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On the Wave Operators
for the Friedrichs–Faddeev Model

Hiroshi Isozaki and Serge Richard

Abstract. We provide new formulae for the wave operators in the context
of the Friedrichs–Faddeev model. Continuity with respect to the energy of
the scattering matrix and a few results on eigenfunctions corresponding
to embedded eigenvalues are also derived.

1. Introduction

In a series of recent works on scattering theory and Levinson’s theorem
[6–9,15], we advocate new formulae for the wave operators in the context of
quantum scattering theory. Namely, let H0 and H be two self-adjoint operators
in a Hilbert space H, and assume that H0 has a purely absolutely continuous
spectrum. In the time dependent framework of scattering theory, the wave
operators W± are defined by the strong limits

W± := s − lim
t→±∞

eitH e−itH0

whenever these limits exist. Then, our recent finding is that under suitable
assumptions on H0 and H the following formula holds:

W− = 1 + ϕ(D)(S − 1) + K (1)

where S := W ∗
+W− is the scattering operator, D is an auxiliary self-adjoint

operator in H,ϕ is an explicit function and K is a compact operator (we refer
to Theorem 2 in Sect. 3 for the precise statement). In other words the wave
operator W− has, modulo compact operators, a very explicit and convenient
form. Note that a similar formula for W+ also exists.
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1470 H. Isozaki and S. Richard Ann. Henri Poincaré

For information, let us mention that (1) was first proved with K = 0
for Schrödinger operators with one δ-interaction in space dimension 1 to 3 [6].
This result was then fully extended to more regular potentials in the 1-dimen-
sional case [8] and partially extended for the 3-dimensional situation [9]. In
the article [15] the same formula was obtained for a rank-one perturbation,
and in [13] the Aharonov–Bohm model was considered. Now, let us stress that
the main difficulty for deriving (1) relies on the proof of the compactness of
the term K, and that this difficulty strongly depends on space dimensions.
Indeed, even if in the context of potential scattering the 1-dimensional prob-
lem is under control, the 3-dimensional is much less tractable, and the even
dimensional case has not been solved yet.

Our purpose in the present paper is to establish formula (1) in the con-
text of the Friedrichs–Faddeev model as presented in [16, Sect. 4.1 & 4.2].
In fact its interest is twofold: Firstly, embedded eigenvalues can exist in this
model and they represent a special interest in our investigations. Secondly, the
mentioned problem of space dimension is overtaken in this setting and does
not play any role. Then, let us mention that an important corollary of formula
(1) is a straightforward proof of a topological version of Levinson’s theorem
once a suitable C∗-algebraic framework is introduced. However, since such a
construction would not differ for this model from the ones already presented
in [8,9] and [15] we have decided not to go on here in that direction and to
concentrate mainly on the derivation of (1).

Let us end this Introduction with a few references about this model.
Already in 1938 Friedrichs proposed considering the pair of operators (H0,H0+
V ) in L2([−1, 1]), where H0 is the multiplication operator by the identity
map and V is an integral operator satisfying suitable conditions [4]. The first
important results on this problem were then proved by Faddeev [3]. Later on,
the possible existence of singularly continuous spectrum for H and the pres-
ence of embedded eigenvalues have attracted lots of attention, see for example
[2,10,11,14]. Now, in Sects. 4.1 and 4.2 of [16] a concise but rather complete
presentation of the model is provided. Since our analysis is based on the results
contained in this reference, we recall them in Sect. 2. Our main contribution is
then presented in Sect. 3 while the two last sections are devoted to the proof of
the compactness of the operator K under two different sets of assumptions, see
Propositions 4 and 9. Let us finally mention that the continuity with respect
to the energy of the scattering matrix is a by-product of our analysis, and
that a few results on eigenfunctions corresponding to embedded eigenvalues
are also derived.

2. Framework

In this section, we introduce the Friedrichs–Faddeev model as presented in
Sects. 4.1 and 4.2 of [16] and recall a few results. Let Λ := [a, b] ⊂ R be a finite
interval and let h be a Hilbert space with norm ‖ ·‖h and scalar product 〈·, ·〉h.
We denote by HΛ the Hilbert space L2(Λ; h), and consider in HΛ the bounded
self-adjoint operator H0 acting on f ∈ C(Λ; h) ⊂ HΛ as [H0f ](λ) := λf(λ) for
any λ ∈ Λ.
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Now, let v : Λ × Λ → K(h) be a Hölder continuous function of exponent
α0 ∈ (1/2, 1] which takes values in the algebra K(h) of compact operators on
h. More precisely, we assume that v(λ, μ) ∈ K(h) for all λ, μ ∈ Λ and that

sup
λ,μ∈Λ

‖v(λ, μ)‖B(h)

+ sup
λ,μ,λ′,μ′∈Λ

∥
∥v(λ′, μ′) − v(λ, μ)

∥
∥

B(h)

/(|λ − λ′| + |μ′ − μ|)α0
< ∞.

