limit from the right). Therefore, 
as in the previous section, we shall fix λ ∈ τk, and consider the expression Sk(λ −κ2)nn′ for suitable κ with 
|κ| > 0 small enough (recall that all expressions of Section 3 were also computed at fixed λ ∈ τk but that 
the dependence on λ has not been explicitly written for the simplicity).

Before considering the continuity at thresholds, we define for each fixed λ ∈ τk, for κ ∈ Õ(ε) with ε > 0
small enough, and for 2 ≥ � ≥ m ≥ 0 the operators

C�m(κ) :=
[
S�,

(
Im(κ) + Sm

)−1] ∈ B
(
L2(T)

)
,

and note that C�m(κ) ∈ O(κ) due to Lemma 3.5. In fact, the formulas (3.6), (3.9) and (3.13) imply that 
C ′

�m(0) := limκ→0
1
κ C�m(κ) exists in B

(
L2(T)

)
. In other cases, we use the notation F (κ) ∈ Oas(κn), n ∈ N, 

for an operator F (κ) ∈ O(κn) such that limκ→0 κ
−nF (κ) exists in B

(
L2(T)

)
. We also note that if κ ∈ (0, ε)

or iκ ∈ (0, ε) with ε > 0, then κ ∈ Õ(ε) and −κ2 ∈ (−ε2, ε2) \ {0}.

Theorem 4.1. Assume that V ∈ L∞(R; R) is 2π-periodic, let λ ∈ τk, take κ ∈ (0, ε) or iκ ∈ (0, ε) with ε > 0
small enough, and let n, n′ ∈ Z.

(a) If λk,n, λk,n′ < λ, then the limit limκ→0 Sk(λ − κ2)nn′ exists and is given by

lim
κ→0

Sk(λ− κ2)nn′ = δnn′ − 2iβk,n(λ)−1PnvS0
(
I1(0) + S1

)−1
S0vPn′βk,n′(λ)−1.
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(b) If λk,n, λk,n′ ≤ λ and −κ2 > 0, then the limit limκ→0 Sk(λ − κ2)nn′ exists and is given by

lim
κ→0

Sk(λ− κ2)nn′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if λk,n < λ, λk,n′ = λ,

0 if λk,n = λ, λk,n′ < λ,

δnn′ − 2Pnv
(
I0(0) + S0

)−1
vPn′

+ 2PnvC
′
10(0)S1

(
I2(0) + S2

)−1
S1C

′
10(0)vPn′ if λk,n = λ = λk,n′ .

Before the proof, we note that the r.h.s. of (3.14) can be rewritten as in [27, Sec. 3.3]:

Mk(λ, κ)

= κ
(
I0(κ) + S0

)−1

+
(
S0
(
I0(κ) + S0

)−1 − C00(κ)
)
S0
(
I1(κ) + S1

)−1
S0

((
I0(κ) + S0

)−1
S0 + C00(κ)

)
+ 1

κ

{(
S1
(
I0(κ) + S0

)−1 − C10(κ)
)(

I1(κ) + S1
)−1 −

(
S0
(
I0(κ) + S0

)−1 − C00(κ)
)
C11(κ)

}
× S1

(
I2(κ) + S2

)−1
S1

{(
I1(κ) + S1

)−1
((

I0(κ) + S0
)−1

S1 + C10(κ)
)

+ C11(κ)
((

I0(κ) + S0
)−1

S0 + C00(κ)
)}

+ 1
κ2

{[(
S2
(
I0(κ) + S0

)−1 − C20(κ)
)(

I1(κ) + S1
)−1

−
(
S0
(
I0(κ) + S0

)−1 − C00(κ)
)
C21(κ)

](
I2(κ) + S2

)−1

−
[(

S1
(
I0(κ) + S0

)−1 − C10(κ)
)(

I1(κ) + S1
)−1

−
(
S0
(
I0(κ) + S0

)−1 − C00(κ)
)
C11(κ)

]
C22(κ)

}
S2I3(κ)−1S2

×
{(

I2(κ) + S2
)−1

[(
I1(κ) + S1

)−1
((

I0(κ) + S0
)−1

S2 + C20(κ)
)

+ C21(κ)
((

I0(κ) + S0
)−1

S0 + C00(κ)
)]

+ C22(κ)
[(
I1(κ) + S1

)−1
((

I0(κ) + S0
)−1

S1 + C10(κ)
)

+ C11(κ)
((

I0(κ) + S0
)−1

S0 + C00(κ)
)]}

. (4.3)

The interest in this formulation is that the projections S� (which lead to simplifications in the proof below) 
have been put into evidence at the beginning or at the end of each term.

Proof. (a) Some lengthy, but direct, computations taking into account the expansion (4.3), the relation (
I�(0) + S�

)−1
S� = S�, the expansion

βk,n(λ− κ2)−1 = βk,n(λ)−1
(

1 + κ2

4(λ− λk,n) + O(κ4)
)
, λk,n < λ, (4.4)

and Lemma 3.6(b) lead to the equality

lim
κ→0

βk,n(λ− κ2)−1PnvMk(λ, κ)vPn′βk,n′(λ− κ2)−1

= βk,n(λ)−1PnvS0
(
I1(0) + S1

)−1
S0vPn′βk,n′(λ)−1

− βk,n(λ)−1Pnv
(
C ′

20(0) + S0C
′
21(0)

)
S2I3(0)−1S2

(
C ′

20(0) + C ′
21(0)S0

)
vPn′βk,n′(λ)−1.
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Moreover, Lemmas 3.6(a) and 3.6(d) imply that

C20(κ) =
(
I0(κ) + S0

)−1[
vPv + κM1(κ), S2

](
I0(κ) + S0

)−1

= κ
(
I0(0) + S0

)−1[
M1(0), S2

](
I0(0) + S0

)−1 + Oas(κ2)

= Oas(κ2), (4.5)

and Lemma 3.6(d) and the expansion (3.10) imply that

C21(κ) =
(
I1(κ) + S1

)−1[
S0M1(0)S0 + κM2(κ), S2

](
I1(κ) + S1

)−1

= κ
(
I1(κ) + S0

)−1[
M2(κ), S2

](
I1(κ) + S0

)−1

= κ
(
I1(κ) + S0

)−1[− S0M1(0)
(
I0(0) + S0

)−1
M1(0)S0, S2

](
I1(κ) + S0

)−1 + Oas(κ2)

= Oas(κ2).

