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Spectral Analysis for Adjacency Operators
on Graphs

Marius Măntoiu, Serge Richard, and Rafael Tiedra de Aldecoa

Abstract. We put into evidence graphs with adjacency operator whose singu-
lar subspace is prescribed by the kernel of an auxiliary operator. In particular,
for a family of graphs called admissible, the singular continuous spectrum is
absent and there is at most an eigenvalue located at the origin. Among other
examples, the one-dimensional XY model of solid-state physics is covered.
The proofs rely on commutators methods.

1. Introduction

Let (X,∼) be a graph. We write x ∼ y whenever the vertices (points) x and y
of X are connected. For simplicity, we do not allow multiple edges or loops. In the
Hilbert space H := �2(X) we consider the adjacency operator

(Hf)(x) :=
∑

y∼x

f(y) , f ∈ H , x ∈ X .

We denote by deg(x) := #{y ∈ X : y ∼ x} the degree of the vertex x. Under
the assumption that deg(X) := supx∈X deg(x) is finite, H is a bounded selfadjoint
operator in H. We are interested in the nature of its spectral measure. Useful
sources concerning operators acting on graphs are [3,21,22], see also the references
therein.

Rather few adjacency operators on graphs are known to have purely abso-
lutely continuous spectrum. This occurs for the lattice Z

n and for homogeneous
trees. These and several other examples are presented briefly in [22]. Adjacency
operators may also have non-void singular spectrum. In [26] the author exhibits
families of ladder-type graphs for which the existence of singular continuous spec-
trum is generic. Percolation graphs with highly probable dense pure point spectrum
are presented in [28], see also [15] and [6] for earlier works. Even Cayley graphs
of infinite discrete groups can have adjacency operators with dense pure point
spectrum, cf. [13] and [9].
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In the sequel we use commutator methods to study the nature of the spectrum
of adjacency operators. Mourre theory [2, 23], already applied to operators on
trees [1, 11], may be a well-fitted tool, but it is not easy to use it in non-trivial
situations. We use a simpler commutator method, introduced in [4, 5] and called
“the method of the weakly conjugate operator”. It is an unbounded version of the
Kato–Putnam theorem [24], which will be presented briefly in Section 2.

The method of the weakly conjugate operator provides estimates on the be-
haviour of the resolvent (H − z)−1 when z approaches the spectrum of H . These
estimates are global, i.e., uniform in Re(z). They imply precise spectral properties
for H . For the convenience of the reader, we are going to state now spectral results
only in the particular case of “admissible graphs” introduced in Section 5. The gen-
eral results, including boundary estimates for the resolvent and perturbations, are
stated in Section 3 and proved in Section 4.

The notion of admissibility requires (among other things) the graph to be
directed. Thus the family of neighbours N(x) := {y ∈ X : y ∼ x} is divided into
two disjoint sets N−(x) (fathers) and N+(x) (sons), N(x) = N−(x) �N+(x). We
write y < x if y ∈ N−(x) and x < y if y ∈ N+(x). On drawings, we set an arrow
from y to x (x ← y) if x < y, and say that the edge from y to x is positively
oriented.

We assume that the subjacent directed graph, from now on denoted by
(X, <), is admissible with respect to these decompositions, i.e., (i) it admits a po-
sition function and (ii) it is uniform. A position function is a function Φ : X → Z

such that Φ(y)+1 = Φ(x) whenever y < x. It is easy to see that it exists if and only
if all paths between two points have the same index (which is the difference between
the number of positively and negatively oriented edges). Position functions and the
number operator from [11, Section 2] present some common features. The directed
graph (X, <) is called uniform if for any x, y ∈ X the number #[N−(x) ∩N−(y)]
of common fathers of x and y equals the number #[N+(x) ∩ N+(y)] of common
sons of x and y. Thus the admissibility of a directed graph is an explicit prop-
erty that can be checked directly, without making any choice. The graph (X,∼)
is admissible if there exists an admissible directed graph subjacent to it.

Theorem 1.1. The adjacency operator of an admissible graph (X,∼) is purely
absolutely continuous, except at the origin, where it may have an eigenvalue with
eigenspace

ker(H) =

{
f ∈ H :

∑

y<x

f(y) = 0 =
∑

y>x

f(y) for each x ∈ X

}
. (1.1)

Theorem 3.3, which is more general, relies on the existence of a function
adapted to the graph, a concept generalizing that of a position function. Examples
of periodic graphs, both admissible and non-admissible, are presented in Section 6.
It is explained that periodicity does not lead automatically to absolute continuity,
especially (but not only) if the number of orbits is infinite, which actually occurs
for some of our examples. In Section 7 we treat D-products of graphs. We show that
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adapted functions of the components can be added to form an adapted function
of the more complicated D-product graph. Cayley graphs of non-Abelian, discrete
groups can also be approached by the methods of the present article; we intend to
treat this topic in an extended framework in a subsequent publication.

Our initial motivation in studying the nature of the spectrum of operators on
graphs comes from spin models on lattices. We refer to [8] for some results on the
essential spectrum and localization properties for the one-dimensional Heisenberg
model and for more general Toeplitz-like operators. In the final section of the
present article we show that our spectral analysis applies to the one-dimensional
XY model (see Corollary 8.4 and Remark 8.5). This seems interesting, since it
consists in showing that the non-trivial graph naturally associated with the XY
Hamiltonian is admissible.

However it should be noted that Professor Colin de Verdière [7] has kindly
informed us of an independent proof of the absolute continuity of the spectral
measure for that model.

2. The method of the weakly conjugate operator

In this section we recall the basic characteristics of the method of the weakly
conjugate operator. It was introduced and applied to partial differential operators
in [4,5]. Several developments and applications may be found in [14,19,20,25]. The
method works for unbounded operators, but for our purposes it will be enough to
assume H bounded.

We start by introducing some notations. The symbol H stands for a Hilbert
space with scalar product 〈·, ·〉 and norm ‖·‖. Given two Hilbert spacesH1 andH2,
we denote by B(H1,H2) the set of bounded operators from H1 to H2, and put
B(H) := B(H,H). We assume that H is endowed with a strongly continuous
unitary group {Wt}t∈R. Its selfadjoint generator is denoted by A and has domain
D(A). In most of the applications A is unbounded.

