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RESOLVENT EXPANSIONS AND CONTINUITY
OF THE SCATTERING MATRIX AT EMBEDDED THRESHOLDS:

THE CASE OF QUANTUM WAVEGUIDES

by S. Richard & R. Tiedra de Aldecoa

Abstract. — We present an inversion formula which can be used to obtain resol-
vent expansions near embedded thresholds. As an application, we prove for a class of
quantum waveguides the absence of accumulation of eigenvalues and the continuity of
the scattering matrix at all thresholds.

Résumé (Expansions de résolventes et continuité de la matrice de diffusion aux seuils
immergés: le cas des guides d’onde quantiques)

Nous présentons une formule d’inversion qui peut être utilisée pour obtenir des
expansions de résolventes à proximité de seuils immergés. Comme application, nous
démontrons pour une classe de guides d’onde quantiques l’absence d’accumulation de
valeurs propres et la continuité de la matrice de diffusion en chaque seuil.
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252 S. RICHARD & R. TIEDRA DE ALDECOA

1. Introduction

During the recent years, there has been an increasing interest in resolvent
expansions near thresholds and their various applications. These developments
were partially initiated by the paper of A. Jensen and G. Nenciu [10] in which
a general framework for asymptotic expansions is presented and then applied
to potential scattering in dimension 1 and 2. The key point of that paper is
an inversion formula which provides an efficient iterative method for inverting
a family of operators A(z) as z → 0 even if ker

(
A(0)

)
6= {0}. Corrections

or improvements of this inversion formula can be found in [4, Lemma 4], [8,
Prop. 3.2] and [11, Prop. 1]. However, in all these papers either it is assumed
that A(0) is self-adjoint, or the construction relies on a Riesz projection which is
not always convenient to deal with. These features are harmless in these works,
since the threshold considered always lies at the endpoints of the spectrum
of the underlying operator. However, once dealing with embedded thresholds,
these features turn out to be critical (see the comment at the end of Section 2.2).

Our aim in the present paper is thus twofold. On the one hand, we revisit
the mentioned inversion formula, and on the other hand we show how its re-
vised version can be used for proving the continuity of a scattering matrix at
embedded thresholds. The abstract part of our results is presented in Section 2,
and consists first in a reformulation of the inversion formula which does not
require that A(0) is self-adjoint or that the projection is a Riesz projection (see
Proposition 2.1). We then discuss two natural choices for the projection: either
the Riesz projection defined in terms of the resolvent of A(0) if 0 is an isolated
point in the spectrum of A(0), or the orthogonal projection on ker

(
A(0)

)
if A(0)

has a non-negative imaginary part. If both conditions hold, we also discuss the
relations between these two projections, and provide sufficient conditions for
their equality. This situation often takes place in applications even without the
assumption that A(0) is self-adjoint (see Corollary 2.8).

In the second part of the paper (Section 3), we present an application of our
abstract results to scattering theory for quantum waveguides. Quantum wave-
guides provide a particularly good model of study since their Hamiltonians
possess an infinite number of embedded thresholds (with a change of multi-
plicity at each threshold) but give rise to a simple scattering theory taking
place in a one-Hilbert space setting. We refer to [1] for basic results and earlier
references on the spectral and scattering theory for quantum waveguides.

For a straight quantum waveguide with a compactly supported potential V ,
we derive an asymptotic expansion of the resolvent in a neighborhood of each
embedded threshold. More precisely, if the potential is written as V = vuv

with v non-negative and u unitary and self-adjoint, and if H0 is the Dirich-
let Laplacian for the waveguide, then we give an expansion of the operator
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(
u+ v(H0− z)−1v

)−1 as z converges to any threshold z0 (see Proposition 3.2).
Note that the operator v(H0− z0)−1v (once properly defined) has a non-trivial
imaginary part. This fact automatically prevents the use of any approach as-
suming the self-adjointness of A(0), as mentioned above.

We then deduce two consequences of this asymptotic expansion. First, we
prove in Corollary 3.3 that the possible point spectrum of the operator H :=

H0 + V does not accumulate at thresholds. Since the thresholds are the only
possible accumulation points for such a model, we thus rule out this possibility.
Second, we characterize for all scattering channels corresponding to the trans-
verse modes of the waveguide the behavior of the scattering matrix for the
pair {H0, H} at embedded thresholds. More precisely, we show that the scat-
tering matrix is continuous at the thresholds if the channels we consider are
already open, and that the scattering matrix has a limit from the right at the
thresholds if a channel precisely opens at these thresholds (see Proposition 3.8
for a precise formulation of this result). Up to our knowledge, these types of
results are completely new since the analysis of the behavior of a scattering
matrix at embedded thresholds has apparently never been performed. We also
show the continuity of the scattering matrix at embedded eigenvalues which
are not located at thresholds. But in this case, similar results were already
known for other models, see for example [7, Prop. 10] or [14, Prop. 6.7.11] (see
also [5] where propagation estimates at embedded thresholds are obtained for
a Schrödinger operator with time periodic potential).

As a final comment, we stress that we fully describe all possible behaviors
at thresholds since we do not assume any condition on the absence of bound
states or resonances at thresholds. Based on the expressions obtained in this
paper, a Levinson’s type theorem for quantum waveguides could certainly be
derived, and deserves further investigations.

Acknowledgements. — The authors thank A. Jensen for useful discussions.
The authors also thank T. Christiansen and L. Parnovski for pointing out to
them some related results in the framework of manifolds with asymptotically
cylindrical ends, see for example [2, 6].

2. Inversion formula

In this section, we adapt the inversion formula [11, Prop. 1] to the case of an
arbitrary projection, and then discuss two possible choices for this projection.
The symbol H stands for an arbitrary Hilbert space with norm ‖ · ‖ and scalar
product 〈 · , · 〉, and B( H ) denotes the algebra of bounded operators on H with
norm also denoted by ‖ · ‖.
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254 S. RICHARD & R. TIEDRA DE ALDECOA

Proposition 2.1. — Let O ⊂ C be a subset with 0 as an accumulation point.
For each z ∈ O, let A(z) ∈ B( H ) satisfy

A(z) = A0 + zA1(z),

with A0 ∈ B( H ) and ‖A1(z)‖ uniformly bounded as z → 0. Let also S ∈ B( H )

be a projection such that :

(i) A0 + S is invertible with bounded inverse,
(ii) S(A0 + S)−1S = S.

Then, for |z| > 0 small enough the operator B(z) : S H → S H defined by

B(z) :=
1

z

(
S − S

(
A(z) + S

)−1
S
)

(2.1)

≡ S(A0 + S)−1

(∑
j≥0

(−z)j
(
A1(z)(A0 + S)−1

)j+1

)
S

is uniformly bounded as z → 0. Also, A(z) is invertible in H with bounded
inverse if and only if B(z) is invertible in S H with bounded inverse, and in
this case one has

A(z)−1 =
(
A(z) + S

)−1
+

1

z

(
A(z) + S

)−1
SB(z)−1S

(
A(z) + S

)−1
.

Proof. — For z ∈ O with |z| > 0 small enough, one has the equality

B(z) =
1

z

(
S − S(A0 + S)−1S

)
+ S(A0 + S)−1

(∑
j≥0

(−z)j
(
A1(z)(A0 + S)−1

)j+1

)
S.

So, the condition (ii) implies the second equality in (2.1). The second part of
the claim is a direct application of the inversion formula [10, Lemma 2.1].

The choice of the projection S plays an important role in the previous propo-
sition. For example, if 0 is an isolated point in the spectrum σ(A0) of A0, a
natural candidate for S is the Riesz projection associated with this value, which
is the choice made in [4, 10, 11]. Another natural candidate is the orthogonal
projection on the kernel of A0. However, for both choices additional conditions
are necessary in order to verify conditions (i) and (ii). Below, we first discuss
the case of the Riesz projection and then the case of the orthogonal projection.
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2.1. Riesz projection. — In this section, we assume that 0 is an isolated point
in σ(A0) and write Sr for the corresponding Riesz projection. In that case,
A0Sr = SrA0 = SrA0Sr and A0 + Sr is invertible with bounded inverse (see
[12, Chap. III.6.4]). The condition (ii) above, namely Sr(A0 + Sr)

−1Sr = Sr,
is more complicated to check. However, if one assumes that A0Sr = 0, or the
stronger condition that A0 is self-adjoint, then the equalities Sr(A0 + Sr)

−1 =

Sr = (A0 + Sr)
−1Sr hold, and thus condition (ii) is satisfied (note that in

that case a small simplification takes place on the r.h.s. of (2.1)). However, the
condition A0Sr = 0 does not always hold since A0Sr is in general only quasi-
nilpotent [12, Sec. III.6.5]. Fortunately, the condition A0Sr = 0 holds if A0 has
a particular form, as shown in the following lemma (which is an extension of
[11, Prop. 2]).

