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We study Levinson-type theorems for the family of Aharonov-Bohm models from dif-
ferent perspectives. The first one is purely analytical involving the explicit calculation
of the wave-operators and allowing to determine precisely the various contributions
to the left hand side of Levinson’s theorem, namely, those due to the scattering
operator, the terms at 0-energy and at energy +∞. The second one is based on non-
commutative topology revealing the topological nature of Levinson’s theorem. We
then include the parameters of the family into the topological description obtaining a
new type of Levinson’s theorem, a higher degree Levinson’s theorem. In this context,
the Chern number of a bundle defined by a family of projections on bound states is
explicitly computed and related to the result of a 3-trace applied on the scattering
part of the model. C© 2011 American Institute of Physics. [doi:10.1063/1.3582943]

I. INTRODUCTION

In recent work14–17, 23 it was advocated that Levinson’s theorem is of topological nature, namely,
that it should be viewed as an index theorem. The relevant index theorem occurs naturally in the
framework of non-commutative topology, that is, C∗-algebras, their K -theory and higher traces
(unbounded cyclic cocycles). The analytical hypothesis which has to be fulfilled for the index
theoretic formulation to hold is that the wave operators of the scattering system lie in a certain
C∗-algebra. In the examples considered until now, the index theorem substantially extends the usual
Levinson’s theorem which relates the number of bound states of a physical system to an expression
depending on the scattering part of the system. In particular, it sheds new light on the corrections
due to resonances and on the regularization which are often involved in the proof of this relation. It
also emphasizes the influence of the restriction of the waves operators at thresholds energies.

In the present paper we extend these investigations in two directions. On the one hand, we
apply the general idea for the first time to a magnetic system. Indeed, the Aharonov-Bohm operators
describe a two-dimensional physical system involving a singular magnetic field located at the origin
and perpendicular to the plane of motion. On the other hand, due to the large number of parameters
present in this model, we can develop a new topological equality involving higher degree traces.
Such an equality, which we call a higher degree Levinson’s theorem, extends naturally the usual
Levinson’s theorem (which corresponds to a relation between a 0-trace and a 1-trace) and it is
apparently the first time that a relation between a 2-trace and a 3-trace is put into evidence in a
physical context. While the precise physical meaning of this equality deserves more investigations,
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we have no doubt that it can play a role in the theory of topological transport and/or of adiabatic
pumping.4

Let us describe more precisely the content of this paper. In Sec. II we recall the contruction of
the Aharonov-Bohm operators and present part of the results obtained in Ref. 20. Earlier references
for the basic properties of these operators are Refs. 2, 3, 8, 22, and 25. In particular, we recall the
explicit expressions for the wave operators in terms of functions of the free Laplacian and of the
generator of the dilation group in R2. Let us mention that the theory of boundary triples, as presented
in Ref. 5 was extensively used in Ref. 20 for the computation of these explicit expressions.

In Sec. III we state and prove a version of Levinson’s theorem adapted to our model, see
Theorem 3. It will become clear at that moment that a naive approach of this theorem involving
only the scattering operator would lead to a completely wrong result. Indeed, the corrections due
to the restriction of the wave operators at 0-energy and at energy equal to +∞ will be explicitly
computed. Adding these different contributions leads to a first proof of Levinson’s theorem. All the
various situations, which depend on the parameters related to the flux of the magnetic field and to the
description of the self-adjoint extensions, are summarized in Sec. III C. Let us stress that this proof
is rather lengthy but that it leads to a very precise result. Note that up to this point, no C∗-algebraic
knowledge is required, all proofs are purely analytical.

Sections IV and V of the paper contain the necessary algebraic framework, the two topological
statements and their proofs. So Sec. IV contains a very short introduction to K -theory, cyclic
cohomology, n-traces, Connes’ pairing, and the dual boundary maps. Obviously, only the very
few necessary information on these subjects is presented, and part of the constructions are over-
simplified. However, the authors tried to give a flavor of this necessary background for non-experts,
but any reader familiar with these constructions can skip Sec. IV without any loss of understanding
in the last part of the paper.

In the first part of Sec. V, we construct a suitable C∗-algebraE which contains the wave operators.
For computational reasons, this algebra should neither be too small nor too large. In the former case,
the computation of its quotient by the ideal of compact operators would be too difficult and possibly
not understandable, in the latter case the deducible information would become too vague. In fact,
the algebra we propose is very natural once the explicit form of the wave operators is known. Once
the quotient of the algebra E by the compact operators is computed, the new topological version of
Levinson’s theorem can be stated. This is done in Theorem 13 and in that case its proof is contained
in a few lines. Note furthermore that there is a big difference between Theorem 3 and the topological
statement (and its corollary). In the former case, the proof consisted in checking that the sum of
various explicit contributions is equal to the number of bound states of the corresponding system.
In the latter case, the proof involves a topological argument and it clearly shows the topological
nature of Levinson’s theorem. However, the statement is global, and the contributions due to the
scattering operator and to the restrictions at 0-energy and at energy +∞ cannot be distinguished.
For that reason, both approaches are complementary. Note that the topological approach opens the
way towards generalisations which could hardly be guessed from the purely analytical approach.

Up to this point, the flux of the magnetic field as well as the parameters involved in the description
of the self-adjoint extension were fixed. In the second topological statement, we shall consider a
smooth boundaryless submanifold of the parameter space and perform some computations as these
parameters vary on the manifold. More precisely, we first state an equality between a continuous
family of projections on the bound states and the image through the index map of a continuous
family of unitary operators deduced from the wave operators, see Theorem 15. These unitary
operators contain a continuous family of scattering operators, but also the corresponding continuous
family of restrictions at energies 0 and +∞. Note that this result is still abstract, in the sense that
it gives an equality between an equivalent class in the K0-theory related to the bounded part of the
system with an equivalent class in the K1-theory related to the scattering part of the system, but
nothing prevents this equality from being trivial in the sense that it yields 0 = 0.