Definition 2.1. A bounded selfadjoint operator H in H belongs to C1(A;H) if one
of the following equivalent condition is satisfied:

(i) the map R � t �→W−tHWt ∈ B(H) is strongly differentiable,
(ii) the sesquilinear form

D(A)×D(A) � (f, g) �→ i 〈Hf, Ag〉 − i 〈Af, Hg〉 ∈ C

is continuous when D(A) is endowed with the topology of H.

We denote by B the strong derivative in (i), or equivalently the bounded self-
adjoint operator associated with the extension of the form in (ii). The operator B
provides a rigorous meaning to the commutator i[H, A]. We shall write B > 0 if B
is positive and injective, namely if 〈f, Bf〉 > 0 for all f ∈ H \ {0}.
Definition 2.2. The operator A is weakly conjugate to the bounded selfadjoint
operator H if H ∈ C1(A;H) and B ≡ i[H, A] > 0.
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For B > 0 let us consider the completion B of H with respect to the norm
‖f‖B := 〈f, Bf〉1/2. The adjoint space B∗ of B can be identified with the comple-
tion of BH with respect to the norm ‖g‖B∗ :=

〈
g, B−1g

〉1/2. One has then the
continuous dense embeddings B∗ ↪→ H ↪→ B, and B extends to an isometric opera-
tor from B to B∗. Due to these embeddings it makes sense to assume that {Wt}t∈R

restricts to a C0-group in B∗, or equivalently that it extends to a C0-group in B.
Under this assumption (tacitly assumed in the sequel) we keep the same notation
for these C0-groups. The domain of the generator of the C0-group in B (resp. B∗)
endowed with the graph norm is denoted by D(A,B) (resp. D(A,B∗)). In anal-
ogy with Definition 2.1 the requirement B ∈ C1(A;B,B∗) means that the map
R � t �→ W−tBWt ∈ B(B,B∗) is strongly differentiable, or equivalently that the
sesquilinear form

D(A,B)×D(A,B) � (f, g) �→ i 〈f, BAg〉 − i 〈Af, Bg〉 ∈ C

is continuous when D(A,B) is endowed with the topology of B. Here, 〈·, ·〉 denotes
the duality between B and B∗. Finally let E be the Banach space (D(A,B∗),B∗)1/2,1

defined by real interpolation (see for example [2, Proposition 2.7.3]). One has then
the natural continuous embeddings B(H) ⊂ B(B∗,B) ⊂B(E , E∗) and the follow-
ing results [5, Theorem 2.1]:

Theorem 2.3. Assume that A is weakly conjugate to H and that B ≡ i[H, A]
belongs to C1(A;B,B∗). Then there exists a constant c > 0 such that

∣∣〈f, (H − λ∓ iμ)−1f
〉∣∣ ≤ c‖f‖2E (2.1)

for all λ ∈ R, μ > 0 and f ∈ E. In particular the spectrum of H is purely absolutely
continuous.

For readers not accustomed with real interpolation or with the results of [2],
we mention that one can replace ‖f‖E by ‖f‖D(A,B∗) in formula (2.1), loosing part
of its strength. In the applications it may even be useful to consider smaller, but
more explicit, Banach spaces F continuously and densely embedded in D(A,B∗).
In such a setting we state a corollary of Theorem 2.3, which follows by applying
the theory of smooth operators [4, 24]. The adjoint space of F is denoted by F∗.

Corollary 2.4.

(a) If T belongs to B(F∗,H), then T is an H-smooth operator.
(b) Let U be a bounded selfadjoint operator in H such that |U |1/2 extends to

an element of B(F∗,H). For γ ∈ R, let Hγ := H + γU . Then there exists
γ0 > 0 such that for γ ∈ (−γ0, γ0), Hγ := H + γU is purely absolutely
continuous and unitarily equivalent to H through the wave operators Ω±

γ :=
s- limt→±∞ eitHγ e−itH .
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3. Statement of the main result

Some preliminaries on graphs could be convenient, since notations and conventions
do not seem commonly accepted in graph theory.

A graph is a couple (X,∼) formed of a non-void countable set X and a
symmetric relation ∼ on X such that x ∼ y implies x �= y. The points x ∈ X are
called vertices and couples (x, y) ∈ X ×X such that x ∼ y are called edges. So,
for simplicity, multiple edges and loops are forbidden in our definition of a graph.
Occasionally (X,∼) is said to be a simple graph.

For any x ∈ X we denote by N(x) := {y ∈ X : y ∼ x} the set of neighbours
of x. We write deg(x) := #N(x) for the degree or valence of the vertex x and
deg(X) := supx∈X deg(x) for the degree of the graph. We also suppose that (X,∼)
is uniformly locally finite, i.e., that deg(X) < ∞. When the function x �→ deg(x)
is constant, we say that the graph is regular.

A path from x to y is a sequence p = (x0, x1, . . . , xn) of elements of X ,
usually denoted by x0x1 . . . xn, such that x0 = x, xn = y and xj−1 ∼ xj for each
j ∈ {1, . . . , n}. The length of the path p is the number n. If x0 = xn we say that
the path is closed. A graph is connected if there exists a path connecting any two
vertices x and y. On any connected graph (X,∼) one may define the distance
function d as follows: d(x, x) := 0 and d(x, y) is equal to the length of the shortest
path from x to y if x �= y.

Throughout the paper we restrict ourselves tacitly to graphs (X,∼) which
are simple, infinite countable and uniformly locally finite. Given such a graph we
consider the adjacency operator H acting in the Hilbert space H := �2(X) as

(Hf)(x) :=
∑

y∼x

f(y) , f ∈ H , x ∈ X .

Due to [22, Theorem 3.1], H is a bounded selfadjoint operator with ‖H‖ ≤
deg(X) and spectrum σ(H) ⊂ [− deg(X), deg(X)]. If (X,∼) is not connected, H
can be written as a direct sum in an obvious manner and each component can be
treated separately. Most of the time (X,∼) will be assumed to be connected.

For further use, we also sketch some properties of a larger class of opera-
tors. Any element of B[�2(X)] is an “integral” operator of the form (Iaf)(x) =∑

y∈X a(x, y)f(y) for some matrix a ≡ {a(x, y)}x,y∈X . Formally Ia is symmetric
if and only if a is symmetric, i.e., a(x, y) = a(y, x), and Ia, Ib satisfy the multipli-
cation rule IaIb = Ia◦b with (a ◦ b)(x, y) :=

∑
z∈X a(x, z)b(z, y). A bound on the

norm of Ia is given by the relation

‖Ia‖ ≤ max

⎧
⎨

⎩sup
x∈X

∑

y∈X

|a(x, y)| , sup
y∈X

∑

x∈X

|a(x, y)|
⎫
⎬

⎭ . (3.1)

In the sequel we shall encounter only matrices a ∈ �∞(X × X) such that
there exists a positive integer k with max {#[supp a(x, ·)], #[supp a(·, x)]} ≤ k
for all x ∈ X . Then an easy calculation using formula (3.1) gives ‖Ia‖ ≤ k ‖a‖∞.
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In particular we call local an operator Ia for which a(x, y) �= 0 only if x ∼ y. In
this case, if a is symmetric and bounded, then Ia is selfadjoint and bounded, with
‖Ia‖ ≤ deg(X) ‖a‖∞.