Lemma 2.2. — Assume that A0 = X + i Y , with X,Y bounded self-adjoint
operators and Y ≥ 0, and suppose that 0 is an isolated point in σ(A0). Let Sr
be the corresponding Riesz projection, and assume that SrA0Sr is a trace-class
operator. Then, A0Sr = SrA0 = 0.

Note that the trace-class condition is satisfied if, for instance, Sr H is finite-
dimensional.

Proof. — Since Sr is a projection which commutes with A0, one has A0Sr =

SrA0 = SrA0Sr. Therefore, if J is the operator in Sr H given by J := SrA0Sr,
then

Im
〈
Srϕ, JSrϕ

〉
= Im

〈
Srϕ, SrA0SrSrϕ

〉
= Im

〈
Srϕ,A0Srϕ

〉
≥ 0 for all ϕ ∈ H ,

or equivalently Im(J) ≥ 0 in Sr H . Since J is quasi-nilpotent [12, Eq. (III.6.28)]
and trace-class, and since quasi-nilpotent trace-class operators have trace 0 [13,
p. 32], it follows that

0 = Tr(J) = Tr
(

Re(J)
)

+ i Tr
(

Im(J)
)
.

This equality together with the inequality Im(J) ≥ 0 imply that Im(J) = 0.
Thus, J is self-adjoint and quasi-nilpotent, which means that J = 0.

We now list a series of consequences of the previous result.

Corollary 2.3. — Suppose that the assumptions of Lemma 2.2 are satisfied,
then the conditions (i) and (ii) of Proposition 2.1 are verified for S = Sr.

Corollary 2.4. — Suppose that the assumptions of Lemma 2.2 are satisfied,
then Sr H = ker(A0).

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



256 S. RICHARD & R. TIEDRA DE ALDECOA

Proof. — The inclusion Sr H ⊂ ker(A0) follows from the equality A0Sr = 0,
and the inclusion Sr H ⊃ ker(A0) is standard.

We finally present a simple result which holds under the assumptions of
Lemma 2.2, but can be proved in a slightly more general context. The norms
and scalar products of the different Hilbert spaces are written with the same
symbols.

Lemma 2.5. — Let G be an auxiliary Hilbert space, take Zn ∈ B( H , G),
and assume that the sum

∑
n Z
∗
nZn is weakly convergent. Let also A0 =

X + i
∑
n Z
∗
nZn, with X a bounded self-adjoint operator in H , and suppose

that S is a projection satisfying A0S = 0 and SA0 = 0. Then, ZmS = 0 and
SZ∗m = 0 for each m.

Proof. — Let ϕ ∈ H . Then, the first identity follows from the equalities∥∥ZmSϕ∥∥2 ≤
〈
Sϕ,

(∑
n

Z∗nZn
)
Sϕ
〉

= Im
〈
Sϕ,

(
X + i

∑
n

Z∗nZn
)
Sϕ
〉

= Im
〈
Sϕ,A0Sϕ

〉
= 0,

and the second identity follows from the equalities∥∥ZmS∗ϕ∥∥2 ≤
〈
S∗ϕ,

(∑
n

Z∗nZn
)
S∗ϕ

〉
= − Im

〈
S∗ϕ,

(
X − i

∑
n

Z∗nZn
)
S∗ϕ

〉
= − Im

〈
S∗ϕ,A∗0S

∗ϕ
〉

= 0.

2.2. Orthogonal projection on the kernel. — In this section, we assume from the
beginning that A0 = X+iY , withX,Y bounded self-adjoint operators and Y ≥
0. In that case, one has ker(A0) = ker(X)∩ker(Y ) = ker(A∗0). Also, if So denotes
the orthogonal projection on ker(A0), the relationsXSo = 0 = SoX, Y So = 0 =

SoY and A0So = 0 = SoA0 hold. Thus, if one shows that A0 + So is invertible
with bounded inverse, then the conditions (i) and (ii) of Proposition 2.1 would
follow. So, we concentrate in the sequel on this invertibility condition.

Since A0 is reduced by the orthogonal decomposition H = So H ⊕(1− So) H
and since A0 is trivial in the subspace So H , the operator A0 + So is invert-
ible with bounded inverse if the restriction of A0 to S⊥o H := (1 − So) H
is invertible with bounded inverse. However, since A0|S⊥o H has an inverse
on Ran

(
A0|S⊥o H

)
= Ran(A0), and since Ran(A0) is dense in S⊥r H (because

Ran(A0) = ker(A∗0)⊥ = ker(A0)⊥ = S⊥r H ), the only remaining question
concerns the boundedness of the inverse A−1

0 on Ran(A0).
In the following two lemmas, we exhibit conditions under which this question

can be answered affirmatively.
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Lemma 2.6. — Assume that A0 = X + i Y , with X,Y bounded self-adjoint
operators and Y ≥ 0, and suppose that 0 is an isolated point in σ(A0). Let Sr
denote the corresponding Riesz projection, and assume that SrA0Sr is a trace-
class operator. Then, A0 is invertible in ker(A0)⊥ with bounded inverse if and
only if Sr is an orthogonal projection.

Before giving the proof, we recall that if Sr is an orthogonal projection, then
it automatically follows from Corollary 2.4 that Sr = So.

Proof. — Sufficient condition: Assume that Sr is an orthogonal projection (and
thus equal to So). Since A0 is invertible in S⊥r H with bounded inverse by
[12, Thm. III.6.17], one infers that A0 is invertible in S⊥o H = ker(A0)⊥ with
bounded inverse.

Necessary condition: Suppose by absurd that Sr is not an orthogonal pro-
jection, or more precisely that S⊥r H 6= S⊥o H (since we already know that
Sr H = ker(A0) = So H by Corollary 2.4). Then, if there exists ϕ ∈ S⊥r H \ {0}
with ϕ 6∈ S⊥o H , one has Soϕ 6= 0 and S⊥o ϕ 6= 0, and for any z ∈ C \ {0} with
|z| small enough

(A0 − z)−1ϕ = (A0 − z)−1Soϕ+ (A0 − z)−1S⊥o ϕ.

Now, we know from [12, Thm. III.6.17] that the l.h.s. has a limit in H as z → 0.
But since Soϕ ∈ ker(A0), the first term on the r.h.s. does not have a limit as
z → 0. Therefore, the second term on the r.h.s. neither has a limit as z → 0,
and thus the operator A0 is not invertible in S⊥o H = ker(A0)⊥.

On the other hand, if there exists ϕ ∈ S⊥o H \ {0} with ϕ /∈ S⊥r H , one has
Srϕ 6= 0 and S⊥r ϕ 6= 0, and for any z ∈ C \ {0} with |z| small enough

(A0 − z)−1ϕ = (A0 − z)−1Srϕ+ (A0 − z)−1S⊥r ϕ.

In this case, the second term on the r.h.s. does have a limit in H as z → 0, but
the first term on the r.h.s. does not. Therefore, the l.h.s. does not have a limit
in H as z → 0, and thus the operator A0 is not invertible in S⊥o H = ker(A0)⊥.

Summing up, if S⊥r H 6= S⊥o H , then A0 is not invertible in S⊥o H = ker(A0)⊥,
which concludes the proof of the claim.

Lemma 2.7. — Assume that A0 = X + i Y , with X,Y bounded self-adjoint
operators and Y ≥ 0. Suppose also that A0 = U + K with U unitary and K
compact, or that A0 is a finite-rank operator. Then, A0 is invertible in ker(A0)⊥

with bounded inverse.

Proof. — Recall that Ran
(
A0|ker(A0)⊥

)
≡ Ran(A0) is dense in S⊥r H . So, the

boundedness of the inverse of A0 in ker(A0)⊥ follows from the closed graph
theorem [12, Thm. III.5.20] if Ran(A0) is closed. But, this is verified under both
conditions. Under the first condition, one has A0 = U+K = (1+KU−1)U with
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258 S. RICHARD & R. TIEDRA DE ALDECOA

KU−1 is compact. So, (1 + KU−1) is Fredholm, and the image of U H = H
by (1 + KU−1) is closed [3, Thm. 4.3.4]. And under the second condition,
Ran(A0) is finite-dimensional and thus closed.

Under the assumptions of Lemma 2.7, the value 0 is an isolated point
in σ(A0). Thus, the Riesz projection Sr is well defined, and one obtains the
following by combining the two previous lemmas:

Corollary 2.8. — Suppose that the assumptions of Lemma 2.7 are satisfied.
Then, Sr = So, and the conditions (i) and (ii) of Proposition 2.1 are verified
for S = Sr = So.