Therefore, one has C ′
20(0) = C ′

21(0) = 0, and thus

lim
κ→0

βk,n(λ− κ2)−1PnvMk(λ, κ)vPn′βk,n′(λ− κ2)−1

= βk,n(λ)−1PnvS0
(
I1(0) + S1

)−1
S0vPn′βk,n′(λ)−1.

Since

Sk(λ− κ2)nn′ − δnn′ = −2iβk,n(λ− κ2)−1PnvMk(λ, κ)vPn′βk,n′(λ− κ2)−1, (4.6)

this proves the claim.
(b.1) We first consider the case λk,n < λ, λk,n′ = λ (the case λk,n = λ, λk,n′ < λ is not presented 

since it is similar). An inspection of the expansion (4.3) taking into account the relation 
(
I�(κ) + S�

)−1 =(
I�(0) + S�

)−1 + Oas(κ) and the relation 
(
I�(0) + S�

)−1
S� = S� leads to the equation

βk,n(λ− κ2)−1PnvMk(λ, κ)vPn′βk,n′(λ− κ2)−1

= βk,n(λ− κ2)−1Pnv

{
Oas(κ) + S0

(
I1(κ) + S1

)−1
S0

+ 1
κ

(
S1 + Oas(κ)

)
S1
(
I2(κ) + S2

)−1
S1
(
S1 + Oas(κ)

)
+ 1

κ2

[
Oas(κ2) + S2

(
I0(κ) + S0

)−1(
I1(κ) + S1

)−1(
I2(κ) + S2

)−1 − C20(κ) − S0C21(κ) − S1C22(κ)
]

× S2I3(κ)−1S2

[
Oas(κ2) +

(
I2(κ) + S2

)−1(
I1(κ) + S1

)−1(
I0(κ) + S0

)−1
S2 + C20(κ) + C21(κ)S0

+ C22(κ)S1

]}
vPn′βk,n′(λ− κ2)−1.

An application of Lemma 3.6(a)–(b) to the previous equation gives

βk,n(λ− κ2)−1PnvMk(λ, κ)vPn′βk,n′(λ− κ2)−1

= βk,n(λ− κ2)−1Pnv

{
Oas(κ) − 1

κ2

(
Oas(κ2) + C20(κ) + S0C21(κ)

)
S2I3(κ)−1S2

(
Oas(κ2) + C20(κ)

)}
× vPn′βk,n′(λ− κ2)−1.
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Finally, if one takes into account the expansion (4.4) for βk,n(λ − κ2)−1 and the equality βk,n′(λ − κ2)−1 =
|κ|−1/2, one ends up with

βk,n(λ− κ2)−1PnvMk(λ, κ)vPn′βk,n′(λ− κ2)−1

= − 1
κ2|κ|1/2 βk,n(λ)−1Pnv

(
C20(κ) + S0C21(κ)

)
S2I3(κ)−1S2C20(κ)vPn′ + O(|κ|1/2).

Since C20(κ) = Oas(κ2) (see (4.5)), one infers that βk,n(λ −κ2)−1PnvMk(λ, κ)vPn′βk,n′(λ −κ2)−1 vanishes 
as κ → 0, and thus that the limit limκ→0 Sk(λ − κ2)nn′ also vanishes due to (4.6).

(b.2) We are left with the case λk,n = λ = λk,n′ . An inspection of the expansion (4.3) taking into account 
the relation 

(
I�(κ) +S�

)−1 =
(
I�(0) +S�

)−1 +Oas(κ), the relation 
(
I�(0) +S�

)−1
S� = S� and Lemma 3.6(a) 

leads to the equation

βk,n(λ− κ2)−1PnvMk(λ, κ)vPn′βk,n′(λ− κ2)−1

= βk,n(λ− κ2)−1Pnv

{
Oas(κ2) + κ

(
I0(κ) + S0

)−1 − 1
κ
C10(κ)S1

(
I2(κ) + S2

)−1
S1C10(κ)

− 1
κ2

(
Oas(κ2) + C20(κ)

)
S2I3(κ)−1S2

(
Oas(κ2) + C20(κ)

)}
vPn′βk,n′(λ− κ2)−1.

Therefore, since βk,n(λ − κ2)−1 = βk,n′(λ − κ2)−1 = |κ|−1/2 and C20(κ) ∈ Oas(κ2), one obtains that

lim
κ→0

βk,n(λ− κ2)−1PnvMk(λ, κ)vPn′βk,n′(λ− κ2)−1

= −iPnv
(
I0(0) + S0

)−1
vPn′ + iPnvC

′
10(0)S1

(
I2(0) + S2

)−1
S1C

′
10(0)vPn′ ,

and thus that

lim
κ→0

Sk(λ− κ2)nn′ = δnn′ − 2Pnv
(
I0(0) + S0

)−1
vPn′ + 2PnvC

′
10(0)S1

(
I2(0) + S2

)−1
S1C

′
10(0)vPn′

due to (4.6). �
We finally consider the continuity of the scattering matrix at embedded eigenvalues not located at thresh-

olds.