The methods of this article apply to the latter class of operators (commutator
calculations involve operators Ia which are not local, but bounded since they satisfy
a(x, y) = 0 if d(x, y) ≥ 3). However we refrained from treating more general objects
than adjacency operators for simplicity and because we have nothing remarkable
to say about the general case.

We now introduce the key concept. Sums over the empty set are zero by
convention.

Definition 3.1. A function Φ : X → R is semi-adapted to the graph (X,∼) if

(i) there exists c ≥ 0 such that |Φ(x)− Φ(y)| ≤ c for all x, y ∈ X with x ∼ y,
(ii) for any x, y ∈ X one has

∑

z∈N(x)∩N(y)

[
2Φ(z)− Φ(x)− Φ(y)

]
= 0 . (3.2)

If in addition for any x, y ∈ X one has
∑

z∈N(x)∩N(y)

[
Φ(z)− Φ(x)

][
Φ(z)− Φ(y)

][
2Φ(z)− Φ(x) − Φ(y)

]
= 0 , (3.3)

then Φ is adapted to the graph (X,∼).

Let MZ(Φ) be the mean of the function Φ over a finite subset Z of X ,
i.e., MZ(Φ) := (#Z)−1

∑
z∈Z Φ(z). One may then rephrase condition (3.2) as

M{x,y}(Φ) = MN(x)∩N(y)(Φ) for any x, y ∈ X .

In particular, if x = y, one simply has to check that Φ(x) = [deg(x)]−1
∑

y∼x

Φ(y) for all x ∈ X .
In order to formulate the main result we need a few more definitions. For a

function Φ semi-adapted to the graph (X,∼) we consider in H the operator K
given by

(Kf)(x) := i
∑

y∼x

[
Φ(y)− Φ(x)

]
f(y) , f ∈ H , x ∈ X .

The operator K is selfadjoint and bounded due to the condition (i) of Defi-
nition 3.1 and the discussion preceding it. It commutes with H , as a consequence
of condition (3.2). We also decompose the Hilbert space H into the direct sum
H = K ⊕ G, where G is the closure of the range KH of K, thus the orthogonal
complement of the closed subspace

K := ker(K) =

⎧
⎨

⎩f ∈ H :
∑

y∈N(x)

Φ(y)f(y) = Φ(x)
∑

y∈N(x)

f(y) ∀ x ∈ X

⎫
⎬

⎭ .
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It is easy to see that H and K are reduced by this decomposition. Their
restrictions H0 and K0 to the Hilbert space G are bounded selfadjoint operators.
The proofs of the following results are given in the next section.

Theorem 3.2. Assume that Φ is a function semi-adapted to the graph (X,∼).
Then H0 has no point spectrum.

In order to state a limiting absorption principle for H0 in the presence of an
adapted function, we introduce an auxiliary Banach space. We denote by F the
completion of KH∩D(Φ) with respect to the norm ‖f‖F := ‖|K0|−1f‖+‖Φf‖ and
we write F∗ for the adjoint space of F . We shall prove subsequently the existence
of the continuous dense embeddings F ↪→ G ↪→ F∗ and the following result:

Theorem 3.3. Let Φ be a function adapted to the graph (X,∼). Then
(a) There exists a constant c > 0 such that

∣∣〈f, (H0 − λ∓ iμ)−1f
〉∣∣ ≤ c ‖f‖2F

for all λ ∈ R, μ > 0 and f ∈ F .
(b) The operator H0 has a purely absolutely continuous spectrum.

In the next section we introduce a larger space E obtained by real interpo-
lation. The limiting absorption principle is then obtained between the space E
and its adjoint E∗. Of course, everything is trivial when K = H. This happens if
and only if Φ is a constant function (obviously adapted to any graph). We shall
avoid this trivial case in the examples. In many situations the subspace K can be
calculated explicitly. On the other hand, if several adapted functions exist, one
may use this to enlarge the space G on which H is proved to be purely absolutely
continuous.

The following result on the stability of the nature of the spectrum of H0

under small perturbations is a direct consequence of Corollary 2.4.

Corollary 3.4. Let U0 be a bounded selfadjoint operator in G such that |U0|1/2 ex-
tends to an element of B(F∗,G). Then, for |γ| small enough, the operator H0+ γU0

ispurely absolutely continuous and is unitarily equivalent to H0 through the wave
operators.

4. Proof of the main result

In this section we choose and fix a semi-adapted function Φ. As a consequence of
condition (3.2), one checks easily that the bounded selfadjoint operators H and K
commute. Aside H and K we also consider the operator L in H given by

(Lf)(x) := −
∑

y∼x

[
Φ(y)− Φ(x)

]2
f(y) , f ∈ H , x ∈ X .

Due to the discussion in Section 3, the operator L is selfadjoint and bounded.
Furthermore one may verify that H , K and L leave invariant the domain D(Φ) of
the operator of multiplication Φ and that one has on D(Φ) the relations

K = i[H, Φ] , L = i[K, Φ] .
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These relations imply that H and K belong to C1(Φ;H) (see Definition 2.1). If in
addition Φ is adapted to the graph, formula (3.3) implies that
i[K, L] = 0.

The operators

A :=
1
2

(ΦK + KΦ) and A′ :=
1
2

(ΦL + LΦ)

are well-defined and symmetric on D(Φ).

Lemma 4.1. Let Φ be a function semi-adapted to the graph (X,∼).
(a) The operator A is essentially selfadjoint on D(Φ). The domain of its clo-

sure A is D(A) = D(ΦK) = {f ∈ H : ΦKf ∈ H} and A acts on D(A) as
the operator ΦK − i

2L.
(b) The operator A′ is essentially selfadjoint on D(Φ). The domain of its clo-

sure A′ is D(A′) = D(ΦL) = {f ∈ H : ΦLf ∈ H}.
Proof. One just has to reproduce the proof of [11, Lemma 3.1], replacing their
couple (N, S) by (Φ, K) for the point (a) and by (Φ, L) for the point (b). �

In the next lemma we collect some results on commutators with A or A′.