We also require that v(λ, μ) = v(μ, λ)∗ and that the function v vanishes at the
boundary of its domain, i.e. for all λ and μ

v(λ, a) = v(λ, b) = v(a, μ) = v(b, μ) = 0.

It then follows from these assumptions that the operator H := H0 + V ,
with V defined on f ∈ C(Λ; h) ⊂ HΛ and for λ ∈ Λ by

[V f ](λ) :=
∫

Λ

v(λ, μ)f(μ)dμ,

is a bounded and self-adjoint operator in HΛ. In fact, V is a compact pertur-
bation of H0. It is then a standard result that the essential spectra of H0 and
H coincide with Λ. Furthermore, it is proved in [16, Sect. 4.1 & 4.2] that H
has no singularly continuous spectrum and that the point spectrum σp(H) of
H is exhausted by a finite set of eigenvalues of finite multiplicities.

Now, for z ∈ C\R let us set R0(z) := (H0 − z)−1 and R(z) := (H − z)−1

for the resolvents of H0 and H, respectively. For suitable z ∈ C we also set

T (z) := V − V R(z)V. (2)

Clearly, T (·) is an operator-valued meromorphic function in C\Λ and has poles
only at points of the discrete spectrum on H. Additional properties of this
operator are recalled in the next proposition. We refer to [16, Thm. 4.1.1] for
its proof and for more detailed properties of T (z). In the sequel Π denotes the
closed complex plane with a cut along the spectrum Λ of the operator H0. Note
also that “integral operator” means here operator-valued integral operator.

Proposition 1. For z ∈ Π\σp(H), the operator T (z) is an integral operator
which kernel t(·, ·, z) : Λ × Λ → K(h) satisfies

‖t(λ′, μ′, z′) − t(λ, μ, z)‖B(h) ≤ c
(|λ′ − λ| + |μ′ − μ| + |z′ − z|)α

for any α < α0, any λ, μ, λ′, μ′ ∈ Λ and any z, z′ ∈ Π\σp(H). The constant c
is independent of the variables z, z′ outside arbitrary small neighbourhoods of
σp(H). Furthermore, on the boundary of Λ × Λ the kernel t(·, ·, z) vanishes.

Based on the analysis of the operator T (z), a proof of the existence
and of the asymptotic completeness of the wave operators is proposed in [16,
Sect. 4.2]. More precisely, under the mentioned hypotheses on v the wave
operators W± exist, are isometries and their ranges are equal to HΛ,p(H)⊥.
Here HΛ,p(H) denotes the subspace of HΛ spanned by the eigenfunctions of H.
Let us now set κ(H) :=

(

σp(H) ∩ Λ
) ∪ {a, b}, which corresponds to the set

of embedded eigenvalues together with the thresholds a and b. Then, on the
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dense subset D of HΛ defined by D := C∞
c

(

Λ\κ(H); h
)

the following stationary
representations hold:

[W±f ](λ) = f(λ) −
∫

Λ

t(λ, μ, μ ∓ i0)(λ − μ ± i0)−1 f(μ)dμ ∀f ∈ D, λ ∈ Λ.

(3)

The precise meaning of the second term on the r.h.s. is the following: one first
considers the family of expressions

[

T±(ε, τ)f
]

(λ) :=
∫

Λ

t(λ, μ, μ ∓ iε)(λ − μ ± iτ)−1 f(μ)dμ

for ε, τ > 0. Then, the second term [T±f ](λ) in (3) is obtained by taking the
strong limit, i.e.

T±f : s − lim
ε↘0,τ↘0

T±(ε, τ)f ∀f ∈ D.