In the final part of the paper, we choose a two-dimensional submanifold and show that the
second topological result is not trivial. More precisely, we explicitly compute the pairings of
the K -equivalent classes with their respective higher degree traces. On the one hand this leads
to the computation of the Chern number of a bundle defined by the family of projections. For the
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chosen manifold this number is equal to 1, and thus is not trivial. By duality of the boundary maps,
it follows that the natural 3-trace applied on the family of unitary operators is also not trivial. The
resulting statement is provided in Proposition 17. Note that this statement is again global. A distinc-
tion of each contribution could certainly be interesting for certain applications, but its computation
could be rather tedious and therefore no further investigations have been performed in that direction.

II. THE AHARONOV-BOHM MODEL

In this section, we briefly recall the construction of the Aharonov-Bohm operators and present a
part of the results obtained in Ref. 20 to which we refer for details. We also mention2, 8, 25 for earlier
works on these operators.

A. The self-adjoint extensions

Let H denote the Hilbert space L2(R2) with its scalar product 〈·, ·〉 and its norm ‖ · ‖. For any
α ∈ (0, 1), we set Aα : R2 \ {0} → R2 by

Aα(x, y) = −α
( −y

x2 + y2
,

x

x2 + y2

)
,

corresponding formally to the magnetic field B = αδ (δ is the Dirac delta function), and consider
the operator,

Hα := (−i∇ − Aα)2, D(Hα) = C∞
c

(
R2 \ {0}).

Here, C∞
c (�) denotes the set of smooth functions on � with compact support. The closure of this

operator in H, which is denoted by the same symbol, is symmetric and has deficiency indices (2, 2).
We briefly recall the parametrization of the self-adjoint extensions of Hα from Ref. 20. Some

elements of the domain of the adjoint operator H∗
α admit singularities at the origin. For dealing with

them, one defines linear functionals �0, �−1, �0, �−1 on D(H∗
α ) such that for f ∈ D(H∗

α ) one has,
with θ ∈ [0, 2π ) and r → 0+,

2π f(r cos θ, r sin θ ) = �0(f)r−α + �0(f)rα + e−iθ
(
�−1(f)rα−1 + �−1(f)r1−α

)
+ O(r ).

The family of all self-adjoint extensions of the operator Hα is then indexed by two matrices C, D
∈ M2(C) which satisfy the following conditions:

(i) C D∗ is self-adjoint, (ii) det(CC∗ + DD∗) 
= 0, (1)

and the corresponding extensions HCD
α are the restrictions of H∗

α onto the functions f satisfying the
boundary conditions,

C

(
�0(f)

�−1(f)

)
= 2D

(
α�0(f)

(1 − α)�−1(f)

)
.

For simplicity, we call admissible a pair of matrices (C, D) satisfying the above conditions.

Remark 1: The parametrization of the self-adjoint extensions of Hα with all admissible pairs
(C, D) is very convenient but non-unique. At a certain point, it will be useful to have a one-to-one
parametrization of all self-adjoint extensions. So, let us consider U ∈ U (2) and set,

C(U ) := 1
2 (1 − U ) and D(U ) = i

2 (1 + U ).

It is easy to check that C(U ) and D(U ) satisfy both conditions (1). In addition, two different
elements U, U ′ of U (2) lead to two different self-adjoint operators H C(U ) D(U )

α and H C(U ′) D(U ′)
α ,

cf. Ref. 12. Thus, without ambiguity we can write HU
α for the operator H C(U ) D(U )

α . Moreover,
the set {HU

α | U ∈ U (2)} describes all self-adjoint extensions of Hα . Let us also mention that the
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normalization of the above maps has been chosen such that H−1
α ≡ H 10

α = H AB
α which corresponds

to the standard Aharonov-Bohm operator studied in Refs. 3 and 25.

The essential spectrum of H CD
α is absolutely continuous and covers the positive half line

[0,+∞). The discrete spectrum consists of at most two negative eigenvalues. More precisely, the
number of negative eigenvalues of HCD

α coincides with the number of negative eigenvalues of the
matrix C D∗.

The negative eigenvalues are the real negative solutions of the equation,

det
(
DM(z) − C

) = 0,

where M(z) is, for z < 0,

M(z) = − 2

π
sin(πα)

⎛⎝	(1 − α)2
(

− z

4

)α

0

0 	(α)2
(

− z

4

)1−α

⎞⎠,

and there exists an injective map γ (z) : C2 → H depending continuously on z ∈ C \ [0,+∞)
and calculated explicitly in Ref. 20 such that for each z < 0 one has ker(HCD

α − z)
= γ (z) ker

(
DM(z) − C

)
.

B. Wave and scattering operators

One of the main results of Ref. 20 is an explicit description of the wave operators. We shall
recall this result below, but we first need to introduce the decomposition of the Hilbert space
H with respect to a special basis. For any m ∈ Z, let φm be the complex function defined by
[0, 2π ) 
 θ �→ φm(θ ) := eimθ√

2π
. One has then the canonical isomorphism,

H ∼=
⊕
m∈Z

Hr ⊗ [φm], (2)

where Hr := L2(R+, r dr ) and [φm] denotes the one-dimensional space spanned by φm . For short-
ness, we write Hm for Hr ⊗ [φm], and often consider it as a subspace of H. Let us still set
Hint := H0 ⊕ H−1 which is clearly isomorphic to Hr ⊗ C2.