Lemma 4.2. Let Φ be a function semi-adapted to the graph (X,∼).
(a) The quadratic form D(A) � f �→ i 〈Hf, Af〉− i 〈Af, Hf〉 extends uniquely to

the bounded form defined by the operator K2.
(b) The quadratic form D(A) � f �→ i

〈
K2f, Af

〉− i
〈
Af, K2f

〉
extends uniquely

to the bounded form defined by the operator KLK + 1
2 (K2L + LK2) (which

reduces to 2KLK if Φ is adapted).
(c) If Φ is adapted, the quadratic form D(A′) � f �→ i 〈Kf, A′f〉 − i 〈A′f, Kf〉

extends uniquely to the bounded form defined by the operator L2.

The proof is straightforward. Computations may be performed on the core
D(Φ). These results imply that H ∈ C1(A;H), K2 ∈ C1(A;H) and (when Φ is
adapted) K ∈ C1(A′;H).

Using the results of Lemma 4.2 we shall now establish a relation between the
kernels of the operators H , K and L. For any selfadjoint operator T in the Hilbert
space H we write Hp(T ) for the closed subspace of H spanned by the eigenvectors
of T .

Lemma 4.3. For a function Φ semi-adapted to the graph (X,∼) one has

ker(H) ⊂ Hp(H) ⊂ ker(K) ⊂ Hp(K) .

If Φ is adapted, one also has

Hp(K) ⊂ ker(L) ⊂ Hp(L) .

Proof. Let f be an eigenvector of H . Due to the Virial theorem [2, Proposition
7.2.10] and the fact that H belongs to C1(A;H), one has 〈f, i[H, A]f〉 = 0. It
follows then by Lemma 4.2(a) that 0 =

〈
f, K2f

〉
= ‖Kf‖2, i.e., f ∈ ker(K).
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The inclusion Hp(H) ⊂ ker(K) follows. Similarly, by using A′ instead of A and
Lemma 4.2(c) one gets the inclusion Hp(K) ⊂ ker(L) and the lemma is proved.

�
We are finally in a position to prove all the statements of Section 3.

Proof of Theorem 3.2. Since H and K are commuting bounded selfadjoint opera-
tors, the invariance of K and G under H and K is obvious. Let us recall that H0

and K0 denote, respectively, the restrictions of the operators H and K to the sub-
space G. By Lemma 4.3 one has Hp(H) ⊂ K, thus H0 has no point spectrum. �
Lemma 4.4. If Φ is adapted to the graph (X,∼), then the decomposition H = K⊕G
reduces the operator A. The restriction of A to G defines a selfadjoint operator
denoted by A0.

Proof. We already know that on D(A) = D(ΦK) one has A = ΦK− i
2L. By using

Lemma 4.3 it follows that K ⊂ kerA ⊂ D(A). Then one trivially checks that (i)
A[K∩D(A)] ⊂ K, (ii) A[G ∩D(A)] ⊂ G and (iii) D(A) = [K∩D(A)]+ [G ∩D(A)],
which means that A is reduced by the decomposition H = K ⊕ G. Thus by [29,
Theorem 7.28] the restriction of A to D(A0) ≡ D(A) ∩ G is selfadjoint in G. �
Proof of Theorem 3.3. We shall prove that the method of the weakly conjugate
operator, presented in Section 2, applies to the operators H0 and A0 in the Hilbert
space G.

(i) Lemma 4.2(a) implies that i(H0A0 − A0H0) is equal in the form sense
to K2

0 on D(A0) ≡ D(A) ∩ G. Therefore the corresponding quadratic form ex-
tends uniquely to the bounded form defined by the operator K2

0 . This implies that
H0 belongs to C1(A0;G).

(ii) Since B0 := i[H0, A0] ≡ K2
0 > 0 in G, the operator A0 is weakly conjugate

to H0. So we define the space B as the completion of G with respect to the norm
‖f‖B := 〈f, B0f〉1/2. The adjoint space of B is denoted by B∗ and can be identified
with the completion of B0G with respect to the norm ‖f‖B∗ :=

〈
f, B−1

0 f
〉1/2

. It
can also be expressed as the closure of the subspace KH = K0G with respect to
the same norm ‖f‖B∗ =

∥∥|K0|−1f
∥∥. Due to Lemma 4.2(b) the quadratic form

D(A0) � f �→ i 〈B0fA0f〉 − i 〈A0f, B0f〉 extends uniquely to the bounded form
defined by the operator 2K0L0K0, where L0 is the restriction of L to G. We write
i[B0, A0] for this extension.

(iii) We check now that {Wt}t∈R extends to a C0-group in B. This easily
reduces to proving that for any t ∈ R there exists a constant c(t) such that
‖Wtf‖B ≤ c(t)‖f‖B for all f ∈ D(A0). Due to point (ii) one has for each f ∈
D(A0)

‖Wtf‖2B = 〈f, B0f〉+
∫ t

0

dτ
〈
Wτf, i[B0, A0]Wτf

〉

≤ ‖f‖2B + 2‖L0‖
∫ |t|

0

dτ ‖Wτf‖2B .
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Since G ↪→ B, the function (0, |t|) � τ �→ ‖Wτf‖2B ∈ R is bounded. Thus we get the
inequality ‖Wtf‖B ≤ e|t|‖L0‖ ‖f‖B by using a simple form of the Gronwall lemma.
Therefore {Wt}t∈R extends to a C0-group in B, and by duality {Wt}t∈R also defines
a C0-group in B∗. It follows immediately that the quadratic form i[B0, A0] defines
an element of B(B,B∗). This concludes the proof of the fact that B0 extends to
an element of C1(A0;B,B∗).

Thus all hypotheses of Theorem 2.3 are satisfied and the limiting absorption
principle (2.1) holds for H0, with E given by (D(A0,B∗),B∗)1/2,1.

(iv) A fortiori the limiting absorption principle holds in the space D(A0,B∗)
endowed with its graph norm. Let us show that the space F introduced in Section 3
is even smaller, with a stronger topology. We recall that for f ∈ D(A0,B∗) = {f ∈
D(A0) ∩ B∗ : A0f ∈ B∗} (cf. [2, Eqation 6.3.3]) one has

‖f‖2D(A0,B∗) = ‖f‖2B∗ + ‖A0f‖2B∗ =
∥∥|K0|−1f

∥∥2 +
∥∥|K0|−1A0f

∥∥2
.