Proof. — We know from Lemma 2.7 that A0 is invertible in ker(A0)⊥ with
bounded inverse. Thus, it follows from Lemma 2.6 that Sr = So and that the
conditions (i) and (ii) of Proposition 2.1 are verified for S = Sr = So if SrA0Sr
is a trace-class operator. But, the operator SrA0Sr is clearly trace-class if A0

is a finite-rank operator. On the other hand, if A0 = U + K with U unitary
and K compact, then the isolated eigenvalue 0 is of finite multiplicity, Sr H is
finite-dimensional [12, Remark III.6.23], and SrA0Sr is also trace-class.

We close this section with a comment on the usefulness of Corollary 2.8 for
the iterative procedure of the next section. If we use a Riesz projection Sr
without knowing that it is orthogonal, this is harmless at the first step of the
iteration (as illustrated in [11]), but this becomes more and more annoying at
each step of the iteration. Indeed, conjugation by Riesz projections does not
preserve positivity, and thus any argument based on positivity can hardly be
invoked. Therefore, Corollary 2.8 leads to various simplifications in the iterative
procedure since it provides conditions guaranteeing that Sr is orthogonal.

3. Quantum waveguides

We introduce in this section the model of quantum waveguide we use and
recall some of its basic properties. Much of the material is borrowed from [1]
to which we refer for further information.

We consider a bounded open connected set Σ ⊂ Rd−1 with d ≥ 2, and
let −∆Σ

D be the Dirichlet Laplacian on Σ acting in L2(Σ). This operator has a
purely discrete spectrum τ := {λn}n≥1 consisting in eigenvalues λ1 ≤ λ2 ≤ · · ·
repeated according to multiplicity. The corresponding set of eigenvectors is
denoted by {fn}n≥1 and the corresponding set of one-dimensional orthogonal
projections is denoted by {Pn}n≥1. Sometimes, we omit for simplicity to stress
that n ≥ 1.

We consider also the straight waveguide Ω := Σ×R with coordinates (ω, x),
the Hilbert space H := L2(Ω), and the Dirichlet Laplacian H0 := −∆Ω

D on Ω
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acting in H . This operator decomposes as H0 = −∆Σ
D ⊗ 1 + 1 ⊗ P 2 in H '

L2(Σ) ⊗ L2(R), with P := −i∂x the usual self-adjoint operator of differentia-
tion in L2(R). The spectrum σ(H0) of H0 is purely absolutely continuous with
σ(H0) = [λ1,∞), and each value λ ∈ τ is a threshold in σ(H0) with a change
of multiplicity. Moreover, for z ∈ C\R, the resolvents R0(z) := (P 2−z)−1 and
R0(z) := (H0 − z)−1 satisfy the relation

(3.1) R0(z) =
∑
n

Pn ⊗R0(z − λn), z ∈ C \ R,

and the resolvent R0(z) has integral kernel

(3.2) R0(z)(x, x′) =
i

2
√
z

ei
√
z |x−x′| , z ∈ C \ R, x, x′ ∈ R,

with the convention that Im(
√
z) > 0 for z ∈ C \ [0,∞).

In the following lemma, we recall some weighted estimates for R0(z) which
complement the asymptotic expansion given in [10, Lemma 5.1]. We use the
notations C+ := {z ∈ C | Im(z) > 0} and 〈x〉 := (1 + x2)1/2, and we let Q
denote the self-adjoint multiplication operator by the variable in L2(R).

Lemma 3.1. — Fix ε > 0, take λ ∈ R \ (−ε, ε) and let ζ ∈ C+ with |ζ| < ε/2.

(a) If s > 1/2, then the limit

〈Q〉−sR0(λ+ ζ)〈Q〉−s := lim
ζ′→ζ, ζ′∈C+

〈Q〉−sR0(λ+ ζ ′)〈Q〉−s

exists in B
(
L2(R)

)
and is independent of the sequence ζ ′ → ζ. Moreover,

the limit is a Hilbert-Schmidt operator with Hilbert-Schmidt norm∥∥〈Q〉−sR0(λ+ ζ)〈Q〉−s
∥∥

HS
≤ Const. |λ|−1/2.

(b) If s > 3/2, then∥∥〈Q〉−s(R0(λ+ ζ)−R0(λ)
)
〈Q〉−s

∥∥
HS
≤ Const. |ζ| |λ|−1/2,

where the constant may depend on ε but not on λ and ζ.

Proof. — The first claim follows from (3.2). For the second one, one has to
compute the integral kernel of 〈Q〉−s

(
R0(λ + ζ) − R0(λ)

)
〈Q〉−s, taking into

account the following equalities with y = |x− x′| and x, x′ ∈ R :

ei
√
λ+ζ y

√
λ+ ζ

−
ei
√
λy

√
λ

=
−ζ√

λ
√
λ+ ζ (

√
λ+ ζ +

√
λ)

ei
√
λ+ζ y +

1√
λ

(
ei
√
λ+ζ y − ei

√
λy
)

and
1√
λ

(
ei
√
λ+ζ y − ei

√
λy
)

=
iζ y

2
√
λ

∫ 1

0

ei
√
λ+sζ y

√
λ+ sζ

ds.
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260 S. RICHARD & R. TIEDRA DE ALDECOA

Now, we consider a self-adjoint operatorH := H0+V , where V ∈ L∞(Ω;R) is
measurable with bounded support. We impose the boundedness of the support
for simplicity, but we note that our results would also hold for potentials V
decaying sufficiently fast at infinity (see for example the seminal papers [9, 10]
for precise conditions on the decay of V at infinity). Following the standard
idea of decomposing the perturbation into factors, we define the functions

v : Ω→ R, (ω, x) 7→ |V (ω, x)|1/2

and

u : Ω→ {−1, 1}, (ω, x) 7→

{
1 if V (ω, x) ≥ 0

−1 if V (ω, x) < 0.

Then, the operator u+ vR0(z)v has a bounded inverse in H for each z ∈ C \R
and the resolvent equation may be written as

(H − z)−1 = R0(z)−R0(z)v
(
u+ vR0(z)v

)−1
vR0(z), z ∈ C \ R.

Since the following equality holds:

(3.3) uv(H − z)−1vu = u−
(
u+ vR0(z)v

)−1
, z ∈ C \ R,

deriving expansions in z for the resolvent (H − z)−1 amounts to deriving ex-
pansions in z for the operator

(
u + vR0(z)v

)−1, as we shall do in the next
section.

3.1. Asymptotic expansion at embedded thresholds or eigenvalues. — We derive in
this section an asymptotic expansion in z for the operator

(
u+vR0(z)v

)−1. As
a by-product, we show the absence of accumulation of eigenvalues of H. For
this, we first adapt a convention of [10] by considering values z = λ− κ2 with
κ belonging to the sets

O(ε) :=
{
κ ∈ C | |κ| ∈ (0, ε), Re(κ) > 0 and Im(κ) < 0

}
, ε > 0,

and

Õ(ε) :=
{
κ ∈ C | |κ| ∈ (0, ε), Re(κ) ≥ 0 and Im(κ) ≤ 0

}
, ε > 0.

Also, we note that if κ ∈ O(ε), then −κ2 ∈ C+, while if κ ∈ Õ(ε), then
−κ2 ∈ C+.

Then, the main result of this section reads as follows:

Proposition 3.2. — Suppose that V ∈ L∞(Ω;R) has bounded support, let λ ∈
τ ∪ σp(H), and take κ ∈ O(ε) with ε > 0 small enough. Then, the operator(
u+vR0(λ−κ2)v

)−1 belongs to B( H ) and is continuous in κ ∈ O(ε). Moreover,
the continuous function

O(ε) 3 κ 7→
(
u+ vR0(λ− κ2)v

)−1 ∈ B( H )
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extends continuously to a function Õ(ε) 3 κ 7→ M(λ, κ) ∈ B( H ), and for
each κ ∈ Õ(ε) the operator M(λ, κ) admits an asymptotic expansion in κ. The
precise form of this expansion is given in Equations (3.17) and (3.19) below.

Proof. — For each λ ∈ R, ε > 0 and κ ∈ O(ε), one has Im(λ− κ2) 6= 0. Thus,
(3.3) implies that the operator

(
u+ vR0(λ− κ2)v

)−1 belongs to B
(
H ) and is

continuous in κ ∈ O(ε). For the other claims, we distinguish the cases λ ∈ τ
and λ ∈ σp(H)\τ , treating first the case λ ∈ τ . All the operators defined below
depend on the choice of λ, but for simplicity we do not always mention this
dependency.

