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Abstract

We present a new criterion, based on commutator methods, for the strong mixing property of

unitary representations of topological groups equipped with a proper length function. Our result

generalises and uni�es recent results on the strong mixing property of discrete 
ows fUNgN2Z and

continuous 
ows fe�itHgt2R induced by unitary operators U and self-adjoint operators H in a Hilbert

space. As an application, we present a short alternative proof (not using convolutions) of the strong

mixing property of the left regular representation of �-compact locally compact groups.
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1 Introduction

In the recent paper [13], itself motivated by the previous papers [7, 11, 12, 14], it has been shown that

commutator methods for unitary and self-adjoint operators can be used to establish strong mixing. The

main results of [13] are the following two commutator criteria for strong mixing. First, given a unitary

operator U in a Hilbert space H, assume there exists an auxiliary self-adjoint operator A in H such that

the commutators [A;UN ] exist and are bounded in some precise sense, and such that the strong limit

D1 := s-lim
N!1

1

N
[A;UN ]U�N (1.1)

exists. Then, the discrete 
ow fUNgN2Z is strongly mixing in ker(D1)
?. Second, given a self-adjoint

operator H in H, assume there exists an auxiliary self-adjoint operator A in H such that the commutators

[A; e�itH] exist and are bounded in some precise sense, and such that the strong limit

D2 := s-lim
t!1

1

t
[A; e�itH] eitH (1.2)
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exists. Then, the continuous 
ow fe�itHgt2R is strongly mixing in ker(D2)
?. These criteria were then

applied to skew products of compact Lie groups, Furstenberg-type transformations, time changes of

horocycle 
ows and adjacency operators on graphs.

The purpose of this note is to unify these two commutator criteria into a single, more general,

commutator criterion for strong mixing of unitary representations of topological groups, and also to

remove an unnecessary invariance assumption made in [13].

Our main result is the following. We consider a topological group X equipped with a proper length

function ` : X ! R+, a unitary representation U : X ! U (H), and a net fxjgj2J in X with xj ! 1

(see Section 2 for precise de�nitions). Also, we assume there exists an auxiliary self-adjoint operator A in

H such that the commutators [A;U(xj)] exist and are bounded in some precise sense, and such that the

strong limit

D := s-lim
j

1

`(xj)
[A;U(xj)]U(xj)

�1 (1.3)

exists. Then, under these assumptions we show that the unitary representation U is strongly mixing in

ker(D)? along the net fxjgj2J (Theorem 2.3). As a corollary, we obtain criteria for strong mixing in the

cases of unitary representations of compactly generated locally compact Hausdor� groups (Corollary 2.5)

and the Euclidean group Rd (Corollary 2.7). These results generalise the commutator criteria of [13] for

the strong mixing of discrete and continuous 
ows, as well as the strong limit (1.3) generalises the strong

limits (1.1) and (1.2) (see Remarks 2.6 and 2.8). To conclude, we present in Example 2.9 an application

which was not possible to cover with the results of [13]: a short alternative proof (not using convolutions)

of the strong mixing property of the left regular representation of �-compact locally compact Hausdor�

groups.

We refer the reader to [3, 5, 8, 9, 10, 15] for references on strong mixing properties of unitary

representations of groups.

Acknowledgements. The second author is grateful for the support and the hospitality of the Graduate

School of Mathematics of Nagoya University in March and April 2015.

2 Commutator criteria for strong mixing

We start with a short review of basic facts on commutators of operators and regularity classes associated

with them. We refer to [1, Chap. 5-6] for more details.

Let H be an arbitrary Hilbert space with scalar product h � ; � i antilinear in the �rst argument, denote

by B(H) the set of bounded linear operators on H, and write k � k both for the norm on H and the norm

on B(H). Let A be a self-adjoint operator in H with domain D(A), and take S 2 B(H). For any k 2 N,

we say that S belongs to Ck(A), with notation S 2 Ck(A), if the map

R 3 t 7! e�i tA S eitA 2 B(H) (2.1)

is strongly of class Ck . In the case k = 1, one has S 2 C1(A) if and only if the quadratic form

D(A) 3 ' 7!
⟨
'; iSA'

⟩
�
⟨
A'; iS'

⟩
2 C

is continuous for the topology induced by H on D(A). We denote by [iS; A] the bounded operator

associated with the continuous extension of this form, or equivalently the strong derivative of the map (2.1)

at t = 0. Moreover, if we set A" := (i")�1(ei"A�1) for " 2 R n f0g, we have (see [1, Lemma 6.2.3(a)]):

s -lim
"&0

[iS; A"] = [iS; A]: (2.2)