We refer to [16, Sect. 4.2.2] for a justification of these stationary formulas.
Similarly, the scattering operator S := W ∗

+ W− can also be expressed in
terms of the kernel of T (z). More precisely, the scattering operator is an oper-
ator-valued multiplication operator, i.e. [Sf ](λ) = s(λ)f(λ) for almost every
λ ∈ Λ, and the scattering matrix s(λ) ∈ B(h) is given for λ ∈ Λ\σp(H) by

s(λ) = 1 − 2πit(λ, λ, λ + i0). (4)

We also mention that for λ ∈ Λ\σp(H) the operator s(λ) is unitary, that
s(λ) − 1 ∈ K(h) and that the map

Λ\σp(H) � λ �→ s(λ) ∈ B(h)

is Hölder continuous in norm for any exponent α < α0.
Let us finally derive a new expression for the wave operators, concentrat-

ing on W− since a similar formula for W+ can then be deduced. So for any
f ∈ D we consider the equalities:

[(W− − 1)f ](λ) = −
∫

Λ

t(λ, μ, μ + i0)(λ − μ − i0)−1 f(μ)dμ

= −
∫

Λ

(λ − μ − i0)−1 t(μ, μ, μ + i0)f(μ)dμ

−
∫

Λ

(λ − μ − i0)−1
[

t(λ, μ, μ + i0) − t(μ, μ, μ + i0)
]

f(μ)dμ

=
1

2πi

∫

Λ

(λ − μ − i0)−1
[

s(μ) − 1
]

f(μ)dμ + [Kf ](λ) (5)

with [Kf ](λ) :=
∫

Λ
k(λ, μ)f(μ)dμ and

k(λ, μ) := −(λ − μ − i0)−1
[

t(λ, μ, μ + i0) − t(μ, μ, μ + i0)
]

. (6)
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Our goal is now twofold: firstly one seeks for a simpler expression for the
first term in (5), and secondly one looks for sufficient conditions which would
imply the compactness of the operator K.

3. In the Rescaled Energy’s Representation

In this section we derive a simpler expression for the first term in (5) by
working in another representation of the original Hilbert space. The follow-
ing construction is inspired by [1] from which we borrow the idea of rescaled
energy’s representation.

Let us consider the Hilbert space HR := L2(R; h) and the unitary map
U : HΛ → HR defined on any f ∈ C(Λ; h) ⊂ HΛ and for x ∈ R by

[Uf ](x) :=

√

b − a

2
1

cosh(x)
f
(a + b e2x

1 + e2x

)

.

The inverse of this map is given for ϕ ∈ Cc(R; h) ⊂ HR and λ ∈ Λ by

[U−1ϕ](λ) =

√

b − a

2
1

√

(λ − a)(b − λ)
ϕ
(1

2
ln

λ − a

b − λ

)

.

Then, let M be an operator-valued multiplication operator in HΛ by a func-
tion m ∈ L∞(Λ;B(h)). A straightforward computation leads to the following
expression for its representation in HR: M̃ := UMU−1 is the operator-valued
multiplication operator by the function m̃(·) = m(a+b e2·

1+e2· ). In particular, by
choosing m(λ) = λ one obtains that UH0U

−1 is the operator of multiplication
by the bounded function h̃0 defined by h̃0(x) = a+b e2x

1+e2x . Note that this function
is strictly increasing on R and takes the asymptotic values h̃0(−∞) = a and
h̃0(∞) = b.

Let us now concentrate on the singular part of the first term in (5). More
precisely, for any f ∈ C∞

c (Λ; h) we concentrate on the expression

[Tf ](λ) :=
1

2πi

∫

Λ

(λ − μ − i0)−1 f(μ)dμ

which is equal to
1

2πi
P.v.

∫

Λ

(λ − μ)−1 f(μ)dμ +
1
2
f(λ).

A straightforward computation leads then to the following equality for any
ϕ ∈ C∞

c (R; h) and x ∈ R:

[UTU−1ϕ](x) =
1
2

⎡

⎣
i

π
P.v.

∫

R

ϕ(y)
sinh(y − x)

dy + ϕ(x)

⎤

⎦ .

Thus, if X and D denote respectively the usual self-adjoint operators in
HR corresponding to the formal expressions [Xϕ](x) = xϕ(x) and [Dϕ](x) =
−iϕ′(x), then one is led to the equality

Author's personal copy



1474 H. Isozaki and S. Richard Ann. Henri Poincaré

[UTU−1ϕ](x) =
1
2

⎡

⎣
i

π
P.v.

∫

R

1
sinh(y)

[eiyD ϕ] dy + ϕ

⎤

⎦ (x).

Furthermore, by taking into account the formula

i

π
P.v.