(i) Assume that λ ∈ τ , take ε > 0, set N := {n ≥ 1 | λn = λ}, and write
P :=

∑
n∈N Pn for the corresponding orthogonal projection (of dimension

greater or equal to 1). Then, (3.1) implies for κ ∈ O(ε) that(
u+ vR0(λ− κ2)v

)−1

=

{
v
(
P ⊗R0(−κ2)

)
v + u+

∑
n/∈N

v
(
Pn ⊗R0(λ− κ2 − λn)

)
v

}−1

.

Moreover, the expansion R0(−κ2)(x, x′) = 1
2κ −

|x−x′|
2 + κ |x−x

′|2
4 + O(κ2)

for κ ∈ Õ(ε) (see (3.2)) implies that the continuous function

O(ε) 3 κ 7→ v
(
P ⊗R0(−κ2)

)
v ∈ B( H )

extends continuously to a function Õ(ε) 3 κ 7→ 1
2κ N0 + N1(κ) ∈ B( H ) with

N0, N1(κ) ∈ B( H ) integral operators which kernel satisfy for (ω, x), (ω′, x′) ∈
Ω

N0(ω, x, ω′, x′) =
∑
n∈N

fn(ω)v(ω, x)v(ω′, x′)fn(ω′),

N1(0)(ω, x, ω′, x′) = −1

2

∑
n∈N

fn(ω)v(ω, x) |x− x′|v(ω′, x′)fn(ω′).

Also, Lemma 3.1(a) implies the existence and the unicity in B( H ) of the limits∑
n/∈N

v
(
Pn ⊗R0(λ− κ2 − λn)

)
v

:= lim
κ′→κ, κ′∈O(ε)

∑
n/∈N

v
(
Pn ⊗R0(λ− κ′2 − λn)

)
v, κ ∈ Õ(ε).

Therefore, one has for κ ∈ O(ε) that(
u+ vR0(λ− κ2)v

)−1
= 2κI0(κ)−1,
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with the operators
(3.4)
I0(κ) := N0 + 2κM1(κ) and M1(κ) := N1(κ) + u+

∑
n/∈N

v
(
Pn ⊗R0(λ− κ2 − λn)

)
v

continuous as functions from Õ(ε) to B( H ). Furthermore, one infers from
[10, Lemma 5.1(i)] and Lemma 3.1(a) that ‖M1(κ)‖B( H ) is uniformly bounded
as κ→ 0.

Our goal thus reduces to derive an asymptotic expansion for I0(κ)−1 as
κ→ 0. Since I0(0) = N0 is a finite-rank operator, 0 is not a limit point of σ(N0).
Also, N0 is self-adjoint, therefore the orthogonal projection S0 on ker(N0) is
equal to the Riesz projection of N0 associated with the value 0. We can thus
apply Proposition 2.1, and obtain for κ ∈ Õ(ε) with ε > 0 small enough that
the operator I1(κ) : S0 H → S0 H defined by

(3.5) I1(κ) :=
∑
j≥0

(−2κ)jS0

{
M1(κ)

(
I0(0) + S0

)−1}j+1
S0

is uniformly bounded as κ → 0. Furthermore, I1(κ) is invertible in S0 H with
bounded inverse satisfying the equation

I0(κ)−1 =
(
I0(κ) + S0

)−1
+

1

2κ

(
I0(κ) + S0

)−1
S0I1(κ)−1S0

(
I0(κ) + S0

)−1
.

It follows that for κ ∈ O(ε) with ε > 0 small enough, one has

(3.6)
(
u+ vR0(λ− κ2)v

)−1

= 2κ
(
I0(κ) + S0

)−1
+
(
I0(κ) + S0

)−1
S0I1(κ)−1S0

(
I0(κ) + S0

)−1
,

with the first term vanishing as κ→ 0.

To describe the second term of
(
u+vR0(λ−κ2)v

)−1 as κ→ 0, we recall the
equality

(
I0(0)+S0

)−1
S0 = S0, which (together with (3.5)) implies for κ ∈ Õ(ε)

with ε > 0 small enough that

(3.7) I1(κ) = S0M1(0)S0 + κM2(κ),
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with

M2(κ) :=
1

κ
S0

(
M1(κ)−M1(0)

)
S0

+
1

κ

∑
j≥1

(−2κ)jS0

{
M1(κ)

(
I0(0) + S0

)−1}j+1
S0

≡ S0N2(κ)S0 +
1

κ
S0

∑
n/∈N

v
{

Pn ⊗
(
R0(λ− κ2 − λn)−R0(λ− λn)

)}
vS0

− 2
∑
j≥0

(−2κ)jS0

{
M1(κ)

(
I0(0) + S0

)−1}j+2
S0(3.8)

and

N2(κ) :=
1

κ

(
N1(κ)−N1(0)

)
.

Then, we observe that [10, Lemma 5.1(i)] implies that N2(κ) admits a finite
limit as κ→ 0. Also, we note that Lemma 3.1(b) implies that the second term
in (3.8) vanishes as κ → 0. Therefore, ‖M2(κ)‖B(S0 H ) is uniformly bounded
as κ→ 0.

Now, we recall that

M1(0) = N1(0) + u+
∑
n/∈N

v
(
Pn ⊗R0(λ− λn)

)
v,

with u unitary and self-adjoint, N1(0) self-adjoint and compact, and with the
last term compact with non-negative imaginary part (the last property holds
for weighted resolvents on the real axis). So, since S0 is an orthogonal projection
with finite-dimensional kernel, the operator I1(0) = S0M1(0)S0 acting in the
Hilbert space S0 H can also be written as the sum of a unitary and self-adjoint
operator, a self-adjoint and compact operator, and a compact operator with
non-negative imaginary part. Thus, Corollary 2.8 applies with S1 the finite-rank
orthogonal projection on ker

(
I1(0)

)
, and the iterative procedure of Section 2

can be applied to I1(κ) as it was done for I0(κ).

Thus, for κ ∈ Õ(ε) with ε > 0 small enough, the operator I2(κ) : S1 H →
S1 H defined by

I2(κ) :=
∑
j≥0

(−κ)jS1

{
M2(κ)

(
I1(0) + S1

)−1}j+1
S1

is uniformly bounded as κ → 0. Furthermore, I2(κ) is invertible in S1 H with
bounded inverse satisfying the equation

I1(κ)−1 =
(
I1(κ) + S1

)−1
+

1

κ

(
I1(κ) + S1

)−1
S1I2(κ)−1S1

(
I1(κ) + S1

)−1
.
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This expression for I1(κ)−1 can now be inserted in (3.6) in order to get for κ ∈
O(ε) with ε > 0 small enough

(
u+ vR0(λ− κ2)v

)−1

= 2κ
(
I0(κ) + S0

)−1
+
(
I0(κ) + S0

)−1
S0

(
I1(κ) + S1

)−1
S0

(
I0(κ) + S0

)−1

+
1

κ

(
I0(κ) + S0

)−1
S0

(
I1(κ) + S1

)−1
S1I2(κ)−1

× S1

(
I1(κ) + S1

)−1
S0

(
I0(κ) + S0

)−1
,

(3.9)

with the first two terms bounded as κ→ 0.
Let us concentrate on the last term and check once more that the as-

sumptions of Proposition 2.1 are satisfied. For that purpose, we recall that(
I1(0) +S1

)−1
S1 = S1, and observe that for κ ∈ Õ(ε) with ε > 0 small enough

(3.10) I2(κ) = S1M2(0)S1 + κM3(κ),

with
(3.11)
M2(0) = S0N2(0)S0 − 2S0M1(0)

(
I0(0) + S0

)−1
M1(0)S0 and M3(κ) ∈ O(1).

The inclusion M3(κ) ∈ O(1) follows from standard estimates and from the fact
that 1

κ

(
N2(κ)−N2(0)

)
admits a finite limit as κ→ 0 (see [10, Lemma 5.1(i)]).

Note also that the kernel of N2(0) is given by

(3.12) N2(0)(ω, x, ω′, x′)

=
1

4

∑
n∈N

fn(ω)v(ω, x) |x− x′|2 v(ω′, x′)fn(ω′), (ω, x), (ω′, x′) ∈ Ω.

Now, as already observed, one has M1(0) = X + iZ∗Z, with X,Z bounded
self-adjoint operators in H . Therefore it follows that I1(0) = S0M1(0)S0 =

S0XS0 + i(ZS0)∗(ZS0), and one infers from Corollary 2.5 that ZS0S1 = 0 and
S1S0Z

∗ = 0. Since S1S0 = S1 = S0S1, it follows that ZS1 = 0, that S1Z
∗ = 0,

and also that

S1M1(0)
(
I0(0) + S0

)−1
M1(0)S1 = S1(X + iZ∗Z)

(
I0(0) + S0

)−1
(X + iZ∗Z)S1

= S1X
(
I0(0) + S0

)−1
XS1.