Now, if H is a self-adjoint operator in H with domain D(H) and spectrum �(H), we say that H is of

class Ck(A) if (H� z)�1 2 Ck(A) for some z 2 C n �(H). In particular, H is of class C1(A) if and only if
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the quadratic form

D(A) 3 ' 7!
⟨
'; (H � z)�1A'

⟩
�
⟨
A'; (H � z)�1'

⟩
2 C

extends continuously to a bounded form with corresponding operator denoted by [(H� z)�1; A] 2 B(H).

In such a case, the set D(H) \ D(A) is a core for H and the quadratic form

D(H) \ D(A) 3 ' 7!
⟨
H';A'

⟩
�
⟨
A';H'

⟩
2 C

is continuous in the topology of D(H) (see [1, Thm. 6.2.10(b)]). This form then extends uniquely to a

continuous quadratic form on D(H) which can be identi�ed with a continuous operator [H;A] from D(H)

to the adjoint space D(H)�. In addition, the following relation holds in B(H) (see [1, Thm. 6.2.10(b)]):

[(H � z)�1; A] = �(H � z)�1[H;A](H � z)�1: (2.3)

With this, we can now present our �rst result, which is at the root of the new commutator criterion

for strong mixing. For it, we recall that a net fxjgj2J in a topological space X diverges to in�nity, with

notation xj !1, if fxjgj2J has no limit point in X. This implies that for each compact set K � X, there

exists jK 2 J such that xj =2 K for j � jK . In particular, X is not compact. We also �x the notations

U (H) for the set of unitary operators on H and R+ := [0;1).

Proposition 2.1. Let fUjgj2J be a net in U (H), let f`jgj2J � R+ satisfy `j !1, assume there exists a

self-adjoint operator A in H such that Uj 2 C
1(A) for each j 2 J, and suppose that the strong limit

D := s-lim
j

1

`j
[A;Uj ]U

�1
j

exists. Then, limj

⟨
';Uj 

⟩
= 0 for all ' 2 ker(D)? and  2 H.

Before the proof, we note that for j 2 J large enough (so that `j 6= 0) the operators 1
`j
[A;Uj ]U

�1
j are

well-de�ned, bounded and self-adjoint. Therefore, their strong limit D is also bounded and self-adjoint.

Proof. Let ' = D'̃ 2 DD(A) and  2 D(A), take j 2 J large enough, and set

Dj :=
1

`j
[A;Uj ]U

�1
j :

Since Uj and U
�1
j belong to C1(A) (see [1, Prop. 5.1.6(a)]), both Uj and U�1j '̃ belong to D(A). Thus,∣∣⟨';Uj 

⟩∣∣
=

∣∣⟨(D �Dj)'̃; Uj 
⟩
+
⟨
Dj '̃; Uj 

⟩∣∣
�

∥∥(D �Dj)'̃
∥∥k k+ 1

`j

∣∣⟨[A;Uj

]
U�1j '̃; Uj 

⟩∣∣
�

∥∥(D �Dj)'̃
∥∥k k+ 1

`j

∣∣⟨A'̃; Uj 
⟩∣∣+ 1

`j

∣∣⟨UjAU
�1
j '̃; Uj 

⟩∣∣
�

∥∥(D �Dj)'̃
∥∥k k+ 1

`j

∥∥A'̃∥∥k k+ 1

`j

∥∥'̃∥∥kA k:
Since D = s-lim j Dj and `j ! 1, we infer that limj

⟨
';Uj 

⟩
= 0, and thus the claim follows by the

density of DD(A) in DH = ker(D)? and the density of D(A) in H.

In the sequel, we assume that the unitary operators Uj are given by a unitary representation of a

topological group X. We also assume that the scalars `j are given by a proper length function on X, that

is, a function ` : X ! R+ satisfying the following properties (e denotes the identity of X):
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(L1) `(e) = 0,

(L2) `(x�1) = `(x) for all x 2 X,

(L3) `(xy) � `(x) + `(y) for all x; y 2 X,

(L4) if K � R+ is compact, then `�1(K) � X is relatively compact.