We first prove that KH ∩ D(Φ) is dense in G and that KH ∩ D(Φ) ⊂
D(A0,B∗). For the density it is enough to observe that KD(Φ) ⊂ KH ∩ D(Φ)
and that KD(Φ) is dense in G = KH since D(Φ) is dense in H and K is bounded.
For the second statement, since KH = K0G, any f in KH ∩D(Φ) belongs to B∗

and to D(A0) = D(ΦK) ∩ G. Furthermore, since [K, L] = 0, we have A0f =
KΦf + i

2Lf ∈ KH ⊂ B∗. This finishes to prove that KH ∩D(Φ) ⊂ D(A0,B∗).
We observe now that for f in KH ∩D(Φ) one has

∥∥|K0|−1A0f
∥∥ =

∥∥|K0|−1

(
KΦ +

i

2
L

)
f
∥∥

≤ ‖Φf‖+
1
2
‖L‖∥∥|K0|−1f

∥∥ ≤ c‖f‖F
for some constant c > 0 independent of f . It follows that ‖f‖D(A0,B∗) ≤ c′‖f‖F
for all f ∈ KH ∩D(Φ) and a constant c′ independent of f . Thus one has proved
that F ↪→ G, and the second continuous dense embedding G ↪→ F∗ is obtained by
duality. �

5. Admissible graphs

In this section we put into evidence a class of graphs for which very explicit (and
essentially unique) adapted functions exist. For this class the spectral results are
sharpened and simplified.

Assume that the graph (X,∼) is connected and deduced from a directed
graph, i.e., some relation < is given on X such that, for any x, y ∈ X , x ∼ y is
equivalent to x < y or y < x, and one cannot have both y < x and x < y. We also
write y > x for x < y, and note that x < x is forbidden.

Alternatively, one gets (X, <) by decomposing for any x ∈ X the set of
neighbours of x into a disjoint union, N(x) = N−(x) � N+(x), taking care that
y ∈ N−(x) if and only if x ∈ N+(y). We call the elements of N−(x) the fathers
of x and the elements of N+(x) the sons of x, although this often leads to shocking
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situations. Obviously, we set x < y if and only if x ∈ N−(y), or equivalently, if and
only if y ∈ N+(x). When using drawings, one has to choose a direction (an arrow)
for any edge. By convention, we set x ← y if x < y, i.e., any arrow goes from a
son to a father. When directions have been fixed, we use the notation (X, <) for
the directed graph and say that (X, <) is subjacent to (X,∼).

Let p = x0x1 . . . xn be a path. Its index is the difference between the number
of positively oriented edges and that of the negatively oriented ones, i.e., ind(p) :=
#{j : xj−1 < xj}−#{j : xj−1 > xj}. The index is additive under juxtaposition of
paths: if p = x0x1 . . . xn and q = y0y1 . . . ym with xn = y0, then the index of the
path pq := x0x1 . . . xn−1y0y1 . . . ym is the sum of the indices of the paths p and q.

Definition 5.1. A directed graph (X, <) is called admissible if
(i) it is univoque, i.e., any closed path in X has index zero,
(ii) it is uniform, i.e., for any x, y ∈ X , #[N−(x)∩N−(y)] = #[N+(x)∩N+(y)].

A graph (X,∼) is called admissible if there exists an admissible directed
graph (X, <) subjacent to (X,∼).

Definition 5.2. A position function on a directed graph (X, <) is a function Φ :
X → Z satisfying Φ(x) + 1 = Φ(y) if x < y.

We give now some properties of the position function.

Lemma 5.3.

(a) A directed graph (X, <) is univoque if and only if it admits a position func-
tion.

(b) Any position function on an admissible graph (X,∼) is surjective.
(c) A position function on a directed graph (X, <) is unique up to a constant.

Proof. (a) Let Φ be a position function on (X, <) and p a path from x to y. Then
ind(p) = Φ(y) − Φ(x). Thus ind(p) = 0 for any closed path. Conversely, assume
univocity. It is equivalent to the fact that, for any x, y ∈ X , each path from x to y
has the same index. Fix z0 ∈ X and for any z ∈ X set Φ(z) := ind(p) for some
path p = z0z1 . . . z. Then Φ(z) does not depend on the choice of p and is clearly a
position function.

(b) Since #N−(x) = #N+(x) for any x ∈ X , it follows that each point of X
belongs to a path which can be extended indefinitely in both directions.

(c) If Φ1 and Φ2 are two position functions and p is a path from x to y (which
exists since X is connected), then Φ1(y)− Φ1(x) = ind(p) = Φ2(y) − Φ2(x), thus
Φ1(y)− Φ2(y) = Φ1(x) − Φ2(x). �

Let us note that any univoque directed graph is bipartite, i.e., it can be
decomposed into two disjoint subsets X1, X2 such that the edges connect only
couples of the form (x1, x2) ∈ X1 ×X2. This is achieved simply by setting X1 =
Φ−1(2Z + 1) and X2 = Φ−1(2Z). It follows then by [22, Corollary 4.9] that the
spectrum of H is symmetric with respect to the origin.

We are now in a position to prove Theorem 1.1.
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Proof of Theorem 1.1. We first show that for an admissible graph, any position
function is adapted. Condition (i) from Definition 3.1 is obvious. In the two re-
maining conditions of Definition 3.1 one can decompose the sums over N(x)∩N(y)
as sums over the four disjoint sets N−(x)∩N−(y), N+(x)∩N+(y), N−(x)∩N+(y)
and N+(x) ∩N−(y). In the last two cases the sums are zero and in the other two
cases the sums give together 2(#[N+(x)∩N+(y)]−#[N−(x)∩N−(y)]), which is
also zero by the uniformity of the graph.

Therefore Theorem 3.3 can be applied. If Φ is a position function, one has
Φ(y)−Φ(x) = ±1 if x ∼ y and thus L = −H . Consequently, Lemma 4.3 gives the
equalities

Hp(H) = ker(K) = Hp(K) = ker(H)

=

{
f ∈ H :

∑

y>x

f(y) = 0 =
∑

y<x

f(y) for each x ∈ X

}

which complete the proof. �

Note that even whenK �= {0} the singular continuous spectrum of H is empty.
Indeed, in the canonical decomposition H = Hp(H) ⊕Hac(H) ⊕Hsc(H), Hp(H)
is identified with K, Hac(H) with G, and Hsc(H) is thus trivial. Furthermore, a
look at the proof above shows that the results of Theorem 1.1 hold in fact for
any graph with an adapted function Φ satisfying Φ(y) − Φ(x) = ±1 if x ∼ y. We
decided to insist on the particular case of admissible graphs because admissibility
can be checked straightforwardly by inspecting the subjacent directed graph; in
case of successful verification the function Φ is generated automatically.