So, this operator is self-adjoint, and thus one infers from (3.11) and (3.12) that
I2(0) = S1M2(0)S1 is the sum of two bounded self-adjoint operators in S1 H .

Since S1 H is finite-dimensional, 0 is not a limit point of the spectrum
of I2(0). So, the orthogonal projection S2 on ker

(
I2(0)

)
is a finite-rank op-

erator, and Proposition 2.1 applies to I2(0) +κM3(κ). Thus, for κ ∈ Õ(ε) with
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ε > 0 small enough, the operator I3(κ) : S2 H → S2 H defined by

I3(κ) :=
∑
j≥0

(−κ)jS2

{
M3(κ)

(
I2(0) + S2

)−1}j+1
S2

is uniformly bounded as κ → 0. Furthermore, I3(κ) is invertible in S2 H with
bounded inverse satisfying the equation

I2(κ)−1 =
(
I2(κ) + S2

)−1
+

1

κ

(
I2(κ) + S2

)−1
S2I3(κ)−1S2

(
I2(κ) + S2

)−1
.

This expression for I2(κ)−1 can now be inserted in (3.9) in order to get for κ ∈
O(ε) with ε > 0 small enough

(
u+ vR0(λ− κ2)v

)−1

= 2κ
(
I0(κ) + S0

)−1
+
(
I0(κ) + S0

)−1
S0

(
I1(κ) + S1

)−1
S0

(
I0(κ) + S0

)−1

+
1

κ

(
I0(κ) + S0

)−1
S0

(
I1(κ) + S1

)−1

× S1

(
I2(κ) + S2

)−1
S1

(
I1(κ) + S1

)−1
S0

(
I0(κ) + S0

)−1

+
1

κ2

(
I0(κ) + S0

)−1
S0

(
I1(κ) + S1

)−1
S1

(
I2(κ) + S2

)−1

× S2I3(κ)−1S2

(
I2(κ) + S2

)−1
S1

(
I1(κ) + S1

)−1
S0

(
I0(κ) + S0

)−1
.

(3.13)

Fortunately, the iterative procedure stops here. The argument is based on
the relation

uv (H − λ+ κ2)−1vu = u−
(
u+ vR0(λ− κ2)v

)−1

and the fact thatH is a self-adjoint operator. Indeed, if we choose κ = ε
2 (1−i) ∈

O(ε), then the inequality
∥∥κ2(H − λ+ κ2)−1

∥∥
B( H )

≤ 1 holds, and thus

(3.14) lim sup
κ→0

∥∥κ2
(
u+ vR0(λ− κ2)v

)−1∥∥
B( H )

<∞.

So, if we replace
(
u+ vR0(λ− κ2)v

)−1 by the expression (3.13) and if we take
into account that all factors of the form

(
Ij(κ) + Sj

)−1 have a finite limit as
κ→ 0, we infer from (3.14) that

(3.15) lim sup
κ→0

∥∥I3(κ)−1
∥∥

B(S2 H )
<∞.

Therefore, it only remains to show that this relation holds not just for κ =
ε
2 (1 − i) but for all κ ∈ Õ(ε). For that purpose, we consider I3(κ) once again,
and note that

(3.16) I3(κ) = S2M3(0)S2 + κM4(κ) with M4(κ) ∈ O(1).
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The precise form of M3(0) can be computed explicitly, but is irrelevant. Now,
since I3(0) acts in a finite-dimensional space, 0 is an isolated eigenvalue of I3(0)

if 0 ∈ σ
(
I3(0)

)
, in which case we write S3 for the corresponding Riesz pro-

jection. Then, the operator I3(0) + S3 is invertible with bounded inverse,
and (3.16) implies that I3(κ) + S3 is also invertible with bounded inverse
for κ ∈ Õ(ε) with ε > 0 small enough. In addition, one has

(
I3(κ) + S3

)−1
=(

I3(0) + S3

)−1
+ O(κ). By the inversion formula given in [10, Lemma 2.1], one

infers that S3 − S3

(
I3(κ) + S3

)−1
S3 is invertible in S3 H with bounded inverse

and that the following equalities hold

I3(κ)−1 =
(
I3(κ) + S3

)−1
+
(
I3(κ) + S3

)−1

× S3

{
S3 − S3

(
I3(κ) + S3

)−1
S3

}−1
S3

(
I3(κ) + S3

)−1

=
(
I3(κ) + S3

)−1
+
(
I3(κ) + S3

)−1

× S3

{
S3 − S3

(
I3(0) + S3

)−1
S3 + O(κ)

}−1
S3

(
I3(κ) + S3

)−1
.

This implies that (3.15) holds for some κ ∈ Õ(ε) if and only if the operator
S3 − S3

(
I3(0) + S3

)−1
S3 is invertible in S3 H with bounded inverse. But, we

already know from what precedes that (3.15) holds for κ = ε
2 (1 − i). So, the

operator S3 − S3

(
I3(0) + S3

)−1
S3 is invertible in S3 H with bounded inverse,

and thus (3.15) holds for all κ ∈ Õ(ε).
Therefore, (3.13) implies that the function

O(ε) 3 κ 7→
(
u+ vR0(λ− κ2)v

)−1 ∈ B( H )

extends continuously to a function Õ(ε) 3 κ 7→ M(λ, κ) ∈ B( H ), with M(λ, κ)

given by

M(λ, κ) = 2κ
(
I0(κ) + S0

)−1
+
(
I0(κ) + S0

)−1
S0

(
I1(κ) + S1

)−1
S0

(
I0(κ) + S0

)−1

+
1

κ

(
I0(κ) + S0

)−1
S0

(
I1(κ) + S1

)−1
S1

(
I2(κ) + S2

)−1

× S1

(
I1(κ) + S1

)−1
S0

(
I0(κ) + S0

)−1

+
1

κ2

(
I0(κ) + S0

)−1
S0

(
I1(κ) + S1

)−1
S1

(
I2(κ) + S2

)−1

× S2I3(κ)−1S2

(
I2(κ) + S2

)−1
S1

(
I1(κ) + S1

)−1
S0

(
I0(κ) + S0

)−1
.

(3.17)

(ii) Assume now that λ ∈ σp(H) \ τ , take ε > 0, let κ ∈ Õ(ε), and set
J0(κ) := T0 + κ2T1(κ) with

T0 := u+
∑
n

v
(
Pn ⊗R0(λ− λn)

)
v
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and
T1(κ) :=

1

κ2

∑
n

v
{

Pn ⊗
(
R0(λ− κ2 − λn)−R0(λ− λn)

)}
v.

Then, one infers from Lemma 3.1(b) that ‖T1(κ)‖B( H ) is uniformly bounded
as κ → 0. Also, the assumptions of Corollary 2.8 hold for the operator T0,
the Riesz projection S associated with the value 0 ∈ σ(T0) is an orthogonal
projection, and Proposition 2.1 applies for J0(κ). It follows that for κ ∈ Õ(ε)

with ε > 0 small enough, the operator J1(κ) : S H → S H defined by

J1(κ) :=
∑
j≥0

(−κ2)jS
{
T1(κ)(T0 + S)−1

}j+1
S

is uniformly bounded as κ → 0. Furthermore, J1(κ) is invertible in S H with
bounded inverse satisfying the equation

J0(κ)−1 =
(
J0(κ) + S

)−1
+

1

κ2

(
J0(κ) + S)−1SJ1(κ)−1S

(
J0(κ) + S

)−1
.

It follows that for κ ∈ O(ε) with ε > 0 small enough one has

(3.18)
(
u+ vR0(λ− κ2)v

)−1

=
(
J0(κ) + S

)−1
+

1

κ2

(
J0(κ) + S)−1SJ1(κ)−1S

(
J0(κ) + S

)−1
.

Fortunately, the iterative procedure already stops here. Indeed, the argument
is similar to the one presented above once we observe that

J1(κ) = ST1(0)S + κT2(κ) with T2(κ) ∈ O(1).

Therefore, (3.18) implies that the function

O(ε) 3 κ 7→
(
u+ vR0(λ− κ2)v

)−1 ∈ B( H )

extends continuously to a function Õ(ε) 3 κ 7→ M(λ, κ) ∈ B( H ), with M(λ, κ)

given by

(3.19) M(λ, κ) =
(
J0(κ) + S

)−1

+
1

κ2

(
J0(κ) + S)−1SJ1(κ)−1S

(
J0(κ) + S

)−1
.