Theorem 4.2. Assume that V ∈ L∞(R; R) is 2π-periodic, take λ ∈ σp(HV
k ) \ τk, κ ∈ (0, ε) or iκ ∈ (0, ε) with 

ε > 0 small enough, and let n, n′ ∈ Z. Then, if λk,n, λk,n′ < λ, the limit limκ→0 Sk(λ − κ2)nn′ exists and is 
given by

lim
κ→0

Sk(λ− κ2)nn′ = δnn′ − 2iβk,n(λ)−1Pnv
(
J0(0) + S

)−1
vPn′βk,n′(λ)−1. (4.7)

Proof. We know from (3.19) that

Mk(λ, κ) =
(
J0(κ) + S

)−1 + 1
κ2

(
J0(κ) + S

)−1
SJ1(κ)−1S

(
J0(κ) + S

)−1
,

with S the Riesz projection associated with the value 0 of the operator

T0 = u +
∑

⊥

vPmv

βk,m(λ)2 + i
∑ vPmv

βk,m(λ)2 .

m∈Zk(λ) m∈Zk(λ)
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Now, since J0(κ) = T0 + κ2T1(κ) with T1(κ) ∈ Oas(1), a commutation of S with 
(
J0(κ) + S

)−1 gives

Mk(λ, κ) =
(
J0(κ) + S

)−1 + 1
κ2

{
S
(
J0(κ) + S

)−1 + Oas(κ2)
}
SJ1(κ)−1S

{(
J0(κ) + S

)−1
S + Oas(κ2)

}
.

In addition, an application of [27, Lemma 2.5] shows that PnvS = 0 = SvPn for each n ∈ Zk(λ). These 
relations, together with (4.6), imply the equality (4.7). �
5. Structure of the wave operators

In this section, we establish new stationary formulas for the wave operators Wk,± for a fixed value of 
k ∈ [−1/2, 1/2], and also for the full wave operators W±(H0, HV ). As before, we assume throughout the 
section that V ∈ L∞(R; R) is 2π-periodic.

We recall from [30, Eq. 2.7.5] that Wk,− satisfies for suitable ϕ, ψ ∈ L2(Π) the following equation:

〈
Wk,−ϕ,ψ

〉
L2(Π) =

∫
R

dλ lim
ε↘0

ε

π

〈
R0

k(λ− iε)ϕ,RV
k (λ− iε)ψ

〉
L2(Π).

We also recall from [30, Sec. 1.4] that if δε
(
H0

k −λ
)

:= π−1ε
(H0

k−λ)2+ε2
for ε > 0, then the limit limε↘0

〈
δε
(
H0

k −
λ
)
ϕ, ψ

〉
L2(Π) exists for a.e. λ ∈ R and verifies

〈ϕ,ψ〉L2(Π) =
∫
R

dλ lim
ε↘0

〈
δε(H0

k − λ)ϕ,ψ
〉
L2(Π).

So, by taking (3.1) into account and by using the fact that limε↘0
∥∥δε(H0

k − λ
)∥∥

B(L2(Π)) = 0 if λ < k2, one 
infers that

〈(
Wk,− − 1

)
ϕ,ψ

〉
L2(Π) = −

∞∫
k2

dλ lim
ε↘0

〈
G∗Mk(λ + iε)Gδε(H0

k − λ)ϕ,R0
k(λ− iε)ψ

〉
L2(Π),

with

Mk(z) :=
(
u + GR0

k(z)G∗)−1
, z ∈ C \ R.

Below, we derive an expression for the operator (Wk,− − 1) in the spectral representation of H0
k ; that 

is, for the operator Uk(Wk,− − 1)U ∗
k . For that purpose, we decompose the operator G into the product 

G = vγ0, with γ0 ∈ B
(
H̃1(Π); L2(T)

)
given by

(γ0ϕ)(θ) := ϕ(θ, 0), ϕ ∈ H̃1(Π), θ ∈ T.

We also define the set

Dk :=
{
ξ ∈ Hk | ξn = ρn ⊗ ein(·), ρn ∈ C∞

c
(
(λk,n,∞) \ {τk ∪ σp(HV

k )}
)
,

ρn �≡ 0 for a finite number of n ∈ Z

}
which is dense in Hk since the point spectrum of HV

k has no accumulation point except possibly at +∞. 
Finally, we give the short following lemma, which will be useful in the subsequent computations for the 
wave operators.
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Lemma 5.1. For ξ ∈ Dk and λ ≥ k2, one has

(a) γ0U ∗
k ξ = π−1/2∑

n∈Z

∫∞
λk,n

dμ βk,n(μ)−1ξn(μ) ∈ L2(T),
(b) s-limε↘0 γ0U ∗

k δε(Lk − λ)ξ = π−1/2∑
n∈Zk(λ) βk,n(λ)−1ξn(λ) ∈ L2(T).

Proof. The equality in (a) follows from a direct computation, and the inclusion in L2(T) follows from the 
fact that U ∗

k ξ ∈ H̃1(Π). For (b), it is sufficient to note that the map μ �→ βk,n(μ)−1ξn(μ) extends trivially 
to a continuous function on R with compact support in (λk,n, ∞), and then to use the convergence of the 
Dirac delta sequence δε( · − λ). �

Thus, if we let ξ, ζ ∈ Dk and take the previous observations into account, we obtain the equalities〈
Uk

(
Wk,− − 1

)
U ∗

k ξ, ζ
〉

Hk

= −
∞∫

k2

dλ lim
ε↘0

〈
γ∗
0vMk(λ + iε)vγ0U

∗
k δε(Lk − λ)ξ,U ∗

k (Lk − λ + iε)−1ζ
〉
L2(Π)

= −
∞∫

k2

dλ lim
ε↘0

〈
vMk(λ + iε)vγ0U

∗
k δε(Lk − λ)ξ, γ0U

∗
k (Lk − λ + iε)−1ζ

〉
L2(T)

= −
∞∫

k2

dλ lim
ε↘0

〈
π−1/2vMk(λ + iε)vγ0U

∗
k δε(Lk − λ)ξ,

∑
n∈Z

∞∫
λk,n

dμ βk,n(μ)−1

μ− λ + iε
ζn(μ)

〉
L2(T)

= −
∑
n∈Z

∞∫
λk,n

dλ lim
ε↘0

〈
π−1/2vMk(λ + iε)vγ0U

∗
k δε(Lk − λ)ξ,

∞∫
λk,n

dμ βk,n(μ)−1

μ− λ + iε
ζn(μ)

〉
L2(T)

(5.1)

−
∑
n∈Z

λk,n∫
k2

dλ lim
ε↘0

〈
π−1/2vMk(λ + iε)vγ0U

∗
k δε(Lk − λ)ξ,

∞∫
λk,n

dμ βk,n(μ)−1

μ− λ + iε
ζn(μ)

〉
L2(T)

(5.2)

with the sums over n being finite. In the next two sections, we study separately the terms (5.1) and (5.2).