∫

R

e−ixy

sinh(y)
dy = tanh

(π

2
x
)

one finally obtains UTU−1 = 1
2{1 − tanh(π

2 D)}. By collecting these results
and by a density argument, one has thus proved:

Theorem 2. The following equality holds:

U(W− − 1)U−1 =
1
2

{

1 − tanh
(π

2
D

)}(

S̃ − 1
)

+ K̃

with S̃ = USU−1 and K̃ = UKU−1. The operator S̃ is equal to the operator-
valued multiplication operator defined by the function R � x �→ s(a+b e2x

1+e2x ) ∈
B(h) for almost every x ∈ R.

By taking the the asymptotic completeness into account, one easily
deduces from the relation W+ = W−S∗ the following corollary.

Corollary 3. The following equality holds:

U(W+ − 1)U−1 =
1
2

{

1 + tanh
(π

2
D

)} (

S̃∗ − 1
)

+ K̃S̃∗

with S̃∗ = US∗U−1.

4. Compactness, the Easy Case

In this section we show that, with an implicit condition, the compactness of
the operator K defined in (5) is easily checked. In the following section, this
implicit assumption will be removed.

So let us assume that the point spectrum of H inside Λ is empty, namely
σp(H)∩[a, b] = ∅. In such a situation, Proposition 1 can be strengthened in the
sense that the Hölder continuity holds for all z, z′ ∈ Π and that the constant
c can be chosen independently of z and z′. It then follows that the kernel k
introduced in (6) corresponds to a compact-valued Hilbert-Schmidt operator.
Indeed, one has

∫

Λ

∫

Λ

∥
∥k(λ, μ)

∥
∥

2

B(h)
dλdμ

=
∫

Λ

∫

Λ

|λ − μ|−2
∥
∥t(λ, μ, μ + i0) − t(μ, μ, μ + i0)

∥
∥

2

B(h)
dλdμ

≤ c2

∫

Λ

∫

Λ

|λ − μ|2(α−1) dλdμ

< ∞
since one can choose the exponent α ∈ (1/2, α0). In other words:
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Proposition 4. In the framework introduced in Sect. 2 and with the additional
assumption σp(H)∩ [a, b] = ∅, the operator K defined in (5) belongs to K(HΛ).

Let us also note that with this implicit assumption, the map Λ � λ �→
s(λ) ∈ B(h) is Hölder continuous in norm for any exponent α < α0.

5. Compactness, the General Case

In this section we do not assume that the point spectrum inside Λ is empty.
However, we shall impose a stronger regularity to the kernel of the operator
V in order to ensure the compactness of K.

First of all, as mentioned in Sect. 2 there is only a finite number of
embedded eigenvalues and each one is of finite multiplicity. So, let us denote
by {λn}N

n=1 ⊂ Λ the finite set of embedded eigenvalues, repeated accordingly
to multiplicity, and let {fn}N

n=1 ⊂ HΛ be a family of corresponding mutually
orthogonal eigenfunctions. Without loss of generality, we assume that each fn

is of norm 1. The one-dimensional orthogonal projection on fn is denoted by
|fn〉〈fn|.

Instead of directly studying the kernel defined in (6) we shall come back
to its original form in terms of the operator T (z) defined in (2). More precisely,
let us consider the kernel

−(λ − μ − i0)−1
{[

V − V R(μ + i0)V
]

(λ, μ) − [

V − V R(μ + i0)V
]

(μ, μ)
}

= −(λ − μ − i0)−1
{

v(λ, μ) − v(μ, μ)
}

(7)

+(λ − μ − i0)−1
{[

V R(μ + i0)V
]

(λ, μ) − [

V R(μ + i0)V
]

(μ, μ)
}

. (8)

Clearly, by taking the Hölder continuity of the kernel of V into account one
has

∫

Λ

∫

Λ

|λ − μ|−2
∥
∥v(λ, μ) − v(μ, μ)

∥
∥

2

B(h)
dλdμ

≤ Const.
∫

Λ

∫

Λ

|λ − μ|2(α0−1)dλdμ < ∞.

It follows that the operator corresponding to the kernel (7) is again a com-
pact-valued Hilbert–Schmidt operator.