We now give a result on the possible embedded eigenvalues. Since it is already
known that the eigenvalues of H in σ(H) \ τ are of finite multiplicity and
can accumulate at points of τ only (see [1, Thm. 3.4(b)]), we show that such
accumulations do not take place :

Corollary 3.3. — Suppose that V ∈ L∞(Ω;R) has bounded support. Then,
the point spectrum of H has no accumulation point (except possibly at +∞).
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Proof. — To show the absence of local accumulation of eigenvalues, suppose
by absurd that there is an accumulation of eigenvalues at some point λ ∈ τ .
Then, the validity of the expansion (3.17) at the point λ contradicts the validity
of the expansion (3.19) which would take place at each of these eigenvalues.
Thus, there is no accumulation of eigenvalues at points of τ , and the claim is
proved.

We end up this section with some auxiliary results which will be useful later
on. All notations and definitions are borrowed from the proof of Proposition 3.2.
The only change is that we extend by 0 the operators defined originally on
subspaces of H to get operators defined on all of H .

Lemma 3.4. — Take 2 ≥ j ≥ k ≥ 0 and κ ∈ Õ(ε) with ε > 0 small enough.
Then, one has in B( H ) [

Sj ,
(
Ik(κ) + Sk

)−1] ∈ O(κ).

Proof. — The fact that Sj is the orthogonal projection on the kernel of Ij(0)

and the relations SkSj = Sj = SjSk imply that [Sk, Sj ] = 0 and [Ik(0), Sj ] = 0.
Thus, one has the equalities[
Sj ,
(
Ik(κ) + Sk

)−1]
=
(
Ik(κ) + Sk

)−1[
Ik(κ) + Sk, Sj

](
Ik(κ) + Sk

)−1

=
(
Ik(κ) + Sk

)−1[
Ik(0) + O(κ) + Sk, Sj

](
Ik(κ) + Sk

)−1

=
(
Ik(κ) + Sk

)−1[ O(κ), Sj
](
Ik(κ) + Sk

)−1
,

which implies the claim.

Given λ ∈ τ , we recall that N =
{
n ≥ 1 | λn = λ

}
and P =

∑
n∈N Pn.

Lemma 3.5. — Let λ ∈ τ and let G be an auxiliary Hilbert space.

(a) For each n ∈ N , one has ( Pn ⊗ 1)vS0 = 0.
(b) For each n /∈ N and Bn ∈ B( H , G) such that

B∗nBn = Im
{
v
(
Pn ⊗R0(λ− λn)

)
v
}
, one has S1B

∗
n = 0 and BnS1 = 0.

Proof. — The first claim follows from the fact that S0 is the orthogonal pro-
jection on ker

(
v ( P ⊗ 1)v

)
. The second claim follows from Lemma 2.5 applied

with Zn = BnS0 and

A0 = S0M1(0)S0 = S0

{
N1(0) + u+

∑
n/∈N

v
(
Pn ⊗R0(λ− λn)

)
v

}
S0

if one takes into account the relations S0S1 = S1 = S1S0.

For what follows, we recall that Q is the multiplication operator by the
variable in L2(R).

tome 144 – 2016 – no 2



RESOLVENT EXPANSIONS AND CONTINUITY OF THE SCATTERING MATRIX 269

Lemma 3.6. — One has

(a) XS2 = 0 = S2X, with X the real part of the operator M1(0),
(b) S2 (1⊗Q)v (fn ⊗ 1) = 0, for all n ∈ N ,
(c) M1(0)S2 = 0 = S2M1(0).

Proof. — First, we recall from the proof of Proposition 3.2 that

I2(0) = S1M2(0)S1 = S1N2(0)S1 − 2S1X
(
I0(0) + S0

)−1
XS1,

with N2(0) given (in the usual bracket notation) by

N2(0) =
1

4

∑
n∈N

{∣∣(1⊗Q2)v (fn ⊗ 1)
〉〈
v (fn ⊗ 1)

∣∣
+
∣∣v (fn ⊗ 1)

〉〈
(1⊗Q2)v (fn ⊗ 1)

∣∣
− 2

∣∣(1⊗Q)v (fn ⊗ 1)
〉〈

(1⊗Q)v (fn ⊗ 1)
∣∣}.

Now, let ϕ ∈ S2 H . Then, we have I2(0)ϕ = 0 and〈
ϕ,N2(0)ϕ

〉
= 2

〈
ϕ,X

(
I0(0) + S0

)−1
Xϕ
〉
.(3.20)

In addition, one infers from the relation S2 = S0S2 and Lemma 3.5(a) that〈
ϕ,
{∣∣(1⊗Q2)v (fn ⊗ 1)

〉〈
v (fn ⊗ 1)

∣∣}ϕ〉
=
〈
ϕ, (1⊗Q2)v (fn ⊗ 1)

〉〈
S0 v (fn ⊗ 1), ϕ

〉
= 0,

and thus (3.20) reduces to

−

〈
ϕ,
∑
n∈N

{∣∣(1⊗Q)v (fn ⊗ 1)
〉〈

(1⊗Q)v (fn ⊗ 1)
∣∣}ϕ〉

= 4
〈
ϕ,X

(
I0(0) + S0

)−1
Xϕ
〉
.

Since both operators are positive, both sides of the equality are equal to 0. This
implies that〈
(1⊗Q)v (fn ⊗ 1), ϕ

〉
= 0 for each n ∈ N and

∥∥(I0(0) + S0

)−1/2
Xϕ
∥∥2

= 0,

from which the points (a) and (b) are easily deduced.

Finally, we note that M1(0)S2 = XS2 and S2M1(0) = S2X due to the proof
of Proposition 3.2. So, the point (c) follows from the point (a).

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



270 S. RICHARD & R. TIEDRA DE ALDECOA

3.2. Scattering theory and spectral representation. — In this section, we recall
some basics on the scattering theory for the pair {H0, H} and on the spectral
decomposition for H0. As before, we assume that V ∈ L∞(Ω;R) has bounded
support.

Under this assumption, it is a well-known that the wave operators

W± := s-lim
t→±∞

eitH e−itH0

exist and are complete (see [1, Cor. 3.5(b)]). As a consequence, the scattering
operator S := W ∗+W− is a unitary operator in H which commutes with H0,
and thus S is decomposable in the spectral representation of H0. So, in order
to proceed, we start by recalling the spectral representation of H0. For that
purpose, we define for each λ ∈ [λ1,∞) the finite set

N(λ) :=
{
n ≥ 1 | λn ≤ λ

}
and the finite-dimensional space

H (λ) :=
⊕

n∈N(λ)

{
PnL2(Σ)⊕ PnL2(Σ)

}
,

with λn and Pn as in Section 3. Note that H (λ) is naturally embedded
in H (∞) :=

⊕
n≥1

{
Pn L2(Σ) ⊕ Pn L2(Σ)

}
. Now, for any ξ ∈ R, we let γ(ξ) :

S (R) → C be the trace operator given by γ(ξ)f = f(ξ), with S (R) the
Schwartz space on R. Also, we define for each λ ∈ [λ1,∞) \ τ the operator
T (λ) : L2(Σ)�S (R)→H (λ) by(

T (λ)ϕ
)
n

:= (λ−λn)−1/4
{(

Pn⊗γ(−
√
λ− λn)

)
ϕ,
(
Pn⊗γ(

√
λ− λn)

)
ϕ
}
, n ∈ N(λ).

Some regularity properties of the map λ 7→ T (λ) have been established in [1,
Lemma 2.4], and additional properties are derived below for the related map
λ 7→ F0(λ) which we now define.

Let F : L2(R) → L2(R) be the Fourier transform and let H :=∫ ⊕
[λ1,∞)

H (λ) dλ. Then, the operator F0 : H →H given by

(F0ϕ)(λ) ≡ F0(λ)ϕ := 2−1/2T (λ)(1⊗F )ϕ, λ ∈ [λ1,∞) \ τ, ϕ ∈ L2(Σ)�S (R),

is unitary and satisfies F0H0F ∗0 =
∫ ⊕

[λ1,∞)
λ dλ (see [1, Prop. 2.5]). We shall

need some expansions for the map λ 7→ F0(λ) in neighborhoods of points
λ ∈ τ ∪ σp(H). For this, we define for each λ > λ1, each n ≥ 1 such that
λn < λ, and each σ ∈ {+,−}

F0(λ;n, σ)ϕ := 2−1/2(λ− λn)−1/4
(
Pn ⊗ γ(σ

√
λ− λn)F

)
ϕ, ϕ ∈ L2(Σ)�S (R).

tome 144 – 2016 – no 2



RESOLVENT EXPANSIONS AND CONTINUITY OF THE SCATTERING MATRIX 271

The operator F0(λ;n, σ) : L2(Σ) �S (R) → Pn L2(Σ) is defined on a slightly
larger set of λ than the operator F0(λ) : L2(Σ) � S (R) → H (λ). Also, we
define the sets

∂O(ε) :=
{
κ ∈ C | κ ∈ (0, ε) ∪ (0,−iε)

}
⊂ Õ(ε), ε > 0,

for which −κ2 ∈ (−ε2, ε2) \ {0} if κ ∈ ∂O(ε), and we let L2
s(R) be the domain

of 〈Q〉s, s ∈ R, endowed with the graph norm. Then, given λ ∈ τ ∪ σp(H), we
consider for each κ ∈ ∂O(ε) with ε > 0 small enough the asymptotic expansion
in κ of the operator F0(λ − κ2;n, σ). If λn < λ, one has for κ ∈ ∂O(ε) with
ε > 0 small enough

(λ− κ2 − λn)−1/4 = (λ− λn)−1/4

(
1 +

κ2

4(λ− λn)
+ O(κ4)

)
.