5.1. Wave operators: the leading term

We prove in this section an explicit formula for the term (5.1) in the expression for (Wk,−−1) in terms of 
the generator of dilations in R+. For this, we recall that the dilation group {U+

τ }τ∈R in L2(R+) is defined by(
U+
τ ϕ

)
(λ) := eτ/2 ϕ(eτ λ), ϕ ∈ Cc(R+), λ ∈ R+, τ ∈ R,

and that the self-adjoint generator of {U+
τ }τ∈R is denoted by A+.

Proposition 5.2. Assume that V ∈ L∞(R; R) is 2π-periodic and take ξ, ζ ∈ Dk. Then, we have

−
∑
n∈Z

∞∫
λk,n

dλ lim
ε↘0

〈
π−1/2vMk(λ + iε)vγ0U

∗
k δε(Lk − λ)ξ,

∞∫
λk,n

dμ βk,n(μ)−1

μ− λ + iε
ζn(μ)

〉
L2(T)

=
〈
Uk

(
1 ⊗R(A+)

)
(Sk − 1)U ∗

k ξ, ζ
〉

Hk
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with

R(x) := 1
2
(
1 + tanh(πx) + i cosh(πx)−1), x ∈ R. (5.3)

Proof. (i) Take η ∈ C∞
c (R+) and x ∈ R+, let F be the Fourier transform on R, and write χ+ for the 

characteristic function for R+. Then, we have

(Θη)(x) := 2
∞∫
0

dy
∞∫
0

dz x ei(y2−x2)z η(y)

= 23/2π1/2
∞∫
0

dy
(
F ∗χ+

)
(y2 − x2)xη(y)

= 23/2π1/2
∫
R

dz
(
F ∗χ+

)(
x2(e2z −1)

)
x2 ez η(ez x) (y = ez x)

= 23/2π1/2
∫
R

dz
(
F ∗χ+

)(
x2(e2z −1)

)
x2 ez/2

(
U+
z η
)
(x).

Then, by using the fact that F ∗χ+ = 2−1/2π1/2 δ0 + i (2π)−1/2 Pv 1
( · ) with δ0 the Dirac delta distribution 

and Pv the principal value, one gets that

(Θη)(x) = 2
∫
R

dz
(
πδ0(e2z −1) + iPv

ez/2
e2z −1

)(
U+
z η
)
(x)

=
∫
R

dz
(
πδ0(z) + i

2 Pv
(

1
sinh(z/2) − 1

cosh(z/2)

))(
U+
z η
)
(x).

So, by taking into account the equality [18, Table 20.1]

(2π)1/2
(
FR

)
(z) = πδ0(−z) + i

2 Pv
(

1
sinh(−z/2) − 1

cosh(−z/2)

)
with R as in (5.3), one infers that

(Θη)(x) = (2π)1/2
∫
R

dz
(
FR

)
(−z)

(
U+
z η
)
(x) = 2π

(
R(−A+)η

)
(x).

Therefore, one has for each ζ ∈ Dk, n ∈ Z and λ > λk,n the following equalities in L2(T):

2π
(
Uk(1 ⊗R(A+))U ∗

k ζ
)
n
(λ)

= 2π
(
Uk(1 ⊗ F ∗

c R(−A+)Fc)U ∗
k ζ
)
n
(λ)

=
(
Uk(1 ⊗ F ∗

c ΘFc)U ∗
k ζ
)
n
(λ)

= 2−1/2(λ− λk,n)−1/4((Pn ⊗ ΘFc)U ∗
k ζ
)(

· , (λ− λk,n)1/2
)

= 21/2(λ− λk,n)−1/4
∞∫

dy
∞∫

dz (λ− λk,n)1/2 ei(y2−λ+λk,n)z ((Pn ⊗ Fc)U ∗
k ζ
)
( · , y)
0 0
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= 2(λ− λk,n)1/4
∞∫
0

dy
∞∫
0

dz ei(y2−λ+λk,n)z y1/2ζn(y2 + λk,n)

=
∞∫

λk,n

dμ
∞∫
0

dz ei(μ−λ)z βk,n(λ)βk,n(μ)−1 ζn(μ). (5.4)

(ii) Let ξ, ζ ∈ Dk and take ε > 0, n ∈ Z and λ ∈ [λk,n, ∞) \ {τk ∪ σp(HV
k )}. Then, Lemma 5.1(a), the 

formula (μ − λ + iε)−1 = −i 
∫∞
0 dz ei(μ−λ)z e−εz and Fubini’s theorem imply that

lim
ε↘0

〈
π−1/2vMk(λ + iε)vγ0U

∗
k δε(Lk − λ)ξ,

∞∫
λk,n

dμ βk,n(μ)−1

μ− λ + iε
ζn(μ)

〉
L2(T)

= lim
ε↘0

〈
π−1/2βk,n(λ)−1PnvMk(λ + iε)vγ0U

∗
k δε(Lk − λ)ξ,

∞∫
λk,n

dμ βk,n(λ)βk,n(μ)−1

μ− λ + iε
ζn(μ)

〉
L2(T)

= lim
ε↘0

∞∫
0

dz e−εz

〈
gε(n, λ),

∞∫
λk,n

dμ ei(μ−λ)z βk,n(λ)βk,n(μ)−1 ζn(μ)
〉

L2(T)

(5.5)

with

gε(n, λ) := iπ−1βk,n(λ)−1PnvMk(λ + iε)v
∑
n′∈Z

∞∫
λk,n′

dν βk,n′(ν)−1δε(ν − λ)ξn′(ν).