Remark 2.2 (Topological groups with a proper left-invariant pseudo-metric). Let X be a Hausdor�

topological group equipped with a proper left-invariant pseudo-metric d : X�X ! R+ (see [6, Def. 2.A.5

& 2.A.7]). Then, simple calculations show that the associated length function ` : X ! R+ given by

`(x) := d(e; x) satis�es the properties (L1)-(L4) above. Examples of groups admitting a proper left-

invariant pseudo-metric are �-compact locally compact Hausdor� groups [6, Prop. 4.A.2], as for instance

compactly generated locally compact Hausdor� groups with the word metric [6, Prop. 4.B.4(2)].

The next theorem provides a general commutator criterion for the strong mixing property of a unitary

representation of a topological group. Before stating it, we recall that if a topological group X is equipped

with a proper length function `, and if fxjgj2J is a net in X with xj ! 1, then `(xj) ! 1 (this can be

shown by absurd using the property (L4) above).

Theorem 2.3 (Topological groups). Let X be a topological group equipped with a proper length function

`, let U : X ! U (H) be a unitary representation of X, let fxjgj2J be a net in X with xj ! 1, assume

there exists a self-adjoint operator A in H such that U(xj) 2 C
1(A) for each j 2 J, and suppose that the

strong limit

D := s-lim
j

1

`(xj)
[A;U(xj)]U(xj)

�1 (2.4)

exists. Then,

(a) limj

⟨
';U(xj) 

⟩
= 0 for all ' 2 ker(D)? and  2 H,

(b) U has no nontrivial �nite-dimensional unitary subrepresentation in ker(D)?.

Proof. The claim (a) follows from Proposition 2.1 and the fact that `(xj) ! 1. The claim (b) follows

from (a) and the fact that matrix coe�cients of �nite-dimensional unitary representations of a group do

not vanish at in�nity (see for instance [2, Rem. 2.15(iii)]).

Remark 2.4. (i) The result of Theorem 2.3(a) amounts to the strong mixing property of the unitary

representation U in ker(D)? along the net fxjgj2J , as mentioned in the introduction. If the strong limit

(2.4) exists for all nets fxjgj2J with xj !1, then Theorem 2.3(a) implies the usual strong mixing property

of the unitary representation U in ker(D)?.

(ii) One can easily see that Theorem 2.3 remains true if the scalars `(xj) in (2.4) are replaced by

(f � `)(xj), with f : R+ ! R+ any proper function. For simplicity, we decided to present only the case

f = idR+ , but we note this additional freedom might be useful in applications.

Theorem 2.3 and Remark 2.2 imply the following result in the particular case of a compactly generated

locally compact group X:

Corollary 2.5 (Compactly generated locally compact groups). Let X be a compactly generated locally

compact Hausdor� group with generating set Y and word length function `, let U : X ! U (H) be a

unitary representation of X, let fxjgj2J be a net in X with xj ! 1, assume there exists a self-adjoint

operator A in H such that U(y) 2 C1(A) for each y 2 Y , and suppose that the strong limit

D := s-lim
j

1

`(xj)
[A;U(xj)]U(xj)

�1 (2.5)

exists. Then,
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(a) limj

⟨
';U(xj) 

⟩
= 0 for all ' 2 ker(D)? and  2 H,

(b) U has no nontrivial �nite-dimensional unitary subrepresentation in ker(D)?.

Proof. In order to apply Theorem 2.3, we �rst note from Remark 2.2 that the word length function ` is

a proper length function. Second, we note that X =
∪

n�1(Y [ Y
�1)n. Therefore, for each x 2 X there

exist n � 1, y1; : : : ; yn 2 Y and m1; : : : ; mn 2 f�1g such that x = ym1

1 � � � ymn
n . Thus,

U(x) = U
(
ym1

1 � � � ymn

n

)
= U(y1)

m1 � � �U(yn)
mn ;

and it follows from the inclusions U(y1); : : : ; U(yn) 2 C
1(A) and standard results on commutator methods

[1, Prop. 5.1.5 & 5.1.6(a)] that U(x) 2 C1(A). Thus, we have U(xj) 2 C
1(A) for each j 2 J, and the

commutators [A;U(xj)] appearing in (2.5) make sense. So, we can apply Theorem 2.3 to conclude.