Similarly, if s > 0 is big enough and if σ ∈ {+,−}, one has in B
(
L2
s(R),C

)
γ(σ
√
λ− κ2 − λn)F = γ(σ

√
λ− λn)F

(
1 +

iσκ2

2
√
λ− λn

Q

)
+ O(κ4).

As a consequence, we have in B
(
L2(Σ)⊗ L2

s(R); PnL2(Σ)
)

(3.21)

F0(λ− κ2;n, σ) = F0(λ;n, σ)

(
1 +

κ2

4(λ− λn)
+

iσκ2

2
√
λ− λn

Q

)
+ O(κ4).

On the other hand, if λ = λn ∈ τ and −κ2 > 0, then one obtains in B
(
L2(Σ)⊗

L2
s(R), PnL2(Σ)

)
(3.22) F0(λ− κ2;n, σ) = (−κ2)−1/4 γ0(n)− iσ(−κ2)1/4 γ1(n) + O(|κ|3/2)

with γj(n) : L2(Σ)⊗ L2
s(R)→ PnL2(Σ) the operator given by(

γj(n)ϕ
)
(ω) :=

1

2j!
√
π

∫
R
xj
(
( Pn ⊗ 1)ϕ

)
(ω, x) dx for almost every ω ∈ Σ.

With these expansions at hand, we can start the study of the regularity prop-
erties of the scattering matrix at thresholds or at embedded eigenvalues. Before
that, we just need to give a final auxiliary result. Recall that the orthogonal
projections S0 and S1 have been introduced in the proof of Proposition 3.2.

Lemma 3.7. — Take λ ∈ τ , σ ∈ {+,−}, and κ ∈ ∂O(ε) with ε > 0 small
enough.

(a) For n ≥ 1 such that λn < λ, one has F0(λ− κ2;n, σ)vS1 ∈ O(κ2).
(b) For n ≥ 1 such that λn = λ and for −κ2 > 0, one has

F0(λ− κ2;n, σ)vS0 = 0.
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Proof. — (a) Due to the expansion (3.21), it is sufficient to show the equal-
ity F0(λ;n, σ)vS1 = 0. For that purpose, we define the operator Bn : H →
PnL2(Σ)⊕ PnL2(Σ) by

Bnϕ := π1/2
{
F0(λ;n,−)vϕ,F0(λ;n,+)vϕ

}
,

and note that B∗nBn = Im
{
v
(
Pn ⊗ R0(λ − λn)

)
v
}
. The mentioned equality

then follows from Lemma 3.5(b).
(b) The claim is a direct consequence of the identity

F0(λ− κ2;n, σ)vS0 = F0(λ− κ2;n, σ)( Pn ⊗ 1)vS0

and Lemma 3.5(a).

3.3. Continuity of the scattering matrix. — Since the scattering operator S com-
mutes with H0, it follows from the spectral decomposition of H0 that

F0SF ∗0 =

∫ ⊕
[λ1,∞)

S(λ) dλ,

where S(λ), the scattering matrix at energy λ, is defined and is a unitary
operator in H (λ) for almost every λ ∈ [λ1,∞). In addition, one can obtain a
convenient stationary formula for S(λ) using time-dependent scattering theory.
For instance, if one uses the results of [1, Sec. 3.1] and relation (3.3), one obtains
for each λ ∈ [λ1,∞) \ {τ ∪ σp(H)} the equality in B

(
H (λ)

)
S(λ) = 1− 2πiF0(λ)v

(
u+ vR0(λ)v

)−1
vF0(λ)∗,

and that the map

[λ1,∞) \ {τ ∪ σp(H)} 3 λ 7→ S(λ) ∈H (∞)

is a k-times continuously differentiable, for any k ≥ 0.
Since the regularity of the map λ 7→ S(λ) is already known when λ ∈

[λ1,∞) \ {τ ∪ σp(H)}, we now describe the behavior of S(λ) as λ approaches
points of τ ∪σp(H). To do this, we decompose the scattering matrix S(λ) into a
collection of channel scattering matrices corresponding to the transverse modes
of the waveguide. Namely, for λ ∈ [λ1,∞) \ {τ ∪ σp(H)}, for n, n′ ≥ 1 such
that λn < λ and λn′ < λ, and for σ, σ′ ∈ {+,−}, we define the operators
S(λ;n, σ, n′, σ′) ∈ B

(
Pn′ L2(Σ), PnL2(Σ)

)
by

S(λ;n, σ, n′, σ′) := δnσn′σ′ − 2πiF0(λ;n, σ)v
(
u+ vR0(λ)v

)−1
vF0(λ;n′, σ′)∗

with δnσn′σ′ := 1 if (n, σ) = (n′, σ′), and δnσn′σ′ := 0 otherwise.
We consider separately the continuity at thresholds and the continuity at

embedded eigenvalues, starting with the thresholds. Note that for each λ ∈ τ , a
channel can either be already open (in which case one has to show the existence
and the equality of the limits from the right and from the left), or can open
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at the energy λ (in which case one has only to show the existence of the limit
from the right).

Proposition 3.8. — Suppose that V ∈ L∞(Ω;R) has bounded support and
take λ ∈ τ , κ ∈ ∂O(ε) with ε > 0 small enough, n, n′ ≥ 1, and σ, σ′ ∈ {+,−}.

(a) If λn < λ and λn′ < λ, then the limit limκ→0 S(λ− κ2;n, σ, n′, σ′) exists.
(b) If λn ≤ λ, λn′ ≤ λ and −κ2 > 0, then the limit

limκ→0 S(λ− κ2;n, σ, n′, σ′) exists.

Before giving the proof, we define for 2 ≥ j ≥ k ≥ 0 the operators

Cjk(κ) :=
[
Sj ,
(
Ik(κ) + Sk

)−1] ∈ B( H ).

We know from Lemma 3.4 that Cjk(κ) ∈ O(κ), but the Formulas (3.4), (3.7)
and (3.10) imply in fact that C ′jk(0) := limκ→0

1
κ Cjk(κ) exists in B( H ). In

other cases, we use the notation F (κ) ∈ Oas(κ
n) for an operator F (κ) ∈ O(κn)

such that limκ→0 κ
−nF (κ) exists in B( H ). Finally, we note that (3.17) can be

rewritten as

M(λ, κ)

(3.23)

= 2κ
(
I0(κ) + S0

)−1

+
(
S0

(
I0(κ) + S0

)−1 − C00(κ)
)
S0

(
I1(κ) + S1

)−1
S0

((
I0(κ) + S0

)−1
S0 + C00(κ)

)
+

1

κ

(
I0(κ) + S0

)−1
(
S1

(
I1(κ) + S1

)−1 − S0C11(κ)
)
S1

(
I2(κ) + S2

)−1
S1

×
((
I1(κ) + S1

)−1
S1 + C11(κ)S0

)(
I0(κ) + S0

)−1

+
1

κ2

(
I0(κ) + S0

)−1
S0

(
I1(κ) + S1

)−1
(
S2

(
I2(κ) + S2

)−1 − S1C22(κ)
)
S2I3(κ)

−1S2

×
((
I2(κ) + S2

)−1
S2 + C22(κ)S1

)(
I1(κ) + S1

)−1
S0

(
I0(κ) + S0

)−1

= 2κ
(
I0(κ) + S0

)−1

+
(
S0

(
I0(κ) + S0

)−1 − C00(κ)
)
S0

(
I1(κ) + S1

)−1
S0

((
I0(κ) + S0

)−1
S0 + C00(κ)

)
+

1

κ

{(
S1

(
I0(κ) + S0

)−1 − C10(κ)
)(
I1(κ) + S1

)−1

−
(
S0

(
I0(κ) + S0

)−1 − C00(κ)
)
C11(κ)