Now, we already know from (4.1) that limε↘0 Mk(λ + iε) = Mk(λ, 0) in B
(
L2(T)

)
and we have

s-lim
ε↘0

∑
n′∈Z

∞∫
λk,n′

dν βk,n′(ν)−1δε(ν − λ)ξn′(ν) =
∑

n′∈Zk(λ)

βk,n′(λ)−1ξn′(λ)

in L2(T). Therefore, we have

g0(n, λ) := s-lim
ε↘0

gε(n, λ) = iπ−1βk,n(λ)−1PnvMk(λ, 0)v
∑

n′∈Zk(λ)

βk,n′(λ)−1ξn′(λ)

in L2(T), and the integrant in (5.5) can be bounded independently of ε ∈ (0, 1):∣∣∣∣∣∣∣e−εz

〈
gε(n, λ),

∞∫
λk,n

dμ ei(μ−λ)z βk,n(λ)βk,n(μ)−1 ζn(μ)
〉

L2(T)

∣∣∣∣∣∣∣
≤ Const.

∥∥∥∥∥∥∥
∞∫

λk,n

dμ ei(μ−λ)z βk,n(λ)βk,n(μ)−1 ζn(μ)

∥∥∥∥∥∥∥
L2(T)

. (5.6)

In order to exchange the integral over z and the limit ε ↘ 0 in (5.5), it remains to show that the r.h.s. 
of (5.6) belongs to L1(R+, dz). For that purpose, we note that
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∥∥∥∥∥∥∥
∞∫

λk,n

dμ ei(μ−λ)z βk,n(λ)βk,n(μ)−1 ζn(μ)

∥∥∥∥∥∥∥
L2(T)

=

∥∥∥∥∥∥∥
∞∫

λk,n−λ

dν eiνz βk,n(λ)βk,n(ν + λ)−1 ζn(ν + λ)

∥∥∥∥∥∥∥
L2(T)

=
∥∥(F ∗hn,λ)(z)

∥∥
L2(T)

with hn,λ the trivial extension of the function

(λk,n − λ,∞) � ν �→ (2π)1/2βk,n(λ)βk,n(ν + λ)−1 ζn(ν + λ) ∈ L2(T)

to all of R. Then, writing P for the self-adjoint operator −i ∇ on R, and using the fact that

hn,λ(ν) =
{

(2π)1/2βk,n(λ)βk,n(ν + λ)−1ρn(ν + λ) ein( · ) if ν > λk,n − λ

0 if ν ≤ λk,n − λ

with ρn ∈ C∞
c
(
(λk,n, ∞) \ {τk ∪ σp(HV

k )}
)
, one obtains that

∥∥(F ∗hn,λ

)
(z)
∥∥

L2(T) = 〈z〉−2∥∥(F ∗〈P 〉2hn,λ

)
(z)
∥∥

L2(T) ≤ Const.〈z〉−2, z ∈ R+.

As a consequence, one can apply Lebesgue dominated convergence theorem and Fubini’s theorem to infer 
that (5.5) is equal to

〈
g0(n, λ),

∞∫
λk,n

dμ
∞∫
0

dz ei(μ−λ)z βk,n(λ)βk,n(μ)−1 ζn(μ)
〉

L2(T)

.

This, together with (4.2) and (5.4), implies that

lim
ε↘0

〈
π−1/2vMk(λ + iε)vγ0U

∗
k δε(Lk − λ)ξ,

∞∫
λk,n

dμ βk,n(μ)−1

μ− λ + iε
ζn(μ)

〉
L2(T)

=
〈 ∑

n′∈Zk(λ)

2iβk,n(λ)−1PnvMk(λ, 0)vPn′βk,n′(λ)−1ξn′(λ),
(
Uk(1 ⊗R(A+))U ∗

k ζ
)
n
(λ)

〉
L2(T)

= −
〈(

Uk(Sk − 1)U ∗
k ξ
)
n
(λ),

(
Uk(1 ⊗R(A+))U ∗

k ζ
)
n
(λ)

〉
L2(T).

Now, the last equality holds not only for λ ∈ [λk,n, ∞) \ {τk ∪ σp(HV
k )} but for all λ ∈ [λk,n, ∞), since for 

each n ∈ Z and all λ ∈ τk ∪ σp(HV
k ) we have ξn(λ) = 0. So, we finally obtain that

−
∑
n∈Z

∞∫
λk,n

dλ lim
ε↘0

〈
π−1/2vMk(λ + iε)vγ0U

∗
k δε(Lk − λ)ξ,

∞∫
λk,n

dμ βk,n(μ)−1

μ− λ + iε
ζn(μ)

〉
L2(T)

=
〈
Uk

(
1 ⊗R(A+)

)
(Sk − 1)U ∗

k ξ, ζ
〉

Hk
,

as desired. �
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5.2. Wave operators: the remainder term

We prove in this section that the remaining term (5.2) in the expression for (Wk,− − 1) can be written 
as a matrix operator in Hk with Hilbert–Schmidt components. For this, we start with a lemma which 
complements the continuity properties obtained Section 4.

Lemma 5.3. Assume that V ∈ L∞(R; R) is 2π-periodic, and choose n, n′ ∈ Z such that λk,n′ < λk,n. Then, 
the function

[λk,n′ , λk,n] \ {τk ∪ σp(HV
k )} � λ �→ βk,n(λ)−2PnvMk(λ, 0)vPn′ ∈ B

(
L2(T)

)
(5.7)

extends to a continuous function on [λk,n′ , λk,n].