Remark 5.4. For a directed graph (X, <), define (Uf)(x) :=
∑

y<x f(y) for each
f ∈ H and x ∈ X . The operator U is bounded and its adjoint is given by
(U∗f)(x) =

∑
y>x f(y). One has H = 2 ReU and K = 2 ImU . Uniformity of

(X, <) is equivalent to the normality of U , thus to the fact that H and K com-
mute. In [11] it is shown that the adjacency operator of a homogeneous rooted tree
can be written as H = 2 ReU for U a completely non unitary isometry (i.e., an
isometry such that U∗n → 0 strongly). This fact is used to prove the existence of
an operator N (called number operator) satisfying UNU∗ = N − 1. N is used to
construct an operator A = N(Im U) + (Im U)N , which is conjugate (in the sense
of Mourre theory) to H and to some classes of perturbations of H . Note that N is
not a multiplication operator. It would be interesting to find an approach unifying
the present study with the work [11].

One can show that finite cartesian products of admissible directed graphs
are admissible. Indeed uniformity follows rather easily from the definitions and,
if Φj is the position function for (Xj , <j), then Φ defined by Φ(x1, . . . , xn) :=∑n

j=1 Φj(xj) is the natural position function for the cartesian product
∏

j(Xj , <j).
As an example, Z

n is admissible, since Z is obviously admissible. We shall not give
details here since these are simple facts, largely covered by Section 7.
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Figure 1. Example of an admissible, non-injective directed graph

Figure 2. Example of an admissible, non-injective directed graph

6. Examples

We present some examples of graphs (admissible or not) with an adapted function
which can be easily drawn in the plane. Although some of them might be subject
to other treatments, we would like to stress the relative ease and unity of our
approach, which also furnishes boundary estimates for the resolvent and applies
to some classes of perturbations. In many situations we will be able to determine
the kernel K of the operator K explicitly. In the case K = {0} the graph is said
to be injective; the examples will show that this is quite a delicate matter. For
admissible graphs, we recall that ker(K) = ker(H) coincides with the singular
subspace of H and that it is given by formula (1.1).

The directed graph X of Figure 1 is admissible, non-regular and not injective.
Indeed, K is composed of all f ∈ �2(X) taking the value 0 on the middle row

and opposite values on the other two rows.
The same type of results are available for similar graphs (see for example

Figure 2).
One can sometimes construct admissible graphs X by juxtaposing admissible

graphs in some coherent manner. For instance the directed graph of Figure 3
is admissible and injective, so that its adjacency operator is purely absolutely
continuous.

Writting the condition
∑

w<x f(w) = 0 for f ∈ �2(X) and x as in Figure 3,
one gets f(z) = 0. But one has also f(z)+ f(z′) = 0 due to the same condition for
the vertex y. Thus f(z′) = 0, and the graph is injective since the same argument
holds for each vertex of X . Extension of the graph in both vertical directions
induces the standard Cayley graph of Z

2, which is clearly admissible and injective.
If we extend the graph only downwards, then we obtain the subgraph {(x1, x2) ∈
Z

2 : x1 < x2}, which is also admissible and injective.
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z

x

y

z′

Figure 3. Example of an admissible, injective directed graph

(1, 0)

(0, 1)

(0, 0)(−1, 0)

Figure 4. Example of an admissible directed graph

A general construction leading to admissible graphs is the following: Let p, q
be two integers with p ≤ q (we allow p = −∞ or q = ∞ or both). Set Zp,q :=
{x2 ∈ Z : p ≤ x2 ≤ q} and X := Z × Zp,q. Fix a function x2 �→ A(x2), sending
elements of Zp,q to finite subsets of Zp,q with cardinal smaller than a constant d.
For any x1 ∈ Z and x2 ∈ Zp,q, set N±(2x1, x2) := {2x1 ± 1} × A(x2). This
defines uniquely a directed graph (X, <), namely one has automatically N−(2x1 +
1, x2) = {(2x1, y2) : x2 ∈ A(y2)} and N+(2x1 + 1, x2) = {(2x1 + 2, y2) : x2 ∈
A(y2)} and there are no other arrows than those already indicated. Even if it is
not strictly necessary, we insure that the graph is connected by requiring that
A(x2) �= ∅ for all x2 ∈ Zp,q and that

⋃
x2∈Zp,q

A(x2) = Zp,q. We also impose
the number of elements {x2 : y2 ∈ A(x2)} to be bounded by a constant d′ not
depending on y2 ∈ Zp,q. As a consequence (X, <) will be uniformly locally finite.
The only sets of common fathers or sons which could be non-void are N±(2x1, x2)∩
N±(2x1, x

′
2) = {(2x1± 1)}× [A(x2) ∩A(x′

2)], N−(2x1+1, x2)∩N−(2x1+1, x′
2) =

{(2x1, y2) : x2, x
′
2 ∈ A(y2)} and N+(2x1+1, x2)∩N+(2x1+1, x′

2) = {(2x1+2, y2) :
x2, x

′
2 ∈ A(y2)}. Thus (X, <) is admissible. As a consequence of Theorem 1.1,

the corresponding adjacency operator is purely absolutely continuous outside the
origin. Analogous constructions in higher dimensions are available.

In Figure 4 we present the (rather simple) case X := Z × Z0,3, with
A(0) = {0}, A(1) = {0, 1, 3}, A(2) = {0} and A(3) = {0, 2, 3}.
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(a)

(b)

Figure 5. Examples of admissible, injective directed graphs

Figure 6. Example of an admissible, non-injective directed graph

For a general directed graph of this type it could be difficult to calculate the
subspace K and, in particular, to decide upon injectivity. We are going to put into
evidence situations where this is possible by a direct use of the explicit definition
of K (this is an easy task, left to the reader).

The directed graph of Figure 5(a) is admissible and injective, so its adjacency
operator has no singular continuous spectrum and no point spectrum. One shows
easily that admissibility and injectivity are preserved under a finite or infinite
number of vertical juxtapositions of the graph with itself (see Figure 5(b)). On the
other hand, if one puts Figure 5(a) on top of itself, deletes all the arrows belonging
to the middle row as well as the vertices left unconnected, one gets an admissible,
non-injective directed graph.