Let us also recall that the unitary dilation group {Uτ }τ∈R is defined on any f ∈ H and x ∈ R2 by

[Uτ f](x) = eτ f(eτ x).

Its self-adjoint generator A is formally given by 1
2 (X · (−i∇) + (−i∇) · X ), where X is the position

operator and −i∇ is its conjugate operator. All these operators are essentially self-adjoint on the
Schwartz space on R2. Clearly, the group of dilations as well as its generator leave each subspace
Hm invariant.

Let us now consider the wave operators,


CD
− := 
−(H CD

α , H0) = s − lim
t→−∞ eit HCD

α e−i t H0 ,

where H0 := −�. It is well known that for any admissible pair (C, D) the operator 
CD
± is reduced

by the decomposition H = Hint ⊕ H⊥
int

and that 
CD
− |H⊥

int
= 
AB

− |H⊥
int

. The restriction to H⊥
int

is
further reduced by the decomposition (2) and it is proved in Proposition 10 of Ref. 20, that the
channel wave operators satisfy for each m ∈ Z,


AB
−,m = ϕ−

m (A),

with ϕ−
m explicitly given for x ∈ R by

ϕ−
m (x) := eiδα

m
	
(

1
2 (|m| + 1 + i x)

)
	
(

1
2 (|m| + 1 − i x)

) 	
(

1
2 (|m + α| + 1 − i x)

)
	
(

1
2 (|m + α| + 1 + i x)

)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



052102-5 Levinson’s theorem and higher degree traces J. Math. Phys. 52, 052102 (2011)

and

δα
m = 1

2π
(|m| − |m + α|) =

{− 1
2πα if m ≥ 0

1
2πα if m < 0

.

It is also proved in Theorem 11 of Ref. 20, that


CD
− |Hint

=
(ϕ−

0 (A) 0

0 ϕ−
−1(A)

)
+
( ϕ̃0(A) 0

0 ϕ̃−1(A)

)
S̃CD

α

(√
H0
)
, (3)

with ϕ̃m(x) given for m ∈ {0,−1} by

1

2π
e−iπ |m|/2 eπx/2 	

(
1
2 (|m| + 1 + i x)

)
	
(

1
2 (|m| + 1 − i x)

)	( 1
2 (1 + |m + α| − i x)

)
	
(

1
2 (1 − |m + α| − i x)

)
.

Clearly, the functions ϕ−
m and ϕ̃m are continuous on R. Furthermore, these functions admit

limits at ±∞: ϕ−
m (−∞) = 1, ϕ−

m (+∞) = e2iδα
m , ϕ̃m(−∞) = 0, and ϕ̃m(+∞) = 1. Note also that the

expression for the function S̃CD
α (·) is given for κ ∈ R+ by

S̃CD
α (κ) := 2i sin(πα)

(
	(1−α)e−iπα/2

2α κα 0

0 	(α)e−iπ(1−α)/2

21−α κ (1−α)

)

·
(

D

(
	(1−α)2 e−iπα

4α κ2α 0

0 	(α)2 e−iπ(1−α)

41−α κ2(1−α)

)
+ π

2 sin(πα)
C

)−1

D

·
(

	(1−α)e−iπα/2

2α κα 0

0 −	(α)e−iπ(1−α)/2

21−α κ (1−α)

)
.

As usual, the scattering operator is defined by the formula,

SCD
α := [


CD
+
]∗


CD
− .

Then, the relation between this operator and S̃CD
α is of the form,

SCD
α |Hint

= SCD
α (
√

H0) with SCD
α (κ) :=

(
e−iπα 0

0 eiπα

)
+ S̃CD

α (κ). (4)

The following result has been obtained in Proposition 13 of Ref. 20, and will be necessary further
on.

Proposition 2: The map

R+ 
 κ �→ SCD
α (κ) ∈ U (2)

is continuous and has explicit asymptotic values for κ = 0 and κ = +∞. More explicitly, depending
on C, D, and α one has,

(i) If D = 0, then SCD
α (κ) =

(
e−iπα 0

0 eiπα

)
.

(ii) If det(D) 
= 0, then SCD
α (+∞) =

(
eiπα 0

0 e−iπα

)
.

(iii) If dim[ker(D)] = 1 and α = 1/2, then SCD
α (+∞) = (2P − 1)

(
i 0
0 −i

)
, where P is the orthog-

onal projection onto ker(D)⊥.

(iv) If ker(D) =
(
C
0

)
or if dim[ker(D)] = 1, α < 1/2 and ker(D) 
=

(
0
C

)
, then SCD

α (+∞)

=
(

e−iπα 0
0 e−iπα

)
.

(v) If ker(D) =
(

0
C

)
or if dim[ker(D)] = 1, α > 1/2 and ker(D) 
=

(
C
0

)
, then SCD

α (+∞)

=
(

eiπα 0

0 eiπα

)
.
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Furthermore,

(a) If C = 0, then SCD
α (0) =

(
eiπα 0

0 e−iπα

)
.

(b) If det(C) 
= 0, then SCD
α (0) =

(
e−iπα 0

0 eiπα

)
.

(c) If dim[ker(C)] = 1 and α = 1/2, then SCD
α (0) = (1 − 2�)

(
i 0
0 −i

)
, where � is the orthogonal

projection on ker(C)⊥.

(d) If ker(C) =
(

0
C

)
or if dim[ker(C)] = 1, α > 1/2 and ker(C) 
=

(
C
0

)
, then SCD

α (0)

=
(

e−iπα 0
0 e−iπα

)
.