Proof. Since the function (5.7) is continuous on [λk,n′ , λk,n] \ {τk ∪ σp(HV
k )}, one only has to check that 

the function admits limits in B
(
L2(T)

)
as λ → λ0 ∈ {τk ∪ σp(HV

k )}. However, in order to be able to use 
the asymptotic expansions of Proposition 3.3, we slightly change the point of view by considering values 
λ − κ2 ∈ C with λ ∈ {τk ∪ σp(HV

k )} and κ → 0 in a suitable domain of C of diameter ε > 0. Namely, we 
consider the three following possible cases: when λ = λk,n′ and iκ ∈ (0, ε) (case 1), when λ = λk,n and 
κ ∈ (0, ε) (case 2), and when λ ∈ (λk,n′ , λk,n) ∩ {τk ∪ σp(HV

k )} and κ ∈ (0, ε) or iκ ∈ (0, ε) (case 3). In 
each case, we choose ε > 0 small enough so that {z ∈ C | |z| < ε} ∩ {τk ∪ σp(HV

k )} = {λ} (this is possible 
because τk is discrete and σp(HV

k ) has no accumulation point).
(i) First, assume that λ ∈ σp(HV

k ) \ τk and let κ ∈ (0, ε) or iκ ∈ (0, ε) with ε > 0 small enough. Then, 
we know from (3.19) that

PnvMk(λ, κ)vPn′ = Pnv
(
J0(κ) + S

)−1
vPn′ + 1

κ2 Pnv
(
J0(κ) + S

)−1
SJ1(κ)−1S

(
J0(κ) + S

)−1
vPn′

with S, J0(κ) and J1(κ) as in point (ii) of the proof of Proposition 3.3. Furthermore, point (ii) of the proof of 
Proposition 3.3 implies that [S, J0(κ)] ∈ Oas(κ2), and Lemma 3.6(b) (applied with S instead of S1) implies 
that SvPn′ = 0. Therefore,

PnvMk(λ, κ)vPn′ = Oas(1) + 1
κ2 Pnv

(
J0(κ) + S)−1SJ1(κ)−1S

{(
J0(κ) + S)−1S + Oas(κ2)

}
vPn′

= Oas(1).

Since limκ→0 βk,n(λ − κ2)−2 = |λ − λk,n|−1/2 < ∞ for each λ ∈ σp(HV
k ) \ τk, we thus infer that the 

function (5.7) (with λ replaced by λ − κ2) admits a limit in B
(
L2(T)

)
as κ → 0.

(ii) Now, assume that λ ∈ [λk,n′ , λk,n] ∩ τk, and consider the three above cases simultaneously. For this, 
we recall that iκ ∈ (0, ε) in case 1, κ ∈ (0, ε) in case 2, and κ ∈ (0, ε) or iκ ∈ (0, ε) in case 3. Also, we note 
that the factor βk,n(λ − κ2)−2 does not play any role in cases 1 and 3, but gives a singularity of order |κ|−1

in case 2.
In the expansion (4.3), the first term (the one linear in κ) admits a limit in B

(
L2(T)

)
as κ → 0, even 

in case 2. For the second term (the one of order Oas(1) in κ) only case 2 requires a special attention: in 
this case, the existence of the limit as κ → 0 follows from the inclusion C00(κ) ∈ Oas(κ) and the equality 
PnvS0 = 0, which holds by Lemma 3.6(a). For the third term (the one with prefactor 1

κ), in cases 1 and 3, 
it is sufficient to observe that C00(κ), C10(κ) ∈ Oas(κ) and that S1vPn′ = 0 by Lemma 3.6(b). On the 
other hand, for case 2, one must take into account the inclusions C00(κ), C10(κ) ∈ Oas(κ), the equality 
S1vPn′ = 0 of Lemma 3.6(b) and the equality PnvS1 = 0 of Lemma 3.6(a). For the fourth term (the 
one with prefactor 1

2 ), in cases 1 and 3, it is sufficient to observe that C20(κ), C21(κ) ∈ Oas(κ2) and 
κ
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that S2vPn′ = 0 = S1vPn′ . On the other hand, for case 2, one must take into account the inclusions 
C20(κ), C21(κ) ∈ Oas(κ2), the equalities S2vPn′ = 0 = S1vPn′ , and the equality PnvS2 = 0. �

Now, to obtain the desired formula for the term (5.2), we define for ε > 0, n ∈ Z, λ ∈ R and ξ ∈ Dk the 
vector

gε(n, λ) := π−1/2PnvMk(λ + iε)vγ0U
∗
k δε(Lk − λ)ξ ∈ L2(T),

and we note from Proposition 3.3 and Lemma 5.1(b) that for each λ ∈ (k2, λk,n) \ {τk ∪ σp(HV
k )} we have

g0(n, λ) := s-lim
ε↘0

gε(n, λ) = π−1PnvM(λ, 0)v
∑

n′∈Zk(λ)

βk,n′(λ)−1ξn′(λ).

Then, we observe that (5.2) can be written as

−
∑
n∈Z

λk,n∫
k2

dλ lim
ε↘0

〈
gε(n, λ),

∞∫
λk,n

dμ βk,n(μ)−1

μ− λ + iε
ζn(μ)

〉
L2(T)

(5.8)

with ∣∣∣∣∣∣∣
〈
gε(n, λ),

∞∫
λk,n

dμ βk,n(μ)−1

μ− λ + iε
ζn(μ)

〉
L2(T)

∣∣∣∣∣∣∣ ≤ Const.

∥∥∥∥∥∥∥
∞∫

λk,n

dμ βk,n(μ)−1

μ− λ + iε
ζn(μ)

∥∥∥∥∥∥∥
L2(T)

.