For the second term we shall consider the following decomposition 1 =
P +

∑N
n=1 |fn〉〈fn|, with P := 1 − ∑N

n=1 |fn〉〈fn|, which is going to be intro-
duced on the right of the factors R(μ+i0) in (8). First, some easy computations
lead to the following inequalities:

∫

Λ

∫

Λ

|λ − μ|−2
∥
∥
∥

[

V R(μ + i0)|fn〉〈fn|V ]

(λ, μ)

−[

V R(μ + i0)|fn〉〈fn|V ]

(μ, μ)
∥
∥
∥

2

B(h)
dλdμ
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=
∫

Λ

∫

Λ

|λ − μ|−2
∥
∥
∥

[ 1
λn − μ − i0

×
∫

Λ

[

v(λ, ν) − v(μ, ν)
]|fn(ν)〉hh〈[V fn](μ)|dν

∥
∥
∥

2

B(h)
dλdμ

≤ Const. ‖fn‖2
HΛ

∫

Λ

∫

Λ

|λ − μ|2(α0−1)
∥
∥
[

R0(λn + i0)V fn

]

(μ)
∥
∥

2

h
dλdμ.

Since α0 > 1/2 the estimate supμ∈Λ

∫

Λ
|λ−μ|2(α0−1) dλ < ∞ is satisfied. Thus

the above expression is finite if R0(λn + i0)V fn belongs to HΛ. However, we
shall show subsequently that −R0(λn ± i0)V fn = fn, which clearly justifies
the claim.

Now, we shall concentrate on proving the following inequality:
∫

Λ

∫

Λ

|λ − μ|−2
∥
∥
∥

[

V R(μ + i0)P V
]

(λ, μ)

−[

V R(μ + i0)P V
]

(μ, μ)
∥
∥
∥

2

B(h)
dλdμ < ∞. (9)

This will be obtained by imposing a stronger regularity to the function v. At
the end, by collecting these various results it will prove that the term K is
equal to a finite sum of compact-valued Hilbert-Schmidt operators.

So let us study of the operator V R(z)PV for z in the upper half com-
plex plane. For that purpose and following [16, Sect. 4.1], we introduce for any
α ∈ (0, 1] the Banach space Cα

0 (Λ; h) of h-valued Hölder continuous functions
vanishing at a and b endowed with the norm

‖f‖α := sup
λ,λ′∈Λ

(

‖f(λ)‖h + ‖f(λ) − f(λ′)‖h

/

|λ − λ′|α
)

.

This space is not separable. We therefore define the Banach space Ċα
0 (Λ; h) as

the closure of C∞
0 (Λ; h) with the above norm. Clearly the inclusion Ċα

0 (Λ; h) ⊂
Cα

0 (Λ; h) holds, but one also has Cα1
0 (Λ; h) ⊂ Ċα2

0 (Λ; h) if α2 < α1 ≤ 1.
Now, let us define A(z) := −V R0(z). It is proved in [16, Lem. 4.1.2] that

for any z ∈ Π and any αj < α0 the operator A(z) is compact from Cα1
0 (Λ; h) to

Ċα2
0 (Λ; h). In particular, it follows from this and from the Fredholm alternative

for Banach spaces that the operator 1−A(z) is invertible in the space Ċα
0 (Λ; h)

for any α ∈ (

0, α0) whenever the equation A(z)f = f has no nontrivial solu-
tion. Equivalently, this corresponds to the fact that ker

(

1 − A(z)
)

= {0} in
Ċα

0 (Λ; h). So, in order to study the operator

R(z)P = R0(z)
(

1 − A(z)
)−1

P

in a suitable space, one needs to get a better understanding of the operator
P = 1 − ∑N

n=1 |fn〉〈fn|. This is the content of the next lemma and its cor-
ollary. Its assumption is highlighted before the statement. We refer to [5,12]
and to references mentioned therein for related statements on the regularity
of eigenfunctions corresponding to embedded eigenvalues.
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Assumption 5. For each μ ∈ Λ the map Λ � λ �→ v(λ, μ) ∈ K(h) is norm-differ-
entiable, with derivative denoted by v′(λ, μ), and the map v′ : Λ×Λ → K(h) is
a Hölder continuous function of exponent α′

0 ∈ (0, 1]. Furthermore v′(a, μ) =
v′(b, μ) = 0 for arbitrary μ ∈ Λ.

Clearly, if v satisfies this assumption it also satisfies the original regular-
ity condition with α0 = 1. In the sequel, we shall tacitly take this fact into
account. For any λ ∈ Λ and any ε > 0, we set

oε(λ) := (λ − ε, λ + ε) ∩ Λ.

Lemma 6. Suppose that Assumption 5 holds for some α′
0 ∈ (0, 1]. Then for

each eigenvalue λn ∈ Λ of H the corresponding eigenfunction fn belongs to
C

α′
0

0 (Λ; h).