(e) If ker(C) =
(
C
0

)
or if dim[ker(C)] = 1, α < 1/2 and ker(C) 
=

(
0
C

)
, then SCD

α (0)

=
(

eiπα 0
0 eiπα

)
.

III. THE 0-DEGREE LEVINSON’S THEOREM, A PEDESTRIAN APPROACH

In this section, we state a Levinson-type theorem adapted to our model. The proof is quite
ad hoc and will looklike a recipe, but a much more conceptual one will be given subsequently.
The main interest in this pedestrian approach is that it shows the importance of the restriction of
the wave operators at 0-energy and at energy equal to +∞. Let us remind the reader interested
in the algebraic approach that the present proof can be skipped without any loss of understanding in
the following subsections.

Let us start by considering again the expression (3) for the operator 
CD
− |Hint

. It follows from
the explicit expressions for the functions ϕ−

m , ϕ̃m, and S̃CD
α that 
CD

− |Hint
is a linear combination

of product of functions of two non-commutating operators with functions that are, respectively,
continuous on [−∞,∞] and on [0,∞] and which take values in M2(C). For a reason that will
become limpid in the algebraic framework, we shall consider the restrictions of these products of
functions on the endpoints of the closed intervals. Namely, let us first set for x ∈ R and κ ∈ R+,

	1(C, D, α, x) :=
(ϕ−

0 (x) 0

0 ϕ−
−1(x)

)
+
( ϕ̃0(x) 0

0 ϕ̃−1(x)

)
S̃CD

α (0), (5)

	2(C, D, α, κ) := SCD
α (κ), (6)

	3(C, D, α, x) :=
(ϕ−

0 (x) 0

0 ϕ−
−1(x)

)
+
( ϕ̃0(x) 0

0 ϕ̃−1(x)

)
S̃CD

α (+∞), (7)

	4(C, D, α, κ) := 1. (8)

Clearly, 	1(C, D, α, ·) and 	3(C, D, α, ·) are continuous functions on [−∞,∞] with values in
M2(C), and 	2(C, D, α, ·) and 	4(C, D, α, ·) are continuous functions on [0,∞] with values in
M2(C). Now, we set � ⊂ [0,∞] × [−∞,∞] for the union of the four parts: � = B1 ∪ B2 ∪
B3 ∪ B4, with B1 = {0} × [−∞,∞], B2 = [0,∞] × {+∞}, B3 = {+∞} × [−∞,∞], and B4

= [0,∞] × {−∞}. Then, we naturally define the function 	(C, D, α, ·) : � → M2(C)
by the relations 	

(
C, D, α, (0, x)

) = 	1(C, D, α, x), 	
(
C, D, α, (κ,∞)

) = 	2(C, D, α, κ),
	
(
C, D, α, (∞, x)

) = 	3(C, D, α, x), and 	
(
C, D, α, (κ,−∞)

) = 	4(C, D, α, κ). In fact, since
the following relations hold: 	1(C, D, α,∞) = 	2(C, D, α, 0), 	2(C, D, α,∞) = 	3(C, D, α,∞),
	3(C, D, α,−∞) = 	4(C, D, α,∞), and 	4(C, D, α, 0) = 	1(C, D, α,−∞), one easily observes
that 	(C, D, α, ·) is a continuous function on � with values in U (2). Thus, since 	(C, D, α, ·) ∈
C
(
�, U (2)

)
, we can define the winding number wind

[
	(C, D, α, ·)] of the map,

� 
 ζ �→ det[	(C, D, α, ζ )] ∈ T ,
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with orientation of � chosen clockwise. Here, T denotes the set of complex numbers of modulus 1.
The following statement is our Levinson-type theorem.

Theorem 3: For any α ∈ (0, 1) and any admissible pair (C, D) one has

wind
[
	(C, D, α, ·)] = −#σp(H CD

α ) = −#{negative eigenvalues of C D∗}.

Proof: The first equality is proved below by a case-by-case study. The equality between the
cardinality of σp(H CD

α ) and the number of negative eigenvalues of the matrix C D∗ has been shown
in Lemma 4 of Ref. 20. �

We shall now calculate separately the contribution to the winding number from the functions
	1(C, D, α, ·), 	2(C, D, α, ·), and 	3(C, D, α, ·). The contribution due to the scattering operator is
the one given by 	2(C, D, α, ·). It will be rather clear that a naive approach of Levinson’s theorem
involving only the contribution of the scattering operator would lead to a completely wrong result.
The final results are presented in Sec. III C.

A. Contributions of �1(C, D, α, ·) and �3(C, D, α, ·)
In this section, we calculate the contributions due to 	1(C, D, α, ·) and 	3(C, D, α, ·) which

were introduced in (5) and (7). For that purpose, recall first the relation,

SCD
α (κ) :=

(
e−iπα 0

0 eiπα

)
+ S̃CD

α (κ).

Since SCD
α (0) and SCD

α (+∞) are diagonal in most of the situations, as easily observed in Proposition
2, let us define for a ∈ C and m ∈ {0,−1} the following functions:

ϕm(·, a) := ϕ−
m (·) + a ϕ̃m(·).