Remark 2.6. Corollary 2.5 is a generalisation of [13, Thm. 3.1] to the case of unitary representations of

compactly generated locally compact Hausdor� groups. Indeed, if we let X be the additive group Z with

generating element 1, take the trivial net fxj = jgj2N� = fN j N 2 N�g, and set U := U(1) in Corollary

2.5, then the strong limit (2.5) reduces to

D = s-lim
N!1

1

N

[
A;UN

]
U�N = s-lim

N!1

1

N

N�1∑
n=0

Un
(
[A;U]U�1

)
U�n;

which is the strong limit appearing in [13, Thm. 3.1]. In Corollary 2.5 we also removed the unnecessary

invariance assumption �(D)D(A) � D(A) for each � 2 C1c (R n f0g). So, the strong mixing properties

for skew products and Furstenberg-type transformations established in [13, Sec. 3] and [4, Sec. 3] can be

obtained more directly using Corollary 2.5.

In the next corollary we consider the case of a strongly continuous unitary representation U : Rd !

U (H) of the Euclidean group Rd , d � 1. In such a case Stone's theorem implies the existence of

a family of mutually commuting self-adjoint operators H1; : : : ; Hd such that U(x) = e�i
∑d

k=1 xkHk for

each x = (x1; : : : ; xd) 2 R
d . Therefore, we give a criterion for strong mixing in terms of the operators

H1; : : : ; Hd . We use the shorthand notations

H := (H1; : : : ; Hd); �(H) := (H1 + i)
�1 � � � (Hd + i)

�1 and x �H :=

d∑
k=1

xkHk :

Corollary 2.7 (Euclidean group Rd). Let Rd , d � 1, be the Euclidean group with Euclidean length

function `, let U : Rd ! U (H) be a strongly continuous unitary representation of Rd , let fxjgj2J be a

net in Rd with xj !1, assume there exists a self-adjoint operator A in H such that (Hk � i)
�1 2 C1(A)

for each k 2 f1; : : : ; dg, and suppose that the strong limit

D := s-lim
j

1

`(xj)

∫ 1

0

ds e�is(xj �H) �(H)
[
i(xj �H); A

]
�(H)� eis(xj �H) (2.6)

exists. Then,

(a) limj

⟨
';U(xj) 

⟩
= 0 for all ' 2 ker(D)? and  2 H,

(b) U has no nontrivial �nite-dimensional unitary subrepresentation in ker(D)?.

Proof. The proof consists in applying Theorem 2.3 with A replaced by a new operator Ã that we now

de�ne.
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The inclusions (H1� i)
�1; : : : ; (Hd � i)

�1 2 C1(A) and the standard result on commutator methods

[1, Prop. 5.1.5] imply that �(H)� 2 C1(A). So, we have �(H)�D(A) � D(A), and the operator

Ã' := �(H)A�(H)�'; ' 2 D(A);

is essentially self-adjoint (see [1, Lemma 7.2.15]). Take ' 2 D(A) and j0 2 J such that `(xj) > 0 for all

j � j0, and de�ne for " 2 R n f0g the operator A" := (i")�1(ei"A�1). Then, we have⟨
Ã'; U(xj)'

⟩
�
⟨
';U(xj)Ã'

⟩
= lim

"&0

(⟨
';�(H)A"�(H)

� e�i(xj �H) '
⟩
�

⟨
'; e�i(xj �H) �(H)A"�(H)

�'
⟩)

= lim
"&0

∫ `(xj )

0

dq
d

dq

⟨
'; ei(q�`(xj ))(xj �H)=`(xj ) �(H)A"�(H)

� e�iq(xj �H)=`(xj ) '
⟩

=
1

`(xj)
lim
"&0

∫ `(xj )

0

dq
⟨
'; ei(q�`(xj ))(xj �H)=`(xj ) �(H)

[
i(xj �H); A"

]
�(H)� e�iq(xj �H)=`(xj ) '

⟩
: (2.7)

But, (H1 � i)
�1; : : : ; (Hd � i)

�1 2 C1(A). Therefore, (2.2) and (2.3) imply that

s-lim
"&0

�(H)
[
i(xj �H); A"

]
�(H)� = �(H)

[
i(xj �H); A

]
�(H)�;

and we can exchange the limit and the integral in (2.7) to obtain⟨
Ã'; U(xj)'

⟩
�
⟨
';U(xj)Ã'

⟩
=

1

`(xj)

∫ `(xj )

0

dq
⟨
'; ei(q�`(xj ))(xj �H)=`(xj ) �(H)

[
i(xj �H); A

]
�(H)� e�iq(xj �H)=`(xj ) '

⟩
=

1

`(xj)

∫ `(xj )

0

dr
⟨
'; e�i r(xj �H)=`(xj ) �(H)