Proof. Assume first that fn ∈ HΛ satisfies Hfn = λnfn for some λn ∈ (a, b).
It implies that for almost every λ ∈ Λ\{λn} one has fn(λ) = − 1

λ−λn
[V fn](λ).

Then, since the r.h.s. is well defined for every λ ∈ Λ\{λn} and V fn ∈ C1
0 (Λ; h),

one infers in particular that fn ∈ C
α′

0
0 (Λ\oε(λn); h) for any ε > 0. In other

words, one can choose a representative element of fn ∈ HΛ in C
α′

0
0 (Λ\oε(λn); h).

Furthermore, one also infers that the property [V fn](λn) = 0 holds, and by
taking then the regularity condition on v into account it follows that

[V fn](λ)=[V fn](λ)−[V fn](λn)=(λ−λn)

1∫

0

[V ′fn]
(

λn+s(λ−λn)
)

ds (10)

with [V ′fn](λ) =
∫

Λ
v′(λ, μ)fn(μ)dμ. By inserting the r.h.s. of (10) in the

equality fn(λ) = − 1
λ−λn

[V fn](λ) one deduces that fn ∈ C
α′

0
0 (Λ; h) and that

fn(λn) = −[V ′fn](λn). This proves the statement for λn ∈ (a, b). Finally, the
special case λn ∈ {a, b} is proved similarly by taking the additional condition
v′(a, μ) = v′(b, μ) = 0 into account. �

One easily deduces from this lemma the following consequence on the
operator P :

Corollary 7. Let Assumption 5 hold for some α′
0 ∈ (0, 1]. Then the operator

P belongs to B(

Ċα
0 (Λ; h)

)

for any α < α′
0.

Now, in order to study the operator

V R(z)PV = V R0(z)
(

1 − A(z)
)−1

PV = −A(z)
(

1 − A(z)
)−1

PV, (11)

we shall suppose that Assumption 5 holds and consider α ∈ (0, α′
0). Recall first

that V maps HΛ into C1
0 (Λ; h) ⊂ Ċα

0 (Λ; h), and that P maps Ċα
0 (Λ; h) into

itself. Thus it is natural to consider the operator
(

1 − A(z)
)−1 on Ċα

0 (Λ; h).
For that purpose, we recall that the solutions of the equation A(z)f = f in
Ċα

0 (Λ; h) are in one-to-one relation with the eigenfunctions of the operator H
[16, Lem. 4.1.4]. More precisely, if f is an eigenfunction of H associated with
the eigenvalue λ ∈ σp(H), then g := −V f satisfies A(λ ± i0)g = g (solution
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for both signs simultaneously). Alternatively, if g is a solution of the equa-
tion A(λ ± i0)g = g for some λ ∈ R, then g(λ) = 0 and R0(λ ± i0)g is an
eigenfunction of H associated with the eigenvalue λ, and thus λ ∈ σp(H).
These relations imply in particular that −R0(λn ± i0)V fn = fn, or in other
words fn is an eigenfunction of the operator −R0(λn ± i0)V associated with
the eigenvalue 1.

Now, it follows from [16, Lem. 4.1.2] that for z ∈ Π the operator A(z)
belongs to K(

Ċα
0 (Λ; h)

)

, and for z ∈ Π\σp(H) the operator
(

1−A(z)
)−1 is an

element of B(

Ċα
0 (Λ; h)

)

. Furthermore, the maps

Π � z �→ A(z) ∈ K(

Ċα
0 (Λ; h)

)

and

Π\σp(H) � z �→ (

1 − A(z)
)−1 ∈ B(

Ċα
0 (Λ; h)

)

are norm-continuous. We shall show that this latter result can be extended for
all z ∈ Πd :=

(

Π\σp(H)
) ∪ {λ1, . . . , λn} once the operator P is applied on the

right of the operator
(

1 − A(z)
)−1 as in (11). Note that Πd is equal to Π with

the discrete spectrum of H excluded

Lemma 8. Suppose that Assumption 5 holds for some α′
0 ∈ (0, 1]. Then for

each α ∈ (0, α′
0) and each z ∈ Πd the operator

(

1 − A(z)
)−1

P is well defined
and bounded on Ċα

0 (Λ; h). Furthermore, the map

Πd � z �→ (

1 − A(z)
)−1

P ∈ B(

Ċα
0 (Λ; h)

)

is norm-continuous.