}
× S1

(
I2(κ) + S2

)−1
S1

{(
I1(κ) + S1

)−1
((
I0(κ) + S0

)−1
S1 + C10(κ)

)
+ C11(κ)

((
I0(κ) + S0

)−1
S0 + C00(κ)

)}
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+
1

κ2

{[(
S2

(
I0(κ) + S0

)−1 − C20(κ)
)(
I1(κ) + S1

)−1

−
(
S0

(
I0(κ) + S0

)−1 − C00(κ)
)
C21(κ)

](
I2(κ) + S2

)−1

−
[(
S1

(
I0(κ) + S0

)−1 − C10(κ)
)(
I1(κ) + S1

)−1

−
(
S0

(
I0(κ) + S0

)−1 − C00(κ)
)
C11(κ)

]
C22(κ)

}
S2I3(κ)

−1S2

×

{(
I2(κ) + S2

)−1
[(
I1(κ) + S1

)−1
((
I0(κ) + S0

)−1
S2 + C20(κ)

)
+ C21(κ)

((
I0(κ) + S0

)−1
S0 + C00(κ)

)]
+ C22(κ)

[(
I1(κ) + S1

)−1
((
I0(κ) + S0

)−1
S1 + C10(κ)

)
+ C11(κ)

((
I0(κ) + S0

)−1
S0 + C00(κ)

)]}
.

The interest in this formulation is that the projections Sj (which lead to sim-
plifications in the proof) have been put into evidence at the beginning or at
the end of each term.

Proof. — (a) Some lengthy, but direct, computations taking into account the
expansion (3.23), the relation

(
Ij(0) + Sj

)−1
Sj = Sj , the expansion (3.21)

for F0(λ−κ2;n, σ) and F0(λ−κ2;n′, σ′) and Lemma 3.7(a) lead to the equality

lim
κ→0

F0(λ− κ2;n, σ)vM(λ, κ)vF0(λ− κ2;n′, σ′)∗

= F0(λ;n, σ)vS0

(
I1(0) + S1

)−1
S0vF0(λ;n′, σ′)∗

−F0(λ;n, σ)v
(
C ′20(0) + S0C

′
21(0)

)
S2I3(0)−1

× S2

(
C ′20(0) + C ′21(0)S0

)
vF0(λ;n′, σ′)∗.

Since

(3.24) S(λ− κ2;n, σ, n′, σ′)− δnσn′σ′

= −2πiF0(λ− κ2;n, σ)vM(λ, κ)vF0(λ− κ2;n′, σ′)∗,

this proves the claim.

(b.1) We first consider the case λn < λ, λn′ = λ (the case λn = λ, λn′ < λ

is not presented since it is similar). An inspection taking into account the
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expansion (3.23), the relation
(
Ij(κ) + Sj

)−1
=
(
Ij(0) + Sj

)−1
+ Oas(κ) and

the relation
(
Ij(0) + Sj

)−1
Sj = Sj leads to the equation

F0(λ− κ2;n, σ)vM(λ, κ)vF0(λ− κ2;n′, σ′)∗

= F0(λ− κ2;n, σ)v

{
Oas(κ) + S0

(
I1(κ) + S1

)−1
S0

+
1

κ

(
S1 + Oas(κ)

)
S1

(
I2(κ) + S2

)−1
S1

(
S1 + Oas(κ)

)
+

1

κ2

[
Oas(κ

2) + S2

(
I0(κ) + S0

)−1(
I1(κ) + S1

)−1(
I2(κ) + S2

)−1

− C20(κ)− S0C21(κ)− S1C22(κ)
]

× S2I3(κ)−1S2

[
Oas(κ

2) +
(
I2(κ) + S2

)−1

×
(
I1(κ) + S1

)−1(
I0(κ) + S0

)−1
S2

+ C20(κ) + C21(κ)S0 + C22(κ)S1

]}
vF0(λ− κ2;n′, σ′)∗.

(3.25)

Applying Lemma 3.7 to the previous equation gives

F0(λ− κ2;n, σ)vM(λ, κ)vF0(λ− κ2;n′, σ′)∗

= F0(λ− κ2;n, σ)v

{
Oas(κ)− 1

κ2

(
O(κ2) + C20(κ) + S0C21(κ)

)
× S2I3(κ)−1S2

(
Oas(κ

2) + C20(κ)
)}
vF0(λ− κ2;n′, σ′)∗.

Finally, taking into account the expansion (3.21) for F0(λ − κ2;n, σ) and the
expansion (3.22) for F0(λ− κ2;n′, σ′), one ends up with

F0(λ− κ2;n, σ)vM(λ, κ)vF0(λ− κ2;n′, σ′)∗

= (−κ2)−5/4F0(λ;n, σ)v
(
O(κ2) + C20(κ)

+ S0C21(κ)
)
S2I3(κ)−1S2

(
Oas(κ

2) + C20(κ)
)
vγ0(n′)∗ + O(|κ|1/2),(3.26)

where γ0(n′)∗ is given by γ0(n′)∗ψ = 1
2
√
π
ψ ⊗ 1 for any ψ ∈ Pn′ L2(Σ).

Now, Lemma 3.6(c) implies that [M1(0), S2] = 0, and thus that

(3.27) C20(κ) = 2κ
(
I0(0) +S0

)−1
[M1(0), S2]

(
I0(0) +S0

)−1
+ O(κ2) = O(κ2).

In consequence, one infers from (3.26) that

F0(λ− κ2;n, σ)vM(λ, κ)vF0(λ− κ2;n′, σ′)∗

vanishes as κ → 0, and thus that the limit limκ→0 S(λ − κ2;n, σ, n′, σ′) also
vanishes by (3.24).
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(b.2) We are left with the case λn = λ = λn′ . An inspection of the expansion
(3.23) taking into account the relation

(
I`(κ)+S`

)−1
=
(
I`(0)+S`

)−1
+ Oas(κ),

the relation
(
I`(0) + S`

)−1
S` = S` and Lemma 3.7(b) leads to the equation

F0(λ− κ2;n, σ)vM(λ, κ)vF0(λ− κ2;n′, σ′)∗

= F0(λ− κ2;n, σ)v

{
Oas(κ

2) + κ
(
I0(κ) + S0

)−1

− 1

κ
C10(κ)S1

(
I2(κ) + S2

)−1
S1C10(κ)

− 1

κ2

(
Oas(κ

2) + C20(κ)
)
S2I3(κ)−1S2

(
Oas(κ

2) + C20(κ)
)}

vF0(λ− κ2;n′, σ′)∗.

Therefore, the expansion (3.22) for F0(λ− κ2;n, σ) and F0(λ− κ2;n′, σ′) and
the inclusion C20(κ) ∈ O(κ2) (see (3.27)), imply that the limit

lim
κ→0

F0(λ− κ2;n, σ)vM(λ, κ)vF0(λ− κ2;n′, σ′)∗

exists, and thus that the limit limκ→0 S(λ−κ2;n, σ, n′, σ′) also exists by (3.24).

We finally consider the continuity of the scattering matrix at embedded
eigenvalues not located at thresholds.

Proposition 3.9. — Suppose that V ∈ L∞(Ω;R) has bounded support and
take λ ∈ σp(H) \ τ , κ ∈ ∂O(ε) with ε > 0 small enough, n, n′ ≥ 1, and σ, σ′ ∈
{+,−}. Then, if λn < λ and λn′ < λ, the limit limκ→0 S(λ − κ2;n, σ, n′, σ′)

exists.

Proof. — We know from (3.19) that

M(λ, κ) =
(
J0(κ) + S

)−1
+

1

κ2

(
J0(κ) + S)−1SJ1(κ)−1S

(
J0(κ) + S

)−1
,

with S the Riesz projection associated with the value 0 of the operator T0 =

u +
∑
n v
(
Pn ⊗ R0(λ − λn)

)
v. Now, a commutation of S with

(
J0(κ) + S

)−1

gives

M(λ, κ) =
(
J0(κ) + S

)−1

+
1

κ2

{
S
(
J0(κ) + S)−1 + Oas(κ)

}
SJ1(κ)−1S

{(
J0(κ) + S

)−1
S + Oas(κ)

}
,

and a computation as in the proof of Lemma 3.7(a) (but which takes di-
rectly Lemma 2.5 into account) shows that F0(λ − κ2;n, σ) vS ∈ O(κ2) and
SvF0(λ − κ2;n′, σ′)∗ ∈ O(κ2). These estimates, together with the expansion
(3.21) for F0(λ − κ2;n, σ) and F0(λ − κ2;n′, σ′)∗ and the Equation (3.24),
imply the claim.
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