The directed graph of Figure 6 is admissible, regular but not injective. The
graph deduced from it is the Cayley graph of Z × Z2, with generating system
{(±1, 1), (±1,−1)}, without being a cartesian product. The elements of K are all
�2-functions which are anti-symmetric with respect to a vertical flip. If two copies
of this graph are juxtaposed vertically, the resulting graph is still admissible, but
also regular and injective. If one deletes some chosen arrows in the resulting graph,
one obtains a nice admissible, non-injective graph with vertices of degree 2, 4 and 6
(see Figure 7).

Admissible graphs are of a very restricted type. For instance closed paths
of odd length and vertices of odd degree are forbidden. We give now a few more
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Figure 7. Example of an admissible, non-injective directed graph

0

0 +2

+2+1

+1

−1

−1−2

−2

Figure 8. Example of a non-admissible, adapted, injective graph

0

−2

−2 −1

−1 +1 +2

+1 +2

0

Figure 9. Example of a non-admissible, adapted, non-injective graph

examples of graphs, for which non-constant adapted functions Φ exist. At each
vertex, the indicated number corresponds to the value of Φ.

Easy computations show that the function Φ associated with the non-
admissible regular graph of Figure 8 is adapted. Furthermore, this graph is injec-
tive. This is not unexpected, since it is a very simple Cayley graph of the Abelian
group Z × Z2. Deleting steps in this ladder graph leads generically to singular
continuous spectrum as pointed out in [26].

The function Φ indicated for the non-admissible regular graph of Figure 9 is
adapted. One shows easily that the space K coincides with the eigenspace of the
adjacency operator H associated with the eigenvalue −1. The rest of the spectrum
is purely absolutely continuous. The function Φ of the non-admissible non-regular
graph of Figure 10 is adapted. However, we believe that this graph is not injective.
More graphs with an adapted function will be indicated in the next sections.
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+4

+1 +3 +5

+3+1

−3 −1

+20−2

−1−3 +5

Figure 10. Example of a non-admissible, adapted graph

Remark 6.1. All of the examples presented here are Z-periodic. More involved, Z
n-

periodic situations are also available. However, in general, periodicity of a graph
is very far from excluding singular spectrum. First of all, part of the examples
are not “co-compact”, i.e., the set of orbits under the action of Z is infinite. In
this situation, we are not aware of any general result relying on periodicity. If at
least one of the integers in the generic example X = Z×Zp,q above is infinite, we
get a very precise result on the spectrum of a large class of periodic graphs with
infinitely many orbits. This result does not seem to be within reach by other known
methods. On the other hand, if only a finite number of orbits are present, it is
known [10,12] that the singular continuous spectrum is empty. But eigenvalues are
quite common [16,17] and this is related to the absence of a Unique Continuation
Principle for operators on graphs. Thus our results on the point spectrum for the
examples of this section seem to be non-trivial even in the co-compact case.

Remark 6.2. We also insist on the global Limiting Absorption Principle. In [12] a
very general and abstract theory is developed for perturbations of direct integral
operators with fibers that have a compact resolvent and depend analytically on
the base parameter. Mourre theory is used and a Limiting Absorption Principle is
proved. However the estimates are localized outside a set of thresholds, which is
defined implicitly. Furthermore the results of [12] rely heavily on the compactness
condition in the fibers.

Remark 6.3. It is also common for operators on periodic, co-compact graphs that
local perturbations embed eigenvalues with compactly supported eigenfunctions in
the continuum spectrum of the unperturbed operator [16, 18]. Corollary 3.4 puts
into evidence classes of perturbations for which this phenomenon does not occur,
at least for small values of a coupling constant.

7. D-products

We recall now some properties of adjacency operators on the class of D-products.
We call D-product what is referred as non-complete extended p-sum with basis D
in [22].

Consider a family {(Xj,∼j)}nj=1 of simple graphs, which are all infinite count-
able and uniformly locally finite. Let D be a subset of {0, 1}n not containing
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(0, 0, . . . , 0). Then we endow the product X :=
∏n

j=1 Xj with the following (D-
product) graph structure: if x, y ∈ X then x ∼ y if and only if there exists d ∈ D
such that xj ∼j yj if dj = 1 and xj = yj if dj = 0. The resulting graph (X,∼) is
again simple, infinite countable and uniformly locally finite. Note that the tensor
product as well as the cartesian product are special cases of D-product. We shall
not assume (Xj ,∼j) connected and even if we did, the D-product could fail to be
so.

It is easy to see that the adjacency operator H of the D-product (X,∼) may
be written as

H =
∑

d∈D

Hd1
1 ⊗ · · · ⊗Hdn

n ,

where Hj is the adjacency operator of (Xj ,∼j), H0
j = 1 and H1

j = Hj . The
operator H acts in the Hilbert space �2(X) �⊗n

j=1 �2(Xj).

Proposition 7.1. For each j ∈ {1, . . . , n}, let Φj be a function adapted to the graph
(Xj ,∼j) and cj ∈ R. Then Φc : X → R, (x1, . . . , xn) �→ ∑n

j=1 cjΦj(xj) is a
function adapted to (X,∼).

Proof. Rather straightforward calculations show that Φc satisfies (3.2) and (3.3).
It is simpler to indicate a simpler operatorial proof:

Define Kj := i[Hj , Φj ] and Lj := i[Kj, Φj ] in �2(Xj). Since Φj is adapted
the three operators Hj , Kj and Lj commute (use the Jacobi identity for the triple
Hj , Kj and Φj). Since the multiplication operator Φc can be written in ⊗j�

2(Xj)
as Φc =

∑n
j=1 cj 1⊗ · · · ⊗ Φj ⊗ · · · ⊗ 1, where Φj stands on the j’th position, one

has
K := i[H, Φc] =

∑

d∈D

∑

j

cj Hd1
1 ⊗ · · · ⊗Kj(dj)⊗ · · · ⊗Hdn

n ,

where Kj(dj) stands on the j’th position and is equal to Kj if dj = 1 and to 0 if
dj = 0. Analogously one has

L := i[K, Φc] =
∑

d∈D

∑

j �=k

cjck Hd1
1 ⊗ · · · ⊗Kj(dj)⊗ · · · ⊗Kk(dk)⊗ · · · ⊗Hdn

n

+
∑

d∈D

∑

j

c2
j Hd1

1 ⊗ · · · ⊗ Lj(dj)⊗ · · · ⊗Hdn
n ,

where Lj(dj) is equal to Lj if dj = 1 and to 0 if dj = 0. It is clear that i[H, K] =
0 = i[K, L], which is equivalent to the statement of the proposition. �

Notice that we could very well have no valuable information on some of the
graphs Xj and take Φj = 0. As soon as Φc is not a constant, the space G on which
we have a purely absolutely continuous restricted operator is non-trivial. So one
can perform various D-products, including factors for which an adapted function
has already been shown to exist (as those in the preceding section). But it is not
clear how the space K = ker(K) could be described in such a generality.
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8. The one-dimensional XY model

In the sequel we apply the theory of Section 5 to the Hamiltonian of the one-
dimensional XY model. We follow [8] for the brief and rather formal presentation
of the model. Further details may be found in [27].