Then, by a simple computation one obtains

ϕm(x, a) = 	
(

1
2 (|m| + 1 + i x)

)
	
(

1
2 (|m| + 1 − i x)

) 	
(

1
2 (|m + α| + 1 − i x)

)
	
(

1
2 (|m + α| + 1 + i x)

) ·

·
[
eiδα

m + a e−iπ |m|/2 eπx/2

2 sin
(

π
2 (1 + |m + α| + i x)

) ].
Let us mention that the equality,

	(z)	
(
1 − z) = π

sin(π z)
, (9)

for z = 1
2 (1 + |m + α| + i x) has been used for this calculation. In the case a = 0, the function

ϕm(·, 0) clearly takes its values in T . We shall now consider the other two special cases ϕ0(·, eiπα

− e−iπα) and ϕ−1(·, e−iπα − eiπα) which will appear naturally subsequently. Few more calculations
involving some trigonometric relations and the same relation (9) lead to

ϕ0(x, eiπα − e−iπα) = eiπα/2 	
(

1
2 (1 + i x)

)
	
(

1
2 (1 − i x)

) 	
(

1
2 (1 + α − i x)

)
	
(

1
2 (1 + α + i x)

) sin
(

π
2 (1 + α − i x)

)
sin
(

π
2 (1 + α + i x)

)
= eiπα/2 	

(
1
2 (1 + i x)

)
	
(

1
2 (1 − i x)

) 	
(

1
2 (1 − α − i x)

)
	
(

1
2 (1 − α + i x)

)
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and to

ϕ−1(x, e−iπα − eiπα) = −e−iπα/2 	
(
1 + 1

2 i x
)

	
(
1 − 1

2 i x
) 	
(
1 − 1

2 (α + i x)
)

	
(
1 − 1

2 (α − i x)
) sin

(
π
2 (α + i x)

)
sin
(

π
2 (α − i x)

)
= −e−iπα/2 	

(
1 + 1

2 i x
)

	
(
1 − 1

2 i x
) 	
(

1
2 (α − i x)

)
	
(

1
2 (α + i x)

) .
Clearly, both functions are continuous and take values in T . Furthermore, since ϕ−

m and ϕ̃m have
limits at ±∞, so does the functions ϕm(·, a). It follows that the variation of the arguments of the
previous functions can be defined. More generally, for any continuously differentiable function
ϕ : [−∞,∞] → T we set

Var[ϕ] := 1

i

∫ ∞

−∞
ϕ(x)−1 ϕ′(x)dx .

Let us first state a convenient formula. Its proof is given in the Appendix B.

Lemma 4: Let a, b > 0. For ϕa,b(x) := 	(a+i x)
	(a−i x)

	(b−i x)
	(b+i x) one has Var[ϕa,b] = 2π (a − b).

As an easy corollary one obtains

Corollary 5: The following equalities hold:

(i) Var[ϕm(·, 0)] = 2δα
m for m ∈ {0,−1}.

(ii) Var[ϕ0(·, eiπα − e−iπα)] = πα.
(iii) Var[ϕ−1(·, e−iπα − eiπα)] = π (2 − α).

Let us now set

φ1(C, D, α) := Var
[
det
(
	1(C, D, α, ·))]

and

φ3(C, D, α) := −Var
[
det
(
	3(C, D, α, ·))].

The sign “−” in the second definition comes from the sense of the computation of the winding
number: from +∞ to −∞. By taking into account the above information and the expression SCD

α (0)
and SCD

α (+∞) recalled in Proposition 2 one can prove,

Proposition 6: One has

(i) If D = 0, then φ3(C, D, α) = 0.
(ii) If det(D) 
= 0, then φ3(C, D, α) = −2π .

(iii) If ker(D) =
(
C
0

)
or if dim[ker(D)] = 1, α < 1/2 and ker(D) 
=

(
0
C

)
, then φ3(C, D, α)

= −2π (1 − α).

(iv) If ker(D) =
(

0
C

)
or if dim[ker(D)] = 1, α > 1/2 and ker(D) 
=

(
C
0

)
, then φ3(C, D, α)

= −2πα.
(v) If dim[ker(D)] = 1 and α = 1/2, then φ3(C, D, α) = −π .

Furthermore,

(a) If C = 0, then φ1(C, D, α) = 2π .
(b) If det(C) 
= 0, then φ1(C, D, α) = 0.

(c) If ker(C) =
(

0
C

)
or if dim[ker(C)] = 1, α > 1/2 and ker(C) 
=

(
C
0

)
, then φ1(C, D, α) = 2π

(1 − α).

(d) If ker(C) =
(
C
0

)
or if dim[ker(C)] = 1, α < 1/2 and ker(C) 
=

(
0
C

)
, then φ1(C, D, α)

= 2πα,
(e) If dim[ker(C)] = 1 and α = 1/2, then φ1(C, D, α) = π .
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Proof: Statements (i)–(iv) as well as statements (a)–(d) are easily obtained simply by taking the
asymptotic values of SCD

α (·) into account. So let us concentrate on the remaining statements.
Let p = (p1, p2) ∈ C2 with ‖p‖ = 1, and let

P =
(

|p2|2 −p1 p̄2

− p̄1 p2 |p1|2
)

be the orthogonal projection onto p⊥. For x ∈ R, let us also set

ϕ(P, x) :=
(ϕ−

0 (x) 0

0 ϕ−
−1(x)

)
+
( ϕ̃0(x) 0

0 ϕ̃−1(x)

)
2P
( i 0

0 −i

)
,

whose determinant is equal to

g(x) := ϕ−
0 (x)ϕ−

−1(x) + 2i ϕ̃0(x)ϕ−
−1(x) |p2|2 − 2iϕ−

0 (x) ϕ̃−1(x)|p1|2.
By taking the explicit expressions for these functions one obtains

g(x) = 	
(

1
2 (1 + i x)

)
	
(

1
2 (1 − i x)

) 	
(

1
2 ( 3

2 − i x)
)

	
(

1
2 ( 3

2 + i x)
) 	
(

1
2 (2 + i x)

)
	
(

1
2 (2 − i x)

) 	
(

1
2 ( 3

2 − i x)
)

	
(

1
2 ( 3

2 + i x)
)

·
(

1 + i eiπ/4 eπx/2

π
	
(

1
2 ( 1

2 − i x)
)
	
(

1
2 ( 3

2 + i x)
))

.