Since the r.h.s. can be bounded independently of ε, we infer from Lebesgue dominated convergence theorem 
that (5.8) can be rewritten as

−
∑
n∈Z

∑
n′∈Zk(λk,n)

λk,n∫
λk,n′

dλ
〈
Bnn′(λ)ξn′(λ),

∞∫
λk,n

dμ βk,n(λ)2βk,n(μ)−1βk,n′(λ)−1

π(μ− λ) ζn(μ)
〉

L2(T)

(5.9)

with

Bnn′(λ) = βk,n(λ)−2PnvMk(λ, 0)vPn′ ∈ B
(
L2(T)

)
for a.e. λ ∈ (λk,n′ , λk,n). (5.10)

But the map λ �→ Bnn′(λ) coincides with the map (5.7). Therefore, Lemma 5.3 and Fubini’s theorem imply 
that (5.9) can be written as 

〈
Qk ξ, ζ

〉
Hk

, with Qk : Hk → Hk given for ξ ∈ Dk, n ∈ Z and μ > λk,n by

(Qkξ)n(μ) := −
∑

n′∈Zk(λk,n)

λk,n∫
λk,n′

dλ βk,n(λ)2βk,n(μ)−1βk,n′(λ)−1

π(μ− λ) Bnn′(λ)ξn′(λ).

To simplify the last formula, we define the operator Bnn′ ∈ B
(
Hk,n′ ; L2((λk,n′ , λk,n); PnL2(T)

))
by

(
Bnn′ξn′

)
(λ) := Bnn′(λ)ξn′(λ) for a.e. λ ∈ (λk,n′ , λk,n).

We also define the integral operator Cnn′ : L2((λk,n′ , λk,n); PnL2(T)
)
→ Hk,n with kernel
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Cnn′(μ, λ) := βk,n(λ)2βk,n(μ)−1βk,n′(λ)−1

π(μ− λ) , μ > λk,n, λ ∈ (λk,n′ , λk,n),

and show that Cnn′ is a Hilbert–Schmidt operator.

Lemma 5.4. The operator Cnn′ is a Hilbert–Schmidt operator from L2((λk,n′ , λk,n); PnL2(T)
)

to Hk,n.

Proof. Using the changes of variables x := (μ − λk,n)1/2, y := (λk,n − λ)1/2, and the notation α :=
(λk,n − λk,n′)1/2, one obtains that

∞∫
λk,n

dμ
λk,n∫

λk,n′

dλ |λ− λk,n| |μ− λk,n|−1/2 |λ− λk,n′ |−1/2

π2(μ− λ)2

= 4
π2

∞∫
0

dx
α∫

0

dy y3(α2 − y2)−1/2

(x2 + y2)2

= 4
π2

α∫
0

dy y3

(α2 − y2)1/2

(
x

2y2(x2 + y2) + arctan(x/y)
2y3

) ∣∣∣∣x=∞

x=0

= 1
π

α∫
0

dy (α2 − y2)−1/2

= 1/2.

It follows that Cnn′ is a Hilbert–Schmidt operator from L2((λk,n′ , λk,n); PnL2(T)
)

to Hk,n with Hilbert–
Schmidt norm equal to 1/

√
2. �

Therefore, the remainder term (5.2) in the expression for (Wk,− − 1) can be written as 
〈
Qk ξ, ζ

〉
Hk

with 
Qk : Hk → Hk given by

(Qkξ)n = −
∑

n′∈Zk(λk,n)

Cnn′Bnn′ξn′ , ξ ∈ Dk, n ∈ Z, (5.11)

where each summand Cnn′Bnn′ : Hk,n′ → Hk,n belongs to the Hilbert–Schmidt class.
We close the section with two observations which show that the remainder term Qk is always small in 

some suitable sense. First, we consider the case of a constant function V :

Remark 5.5. If the function V is constant, then the remainder term Qk vanishes. Indeed, in such a case one 
can easily check that the operator Mk(λ, 0) is diagonal in the basis

{ 1√
2π

ein( · ) }
n∈Z

⊂ L2(T). As a result, 
one obtains that Bnn′(λ) = 0, which in turn implies that Qk = 0 (see (5.10) and (5.11)).

Second, we consider the case of a general function V :

Lemma 5.6. Assume that V ∈ L∞(R; R) is 2π-periodic. Then, the remainder term Qk vanishes asymptotically 
along the free evolution, that is,

s-lim
t→±∞

eitH0
k U ∗

k QkUk e−itH0
k = 0 in L2(Π).
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Proof. The equations (5.1)–(5.2), Proposition 5.2 and the results of this section imply that〈
Uk

(
Wk,− − 1

)
U ∗

k ξ, ζ
〉

Hk
=
〈
Uk

(
1 ⊗R(A+)

)
(Sk − 1)U ∗

k ξ, ζ
〉

Hk
+
〈
Qk ξ, ζ

〉
Hk

, ξ, ζ ∈ Dk.

Therefore, we deduce from the density of Dk in Hk and the unitarity of Uk : L2(Π) → Hk that

Wk,− − 1 −
(
1 ⊗R(A+)

)
(Sk − 1) = U ∗

k QkUk. (5.12)

Also, we know from the existence and completeness of the wave operators Wk,± that

s-lim
t→±∞

eitH0
k Sk e−itH0

k = Sk, s-lim
t→∞

eitH0
k Wk,− e−itH0

k = Sk and s-lim
t→−∞

eitH0
k Wk,− e−itH0

k = 1. (5.13)

Furthermore, the definition of the function R (see (5.3)) and Proposition A.1 imply in L2(R+) the relations

s-lim
t→∞

eit(−�N) R(A+) e−it(−�N) = 1 and s-lim
t→−∞

eit(−�N) R(A+) e−it(−�N) = 0,

which in turn imply in L2(Π) the relations

s-lim
t→∞

eitH0
k
(
1 ⊗R(A+)

)
e−itH0

k = 1 and s-lim
t→−∞

eitH0
k
(
1 ⊗R(A+)

)
e−itH0

k = 0. (5.14)

Then, one can conclude by combining the equations (5.12)–(5.14). �
5.3. New formula for the wave operators

In this final section, we collect the information on the wave operators obtained so far.