[
i(xj �H); A

]
�(H)� ei(r�`(xj ))(xj �H)=`(xj ) '

⟩
=

∫ 1

0

ds
⟨
'; e�is(xj �H) �(H)

[
i(xj �H); A

]
�(H)� eis(xj �H) U(xj)'

⟩
=

⟨
'; `(xj)DjU(xj)'

⟩
with

Dj :=
1

`(xj)

∫ 1

0

ds e�is(xj �H) �(H)
[
i(xj �H); A

]
�(H)� eis(xj �H) :

Since D(A) is a core for Ã, this implies that U(xj) 2 C
1(Ã) with

[
Ã; U(xj)

]
= `(xj)Dj U(xj). Therefore,

we have

Dj =
1

`(xj)

[
Ã; U(xj)

]
U(xj)

�1;

and all the assumptions of Theorem 2.3 are satis�ed with A replaced by Ã.

Remark 2.8. Corollary 2.7 is a generalisation of [13, Thm. 4.1] to the case of strongly continuous unitary

representations of Rd for an arbitrary d � 1. Indeed, if we set d = 1, write H for H1, and take the trivial

net fxj = jgj2(0;1) = ft j t > 0g in Corollary 2.7, then the strong limit (2.6) reduces to

D = s-lim
t!1

1

t

∫ 1

0

ds e�is(t�H)
(
H + i

)�1[
i tH; A

](
H � i

)�1
eis(t�H)

= s-lim
t!1

1

t

∫ t

0

ds e�isH
(
H + i

)�1[
iH; A

](
H � i

)�1
eisH;
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which is (up to a sign) the strong limit appearing in [13, Thm. 4.1]. In Corollary 2.7, we also removed the

unnecessary invariance assumption �(D)D(A) � D(A) for each � 2 C1c (R n f0g). So, the strong mixing

properties for adjacency operators, time changes of horocycle 
ows, etc., established in [13, Sec. 4] can

be obtained more directly using Corollary 2.7.

To conclude, we add to the list of examples presented in [13] an application which was not possible

to cover with the results of [13]. It is a short alternative proof (not using convolutions) of the strong

mixing property of the left regular representation of �-compact locally compact Hausdor� groups:

Example 2.9 (Left regular representation). Let X be a �-compact locally compact Hausdor� group with

left Haar measure � and proper length function ` (see Remark 2.2). Let D � H be the set of functions

X ! C with compact support, and let U : X ! U (H) be the left regular representation of X on

H := L2(X;�) given by

U(x)' := '(x�1 �); x 2 X; ' 2 H;

Let �nally A be the maximal multiplication operator in H given by

A' := `' � `(�)'; ' 2 D(A) :=
{
' 2 H j k`'k <1

}
:

For ' 2 D and x 2 X, one has

AU(x)'� U(x)A' =
(
`( �)� `(x�1 �)

)
U(x)':

Furthermore, the properties (L2)-(L3) of a length function imply that∣∣(`( �)� `(x�1 �))∣∣ � `(x): (2.8)

Therefore, since D is dense in D(A), it follows that U(x) 2 C1(A) with

[A;U(x)]U(x)�1 = `( �)� `(x�1 �):

Now, we take fxjgj2J a net in X with xj !1, and show that

D := s-lim
j

1

`(xj)
[A;U(xj)]U(xj)

�1 = �1: (2.9)

For this, we �rst note that for ' 2 H we have(
1

`(xj)
[A;U(xj)]U(xj)

�1 + 1

)
' =

`( �)� `(x�1j �) + `(xj)

`(xj)
':

Next, we note that (2.8) implies that∣∣∣∣∣`( �)� `(x�1j �) + `(xj)

`(xj)
'

∣∣∣∣∣
2

� 4 j'j2 2 L1(X;�);

and that the properties (L2)-(L3) imply that

lim
j

∣∣∣∣∣`( �)� `(x�1j �) + `(xj)

`(xj)
'

∣∣∣∣∣
2

� lim
j

∣∣∣∣2`( �)`(xj)
'

∣∣∣∣2 = 0 �-almost everywhere.

Therefore, we can apply Lebesgue dominated convergence theorem to get the equality

s-lim
j

(
1

`(xj)
[A;U(xj)]U(xj)

�1 + 1

)
' = 0;

which proves (2.9). So, Theorem 2.3 applies with D = �1, and thus limj

⟨
';U(xj) 

⟩
= 0 for all '; 2 H.
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