Proof. Clearly, we can concentrate on the neighbourhood of a singular point
λn ∈ Λ and consider only the limit from above (the limit from below is com-
pletely similar). For that purpose, let us simply set T (λn) :=

(

1−A(λn+i0)
) ∈

B(

Ċα
0 (Λ; h)

)

. By the Fredholm alternative for Banach spaces, the equation
T (λn)f = 0 with f ∈ Ċα

0 (Λ; h) and the equation T (λn)∗F = 0 in the adjoint
space Ċα

0 (Λ; h)∗ have the same finite number m of linearly independent solu-
tions, which we denote respectively by f j and F j . Furthermore, the equation
T (λn)f = g has a solution for a given g ∈ Ċα

0 (Λ; h) if and only if F j(g) = 0.
In such a case, the solution is obtained by f = T (λn)−1g.

Now, since A(λn + i0)∗ = −R0(λn − i0)V , one observes that the elements
F j are nothing but linearly independent elements of the subspace of HΛ gen-
erated by the eigenfunctions of A(λn + i0)∗ associated with the eigenvalue 1
(which means that m is equal to the multiplicity of the eigenvalue λn). Fur-
thermore, the equation F j(g) = 0 reduces to 〈F j , g〉HΛ = 0. Then, by choosing
g ∈ PĊα

0 (Λ; h) ⊂ Ċα
0 (Λ; h), one clearly has F j⊥g, which means that the con-

dition F j(g) = 0 is satisfied. One concludes that on the set PĊα
0 (Λ; h) the

operator T (λn) has a bounded inverse. Finally, the continuity follows from a
straightforward argument, see for example of proof of [16, Lem. 1.8.1]. �
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Before proving the main result of this section, let us observe that for
z ∈ C\R the operator V R(z)P is an integral operator. Indeed, from the rela-
tion V R(z) = T (z)R0(z) and since T (z) is an integral operator, one infers
that V R(z) is an integral operator. Then, multiplying this operator by P =
1 − ∑N

n=1 |fn〉〈fn| does not change this property.

Proposition 9. Suppose that Assumption 5 holds for some α′
0 ∈ (1/2, 1]. Then

the inequality (9) is satisfied, and thus the term K is a finite sum of compact-
valued Hilbert-Schmidt operators.

Proof. Let us fix α with 1/2 < α < α′
0 and for z ∈ Πd we set C(z) :=

−A(z)
(

1 − A(z)
)−1

P which belongs to K(

Ċα
0 (Λ; h)

)

, as a consequence of the
previous results. Now, the study of the l.h.s. of (9) leads naturally to the anal-
ysis of the kernel of the operator C(z)V . For that purpose, one easily observes
that for ζ ∈ h and fixed μ ∈ Λ, the map Λ � λ �→ v(λ, μ)ζ ∈ h belongs to
C1

0 (Λ; h), or stated differently v(·, μ)ζ ∈ C1
0 (Λ; h). In particular, it implies that

v(·, μ)ζ ∈ Ċα
0 (Λ; h). It then follows from the above observation on C(z) that

C(z)v(·, μ)ζ ∈ Ċα
0 (Λ; h) and

‖C(z)v(·, μ)ζ‖α ≤ Const. ‖v(·, μ)ζ‖α ≤ Const. ‖ζ‖h. (12)

Note that the constants can be chosen independently of μ ∈ Λ and of z belong-
ing to a compact subset of Πd.

One then infers from this inequality and from the equalities

[V R(z)PV ](λ, μ)ζ = [C(z)V ](λ, μ)ζ = [C(z)v(·, μ)ζ](λ)

that

|λ − μ|−α
∥
∥
∥

[

V R(μ + i0)P V
]

(λ, μ) − [

V R(μ + i0)P V
]

(μ, μ)
∥
∥
∥

B(h)

= sup
ζ∈h,‖ζ‖h=1

|λ − μ|−α
∥
∥
∥

[

V R(μ + i0)P V
]

(λ, μ)ζ

−[

V R(μ + i0)P V
]

(μ, μ)ζ
∥
∥
∥

h

= sup
ζ∈h,‖ζ‖h=1

|λ − μ|−α
∥
∥
∥

[

[C(μ + i0)v(·, μ)ζ](λ) − [C(μ + i0)v(·, μ)ζ](μ)
]
∥
∥
∥

h

≤ sup
ζ∈h,‖ζ‖h=1

∥
∥C(μ + i0)v(·, μ)ζ

∥
∥

α

≤ Const.

with the constants independent of μ and λ. Inserting this estimate into (9)
leads directly to the result. �

Let us finally prove a result on the continuity of the map λ �→ s(λ) under
a similar assumption.