We consider the one-dimensional lattice Z with a spin-1/2 attached at each
vertex. Let

F(Z) :=
{
α : Z→ {0, 1} : supp(α) is finite

}
,

and write {e0, e1} := {(0, 1), (1, 0)} for the canonical basis of the (spin-1/2) Hilbert
space C

2. For any α ∈ F(Z) we denote by eα the element {eα(x)}x∈Z of the direct
product

∏
x∈Z

C
2
x. We distinguish the vector eα0 , where α0(x) := 0 for all x ∈ Z.

Each element eα is interpreted as a state of the system of spins, and eα0 as its
ground state with all spins pointing down. The Hilbert space M of the system
(which is spanned by the states with all but finitely many spins pointing down) is
the “incomplete tensor product” [27, Section 2]

M :=
α0⊗

x∈Z

C
2
x ≡ closed span

{
eα : α ∈ F(Z)

}
.

The dynamics of the spins is given by the nearest-neighbour XY Hamiltonian

M := −1
2

∑

|x−y|=1

(
σ

(x)
1 σ

(y)
1 + σ

(x)
2 σ

(y)
2

)
.

The operator σ
(x)
j acts in M as the identity operator on each factor C

2
y,

except on the component C
2
x where it acts as the Pauli matrix σj . To go further

on, we need to introduce a new type of directed graphs.

Definition 8.1. Let (X, <) be a directed graph. For N ∈ N, we set FN (X) := {α :
X → {0, 1} : # supp(α) = N} and endow it with the natural directed graph
structure defined as follows: if α, β ∈ FN (X) then α < β if and only if there exist
x ∈ supp(α), y ∈ supp(β) such that x < y and supp(α) \ {x} = supp(β) \ {y}.

From now on, we shall no longer make any distinction between an element
α ∈ FN (X) and its support, which is a subset of X with N elements. We recall
from [8, Section 2] that M is unitarily equivalent to a direct sum

⊕
N∈N

HN ,
where HN is the selfadjoint operator in HN := �2[FN (Z)] acting as

(HNf)(α) = −2
∑

β∼α

f(β) , f ∈ HN , α ∈ FN (Z) .

Thus the spectral analysis of M reduces to determining the nature of the
spectrum of the adjacency operators on HN . Moreover the graph (FN (Z),∼) de-
duced from (FN (Z), <) satisfies

Lemma 8.2. (FN (Z),∼) is an admissible graph.
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Proof. Due to Definition 5.1 one simply has to prove that (FN (Z), <) is admissible.
In point (i) we show that (FN (Z), <) is uniform. In point (ii) we give the (natural)
position function for (FN (Z), <).

(i) Given α ∈ FN (Z) and x ∈ supp(α), y /∈ supp(α), we write αy
x for the

function of FN(Z) such that supp(αy
x) = supp(α) � {y} \ {x}.

Thus one has

N−(α) ∩N−(β) =
{
γ : ∃x ∈ α, x− 1 /∈ α, ∃y ∈β, y − 1 /∈ β, γ = αx−1

x = βy−1
y

}

and

N+(α) ∩N+(β) =
{

γ : ∃x ∈ α, x + 1 /∈ α, ∃y ∈β, y + 1 /∈ β, γ = αx+1
x = βy+1

y

}
,

the couples (x, y) being unique for a given γ in both cases.
Suppose there exist x ∈ α, y ∈ β such that x − 1 /∈ α, y − 1 /∈ β and

αx−1
x = βy−1

y , so that αx−1
x ∈ {N−(α) ∩ N−(β)}. If x = y, then α = β, and

#N−(α), #N+(α) are both equal to the number of connected components of α.
If x �= y, then one has x−1 ∈ β, x /∈ β, y−1 ∈ α, y /∈ α together with the equality
αy

y−1 = βx
x−1. Therefore αy

y−1 ∈ {N+(α) ∩ N+(β)} and one has thus obtained a
bijective map from N−(α) ∩N−(β) to N+(α) ∩N+(β).

(ii) If ΦZ is a position function for Z (for instance ΦZ(x) = x), it is eas-
ily checked that Φ defined by Φ(α) :=

∑
x∈α ΦZ(x) is a position function for

FN (Z). �

Remark 8.3. One could presume that (FN (Z2), <) is also an admissible directed
graph. But this is wrong, as it can be seen from the following example. For N = 2,
consider α := {(1, 0), (1, 1)} and β := {(0, 1), (1, 1)}. It can be easily checked that
N−(α) ∩N−(β) = {{(0, 0), (1, 1)}, {(1, 0), (0, 1)}}, whereas N+(α) ∩N+(β) = ∅.
This contradicts the uniformity hypothesis.

As a corollary of Theorem 1.1 and of the admissibility of (FN (Z),∼), one
obtains:

Corollary 8.4. The spectrum of M is purely absolutely continuous, except maybe
at the origin.

Remark 8.5. We would obtain that the spectrum of M is purely absolutely con-
tinuous if we could show that ker(HN ) = {0} for any N . Unfortunately we have
been able to obtain such a statement only for N = 1, 2, 3 and 4. Our proof con-
sists in showing that if there exists f ∈ ker(HN ) such that f(α) �= 0 for some
α ∈ FN (Z), then there exists an infinite number of elements α′ ∈ FN(Z) such
that f(α′) = f(α), which contradicts the requirement f ∈ �2[FN (Z)]. In any case,
even if we did not succeed in extending such an argument for N > 4, the kernel
of HN is trivial for any N . This follows from the fact that HN can also be shown
to be purely absolutely continuous using an approach similar to the image charge
method in electrostatics [7].
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