Now, by setting z = 3
4 + i x

2 and by some algebraic computations one obtains

1 + ieiπ/4 eπx/2

π
	
(

1
2 ( 1

2 − i x)
)
	
(

1
2 ( 3

2 + i x)
)

= 1 + i

π
e−iπ(z−1) 	(1 − z)	(z) = 1 − i

e−iπ z

sin(π z)

= −i
cos(π z)

sin(π z)
= −i

1

tan
(

3π
4 + i πx

2

)
= −i

tanh(πx
2 ) − i

tanh(πx)
2 ) + i

.

Thus, one finally obtains that

g(x) = −i
	
(

1
2 (1 + i x)

)
	
(

1
2 (1 − i x)

) 	
(

1
2 ( 3

2 − i x)
)

	
(

1
2 ( 3

2 + i x)
) 	
(

1
2 (2 + i x)

)
	
(

1
2 (2 − i x)

) 	
(

1
2 ( 3

2 − i x)
)

	
(

1
2 ( 3

2 + i x)
) tanh(πx

2 ) − i

tanh(πx
2 ) + i

.

Note that this function does not depend on the projection P at all.
Clearly one has

Var[g] = Var[ϕ 1
2 , 3

4
] + Var[ϕ1, 3

4
] + Var

[ tanh(π ·
2 ) − i

tanh(π ·
2 ) + i

]
= −π

2
+ π

2
+ π = π.

Now, by observing that φ3(C, D, α) = −Var[g] in the case (v), one concludes that in this special
case φ3(C, D, α) = −π .

For the case (e), observe that by setting P := 1 − �, one easily obtains that in this special case
	1(C, D, α, ·) = ϕ(P, ·). It follows that φ1(C, D, α) = Var[g] and then φ1(C, D, α) = π. �

B. Contribution of �2(C, D, α, ·)
Recall first that 	2(C, D, α, ·) defined in (6) is equal to SCD

α (·). We are interested here in the
phase of det

(
SCD

α (κ)
)

acquired as κ runs from 0 to +∞; we denote this phase by φ2(C, D, α). Note

that if det
(
SCD

α (κ)
) = f̄ (κ)

f (κ) for a non-vanishing continuous function f : R+ → C∗, then

φ2(C, D, α) = −2
(

arg f (+∞) − arg f (0)
)
,
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where arg : R+ → R is a continuous function defined by the argument of f . In the sequel, we shall
also use the notation θ : C∗ → (−π, π ] for the principal argument of a complex number different
from 0.

Now, let us consider κ > 0 and set S(κ) := SCD
α (κ). For shortness, we also set L := π

2 sin(πα) C
and

B :=
(

b1(κ) 0

0 b2(κ)

)
=
(

	(1−α)
2α κα 0

0 	(α)
21−α κ (1−α)

)
, � :=

(
e−iπα/2 0

0 e−iπ (1−α)/2

)
, J :=

(
1 0

0 −1

)
.

Note that the matrices B, �, and J commute with each other, that the matrix B is self-adjoint and
invertible, and that J and � are unitary.

(I) If D = 0, then SCD
α is constant and φ2(C, D, α) = 0.

(II) Let us assume det(D) 
= 0, i.e., D is invertible. Without loss of generality, we may assume
that D = 1, as explained in Sec. 3 of Ref. 20, and that C and hence L are self-adjoint. We write
C = (c jk), L = (l jk) and we then use the expression,

S(κ) = �
B−1 L B−1 + cos(πα)J + i sin(πα)

B−1 L B−1 + cos(πα)J − i sin(πα)
� J, (10)

derived in Ref. 20. By direct calculation one obtains det
(
S(κ)

) = f̄ (κ)
f (κ) with

f (κ) = det
(
B−1L B−1 + cos(πα)J − i sin(πα)

)
= det(L)b−2

1 (κ)b−2
2 (κ) − 1 + cos(πα)

(
l22 b−2

2 (κ) − l11 b−2
1 (κ)

)
−i sin(πα)

(
l11 b−2

1 (κ) + l22 b−2
2 (κ)

)
, (11)

and f is non-vanishing as the determinant of an invertible matrix.
For the computation of φ2(C, D, α) we shall have to consider several cases. We first as-

sume that det(C) 
= 0, which is equivalent to det(L) 
= 0. In that case one clearly has det
(
SCD

α (0)
)

= det
(
SCD

α (+∞)
)
, and then φ2(C, D, α) will be a multiple of 2π . Furthermore, note that θ

(
f (+∞)

)
= π and that θ

(
f (0)

) = 0 if det(L) > 0 and θ
(

f (0)
) = π if det(L) < 0.

Assuming that l11 l22 ≥ 0 (which means that � f is either non-negative or non-positive, and its
sign is opposite to that of tr(L)), one has the following cases:

(II.1) If tr(C) > 0 and det(C) > 0, then � f < 0 and φ2(C, D, α) = 2π .
(II.2) If tr(C) > 0 and det(C) < 0, then � f < 0 and φ2(C, D, α) = 0.
(II.3) If tr(C) < 0 and det(C) > 0, then � f > 0 and φ2(C, D, α) = −2π .
(II.4) If tr(C) < 0 and det(C) < 0, then � f > 0 and φ2(C, D, α) = 0.
(II.5) If c11 = c22 = 0 (automatically det(C) < 0), then f is real and non-vanishing, hence

φ2(C, D, α) = 0.