Proposition 10. Suppose that Assumption 5 holds for some α′
0 ∈ (0, 1]. Then

the map

Λ � λ �→ s(λ) ∈ B(h)

is norm-continuous.
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Proof. It clearly follows from relation (4) and the properties stated below it
that the statement would be proved if one shows that the map Λ\σp(H) �
λ �→ s(λ) ∈ B(h) can be continuously extended on all Λ. In particular, it is
sufficient to show that the map λ �→ t(λ, λ, λ + i0) ∈ B(h) is norm-continuous
on Λ. For that purpose, let us recall that t(λ, λ, z) = v(λ, λ)− [V R(z)V ](λ, λ).
Since the first term easily satisfies the necessary continuity property, we shall
concentrate on the second term.

As for previous computations we consider the decomposition 1 = P +
∑N

n=1 |fn〉〈fn|, which is introduced on the right of the factor R(z) in the expres-
sion V R(z)V . We first consider the operator V R(z)|fn〉〈fn|V . One observes
that

[

V R(λ + i0)|fn〉〈fn|V ]

(λ, λ) =
1

λn − λ − i0
[|V fn〉〈V fn|](λ, λ)

= −|[V fn](λ)〉hh〈[R0(λn + i0)V fn](λ)|
= |[V fn](λ)〉hh〈fn(λ)|.

The continuity of the map Λ � λ �→ [V R(λ+i0)|fn〉〈fn|V ](λ, λ) ∈ K(h) follows
then from the property fn ∈ C

α′
0

0 (Λ; h), which is a consequence of Lemma 6,
and from the regularity of v.

Let us now consider the term V R(λ + i0)PV = C(λ + i0)V with the
operator C(z) introduced and studied in the proof of Proposition 9. In fact,
part of the following arguments are based on results obtained in that proof.
We fix α ∈ (0, α′

0) and first observe that for ζ ∈ h and λ, λ′ ∈ Λ one has

[C(λ′ + i0)V ](λ′, λ′)ζ − [C(λ + i0)V ](λ, λ)ζ
=

[

C(λ′ + i0)V − C(λ + i0)V
]

(λ′, λ′)ζ

+
{

[C(λ + i0)V ](λ′, λ′) − [C(λ + i0)V ](λ, λ′)
}

ζ

+
{

[C(λ + i0)V ](λ, λ′) − [C(λ + i0)V ](λ, λ)
}

ζ. (13)

We shall study separately each term and show that their norms vanish (inde-
pendently of ζ) as λ′ → λ. For the first one, we have

∥
∥
[

C(λ′ + i0)V − C(λ + i0)V
]

(λ′, λ′)ζ
∥
∥

h

=
∥
∥
[{

C(λ′ + i0) − C(λ + i0)
}

v(·, λ′)ζ
]

(λ′)
∥
∥

h

≤ ∥
∥
{

C(λ′ + i0) − C(λ + i0)
}

v(·, λ′)ζ
∥
∥

α

≤ ∥
∥C(λ′ + i0) − C(λ + i0)

∥
∥

B(Ċα
0 (Λ;h))

‖v(·, λ′)ζ‖α

≤ Const.
∥
∥C(λ′ + i0) − C(λ + i0)

∥
∥

B(Ċα
0 (Λ;h))

‖ζ‖h

with a constant independent of λ and λ′. The continuity of the map Λ � λ �→
C(λ + i0) ∈ K(h) gives the necessary continuity.
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For the second term of (13), one simply has to recall that C(λ+i0)v(·, λ)ζ
belongs to Ċα

0 (Λ; h), and then
∥
∥
{

[C(λ + i0)V ](λ′, λ′) − [C(λ + i0)V ](λ, λ′)
}

ζ
∥
∥

h

=
∥
∥
[

C(λ + i0)v(·, λ′)ζ
]

(λ′) − [

C(λ + i0)v(·, λ′)ζ
]

(λ)
∥
∥

h

≤ |λ′ − λ|α∥
∥C(λ + i0)v(·, λ′)ζ

∥
∥

α

≤ Const. |λ′ − λ|α ‖ζ‖h,

with the last inequality based on (12). Again, the necessary continuity follows
from these inequalities. Finally, the last term can be treated similarly by tak-
ing the relation [C(λ + i0)V ](λ, μ) =

{

[C(λ − i0)V ](μ, λ)
}∗ into account and

by expressing the norm with a scalar product. �
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