Lemma 5.7. Assume that V ∈ L∞(R; R) is 2π-periodic. Then, we have in L2(Π) the equalities

Wk,− − 1 =
(
1 ⊗R(A+)

)
(Sk − 1) + U ∗

k QkUk (5.15)

and

Wk,+ − 1 =
(
1 − 1 ⊗R(A+)

)
(S∗

k − 1) + U ∗
k QkUkS

∗
k , (5.16)

with R and Qk given in (5.3) and (5.11). In addition, the term Qk satisfies

s-lim
t→±∞

eitH0
k U ∗

k QkUk e−itH0
k = 0.

Proof. As already mentioned in the proof of Lemma 5.6, the equations (5.1)–(5.2), Proposition 5.2 and the 
results of Section 5.2 imply the formula (5.15) for Wk,−. The formula (5.16) for Wk,+ follows from (5.15) and 
from the relation Wk,+ = Wk,−S∗

k . Finally, the properties of the term Qk follow directly from Lemma 5.6. �
Now, we know from [12, Sec. 2.4] that the wave operators W± ≡ W±(H0, HV ) and the scattering operator 

S ≡ S(H0, HV ) for the pair {H0, HV } admit direct integral decompositions

GW±G−1 =
⊕∫

[−1/2,1/2]

Wk,± dk and GSG−1 =
⊕∫

[−1/2,1/2]

Sk dk,

with G : L2(R × R+) →
∫ ⊕
[−1/2,1/2] L

2(Π) dk the Gelfand transform of Section 2.1. Therefore, one directly 
infers from Lemma 5.7 the following new formulas for W±:
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Theorem 5.8. Assume that V ∈ L∞(R; R) is 2π-periodic. Then, we have in L2(R × R+) the equalities

W− − 1 =
(
1 ⊗R(A+)

)
(S − 1) + Q and W+ − 1 =

(
1 − 1 ⊗R(A+)

)
(S∗ − 1) + QS∗,

with Q := G−1
(∫ ⊕

[−1/2,1/2] U
∗
k QkUk dk

)
G.
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Appendix A

We present in this appendix a proposition of independent interest on the asymptotic behaviour of func-
tions of the generator of dilations A+ under the time evolution generated by the Neumann Laplacian −	N. 
Before this, we recall that the usual weighted L2-spaces are defined by

Ht(R) :=

⎧⎨⎩ϕ ∈ L2(R) |
∫
R

(
1 + |x|2

)t|ϕ(x)|2 < ∞

⎫⎬⎭ , t ≥ 0.

Proposition A.1. Let f ∈ C1(R) satisfy f ′ ∈ Ht(R) for some t > 1/2 and limx→±∞ f(x) = f± for some 
f± ∈ C. Then, one has

s-lim
t→±∞

eit(−�N) f(A+) e−it(−�N) = f±. (A.1)

Proof. The operator of multiplication in L2(R+) given by

(Bϕ)(x) := 1
2 ln(x2)ϕ(x), ϕ ∈ C∞

c (R+),

is essentially self-adjoint [24, Ex. 5.1.15], with self-adjoint extension denoted by the same symbol. Also, 
a direct calculation shows that B and A+ satisfy for t ∈ R and ϕ ∈ C∞

c (R+) the relation

eitB A+ e−itB ϕ = (A+ − t)ϕ.

Since C∞
c (R+) is a core for A+, this implies that eitB A+ e−itB = (A+−t) as self-adjoint operators. Therefore, 

one obtains that

s-lim
t→±∞

eitB f(A+) e−itB = s-lim
t→±∞

f
(
eitB A+ e−itB

)
= s-lim

t→±∞
f(A+ − t) = f∓.

Now, one can apply to the last relation the invariance principle for wave operators as presented in [4, 
Sec. 16.1.1] to obtain for each η ∈ C∞

c (R) the relation

s-lim
t→±∞

eit e2B f(A+) e−it e2B η(B) = f∓ η(B). (A.2)

For this, one has to check that the function x �→ e2x is admissible in the sense of [4, Def. 8.1.16] and that 
the commutator Bf(A+)η(B) −f(A+)η(B)B, defined as a quadratic form on D(B), extends to a trace class 
operator. The first condition is trivially verified. For the second condition, we have the following equalities 
in the form sense on C∞

c (R+):
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Bf(A+)η(B) − f(A+)η(B)B = −i

(
s- d

dt
eitB f(A+) e−itB

)
t=0

η(B)

= −i

(
s- d

dtf(A+ − t)
)

t=0
η(B)

= if ′(A+)η(B).

Therefore, the commutator Bf(A+)η(B) − f(A+)η(B)B extends to the bounded operator if ′(A+)η(B) by 
density of C∞

c (R+) in D(B). On another hand, if M : L2(R+) → L2(R) denotes the Mellin transform as 
given in [3, Sec. 1.5], then it is known that MA+M−1 = X and MBM−1 = −P , with X the multiplication 
operator by the variable in L2(R) and P the differentiation operator −i∇ in L2(R). It follows that

f ′(A+)η(B) = M−1f ′(X)η(−P )M,

with f ′(X)η(−P ) of trace class due to the decay assumption on f ′ (see [2, Cor. 4.1.4]). Therefore, the 
operator f ′(A+)η(B) is also trace class, and the second condition is verified. So, the relation (A.2) holds 
and implies that s-limt→±∞ eit e2B f(A+) e−it e2B ϕ = f∓ϕ for each vector ϕ ∈ L2(R+) such that ϕ = η(B)ϕ
for some η ∈ C∞

c (R). Since this set of vectors ϕ is dense in L2(R+), one infers that

s-lim
t→±∞

eit e2B f(A+) e−it e2B = f∓.

Finally, using the fact that e2B = Fc (−	N)F−1
c and A+ = −FcA+F−1

c with Fc the cosine trans-
form (2.2), one obtains from the last relation that

s-lim
t→±∞

eit(−�N) f(−A+) e−it(−�N) = f∓,

which is equivalent to (A.1). �
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