Now, if l11l22 < 0 the main difference is that the parameter α has to be taken into account. On
the other hand, one has det(L) < 0 which implies that arg f (+∞) − arg f (0) has to be a multiple
of 2π . For the computation of this difference, observe that the equation � f (κ) = 0 (for κ ≥ 0) is
equivalent to

b−2
1 (κ)

b−2
2 (κ)

= − l22

l11
⇐⇒ κ2α−1 = 22α−1 	(α)

	(1 − α)

√
− l11

l22
. (12)

For α 
= 1/2 this equation has a unique solution κ0, and it follows that the sign of � f (κ) will be
different for κ < κ0 and for κ > κ0 (and will depend on α and on the relative sign of l11 and l22).
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Let us now estimate � f (κ0). We have

� f (κ) = det(L)b−2
1 (κ)b−2

2 (κ) − 1 + cos(πα)
(
l22 b−2

2 (κ) − l11 b−2
1 (κ)

)
≤ −|l11 l22|b−2

1 (κ)b−2
2 (κ) − 1 + | cos(πα)|(∣∣l22|b−2

2 (κ) + |l11|b−2
1 (κ)

)
= −

(
|l11 l22|b−2

1 (κ)b−2
2 (κ) + 1 − | cos(πα)|(∣∣l22|b−2

2 (κ) + |l11|b−2
1 (κ)

))
= −(1 − | cos(πα)|)(|l11 l22|b−2

1 (κ)b−2
2 (κ) + 1

)
−| cos(πα)|(|l11|b−2

1 (κ) − 1
)(|l22 |b−2

2 (κ) − 1
)
.

Hence using (12) and the equality − l22
l11

= |l22|
|l11| one obtains

� f (κ0) ≤ −(1 − | cos(πα)|)(|l11l22| b−2
1 (κ0)b−2

2 (κ0) + 1
)− | cos(πα)|(|l22|b−2

2 (κ0) − 1
)2

< 0.

This estimate implies that 0 is not contained in the interior of the curve f (R+), which means that
arg f (+∞) − arg f (0) = 0 for all α 
= 1/2.

For the special case α = 1/2, Eq. (12) has either no solution or holds for all κ ∈ R+. In the
former situation, � f has always the same sign, which means that the arg f (+∞) − arg f (0) = 0.
In the latter situation, f is real, and obviously arg f (+∞) − arg f (0) = 0. In summary, one has
obtained,

(II.6) If c11 c22 < 0, then φ2(C, D, α) = 0.

Let us now assume that det(C) = 0 but C 
= 0, i.e., det(L) = 0 but L 
= 0. In that case one
simply has

f (κ) = −1 + cos(πα)
(
l22 b−2

2 (κ) − l11 b−2
1 (κ)

)− i sin(πα)
(
l11 b−2

1 (κ) + l22 b−2
2 (κ)

)
.

Furthermore, one always has l11l22 ≥ 0, which means that � f is either non-negative or non-positive.
Then, since θ

(
f (+∞)

) = π , it will be sufficient to calculate the value θ
(

f (0)
)
.

(i) Assume first that l11 = 0, which automatically implies that l22 
= 0 and l12 = l21 = 0. Then
one has

f (κ) = −1 + cos(πα) l22 b−2
2 (κ) − i sin(πα) l22 b−2

2 (κ)

and

θ
(

f (0)
) =

{−πα if l22 > 0
π (1 − α) if l22 < 0

.

By taking into account the sign of � f , one then obtains

arg f (+∞) − arg f (0) =
{−π (1 − α) if l22 > 0
πα if l22 < 0

.

(ii) Similarly, if we assume now that l22 = 0, we then have l11 
= 0, l12 = l21 = 0, and

f (κ) = −1 − cos(πα) l11 b−2
1 (κ) − i sin(πα) l11 b−2

1 (κ).

It then follows that

θ
(

f (0)
) =

{
πα if l11 < 0
−π (1 − α) if l11 > 0

and

arg f (+∞) − arg f (0) =
{
π (1 − α) if l11 < 0
−πα if l11 > 0

.

(iii) Assume now that l11 l22 
= 0 (which means automatically l11l22 > 0) and that α = 1/2.
Since b1(κ) = b2(κ) =: b(κ) one then easily observes that f (κ) = −1 − i tr(L)b−2(κ), θ

(
f (0)

)
= −π

2 sign
(

tr(L)
)
, and arg f (+∞) − arg f (0) = −π

2 sign
(

tr(L)
)
.
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(iv) Assume that l11 l22 
= 0 and that α < 1/2. In this case one can rewrite

f (κ) = −1 + cos(πα)b−2
2 (κ)

(
l22 − l11

b2
2(κ)

b2
1(κ)

)
− i sin(πα)b−2

2 (κ)
(

l22 + l11
b2

2(κ)

b2
1(κ)

)
.

Since b2(κ)/b1(κ) → 0 as κ → 0+, one has the same limit values and phases as in (i).
(v) Similarly, if l11 l22 
= 0 and α > 1/2, we have the same limit and phases as in (ii).
In summary, if det(C) = 0 and C 
= 0 one has obtained:

(II.7) If c11 = 0 and tr(C) > 0, or if c11 c22 
= 0, tr(C) > 0 and α < 1/2, then φ2(C, D, α)
= 2π (1 − α).

(II.8) If c11 = 0 and tr(C) < 0, or if c11 c22 
= 0, tr(C) < 0 and α < 1/2, then φ2(C, D, α)
= −2πα.

(II.9) If c22 = 0 and tr(C) > 0, or if c11 c22 
= 0, tr(C) > 0 and α > 1/2, then φ2(C, D, α)
= 2πα.

(II.10) If c22 = 0 and tr(C) < 0, or if c11 c22 
= 0, tr(C) < 0 and α > 1/2, then φ2(C, D, α)
= −2π (1 − α).

(II.11) If c11 c22 
= 0, tr(C) > 0 and α = 1/2, then φ2(C, D, α) = π .
(II.12) If c11 c22 
= 0, tr(C) < 0 and α = 1/2, then φ2(C, D, α) = −π .

(III) If C = 0, then SCD
α is constant and φ2(C, D, α) = 0.

(IV) We shall now consider the situation det(D) = 0 but D 
= 0. Obviously, ker(D) is of
dimension 1. So let p = (p1, p2) be a vector in ker(D) with ‖p‖ = 1. Let us also introduce

c(κ) = b2
1(κ) |p2|2 e−iπα − b2

2(κ) |p1|2 eiπα

and

X− := (
b2

1(κ) |p2|2 − b2
2(κ) |p1|2

)
, X+ := (

b2
1(κ) |p2|2 + b2

2(κ) |p1|2
)
.

In that case it has been shown in Ref. 20 that

S = �
(
c(κ) + �

)−1
M(κ)� J,

where

M(κ) :=
(

eiπα X− + � −2 i sin(πα)b1(κ)b2(κ) p1 p̄2

−2 i sin(πα)b1(κ)b2(κ) p̄1 p2 e−iπα X− + �

)
,

and � is a real number which will be specified below. Note that det
(
M(κ)

) = |c(κ) + �|2 which
ensures that S is a unitary operator. Therefore, by setting

g(κ) := c(κ) + � = cos(πα)
(

b2
1(κ) |p2|2 − b2

2(κ) |p1|2
)

+ � − i sin(πα)
(

b2
1(κ) |p2|2 + b2

2(κ) |p1|2
)
,

one has

φ2(C, D, α) = −2
(

arg g(+∞) − arg g(0)
)
,

where arg : R+ → R is a continuous function defined by the argument of g. Note already that we
always have �g < 0.

We first consider the special case α = 1/2. In that case we have b1(κ) = b2(κ) =: b(κ), and
then

g(κ) = � − ib2(κ).

If � 
= 0, we have θ
(
g(0)

) = θ (�) and θ
(
g(+∞)

) = −π/2. Therefore,

arg g(+∞) − arg g(0) =
{

−π/2 if � > 0

π/2 if � < 0
.
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If � = 0, then g is pure imaginary, hence arg g(+∞) − arg g(0) = 0. In summary, for det(D) = 0
but D 
= 0, one has already obtained

(IV.1) If � > 0 and α = 1/2, then φ2(C, D, α) = π .
(IV.2) If � = 0 and α = 1/2, then φ2(C, D, α) = 0.
(IV.3) If � < 0 and α = 1/2, then φ2(C, D, α) = −π .

Let us now consider the case α < 1/2, and assume first that � 
= 0. It follows that θ
(
g(0)

) = θ (�).
To calculate θ

(
g(+∞)

)
one has to consider two subcases. So, on the one hand let us assume in

addition that p1 
= 0. Then one has

g(κ) = � − cos(πα)b2
2(κ)

(
|p1|2 − b2

1(κ)

b2
2(κ)

|p2|2
)

− i sin(πα)b2
2(κ)

(
|p1|2 + b2

1(κ)

b2
2(κ)

|p2|2
)
.

Since b1(κ)/b2(κ) → 0 as κ → +∞, one obtains θ
(
g(+∞)

) = −π (1 − α) and

arg g(+∞) − arg g(0) =
{−π (1 − α), if � > 0
πα, if � < 0

.

On the other hand, if p1 = 0, then one has

g(κ) = � + b2
1(κ)

(
cos(πα) − i sin(πα)

)
,

which implies that θ
(
g(+∞)

) = −πα and that

arg g(+∞) − arg g(0) =
{−πα, if � > 0
π (1 − α), if � < 0

.

Now, let us assume that � = 0. In this case the above limits for κ → +∞ still hold, so we only
need to calculate θ

(
g(0)

)
. First, if p2 
= 0, we have

g(κ) = cos(πα)b2
1(κ)

(
|p2|2 − b2

2(κ)

b2
1(κ)

|p1|2
)

− i sin(πα)b2
1(κ)

(
|p2|2 + b2

2(κ)

b2
1(κ)

|p1|2
)
,

and since b2(κ)/b1(κ) → 0 as κ → 0+ it follows that θ
(
g(0)

) = −πα. Second, if p2 = 0, then

g(κ) = −b2
2(κ)

(
cos(πα) + i sin(πα)

))
,

and we get θ
(
g(0)

) = −π (1 − α).
In summary, for det(D) = 0, D 
= 0, and α < 1/2, we have obtained

(IV.4) if � < 0 and p1 
= 0, then φ2(C, D, α) = −2πα.
(IV.5) if � < 0 and p1 = 0, then φ2(C, D, α) = −2π (1 − α).
(IV.6) if � > 0 and p1 
= 0, then φ2(C, D, α) = 2π (1 − α).
(IV.7) if � > 0 and p1 = 0, then φ2(C, D, α) = 2πα.
(IV.8) if � = 0, p1 
= 0 and p2 
= 0, then φ2(C, D, α) = 2π (1 − 2α).
(IV.9) if � = 0 and p1 = 0 or if � = 0 and p2 = 0, then φ2(C, D, α) = 0.

The case det(D) = 0, D 
= 0, and α > 1/2 can be treated analogously. We simply state the
results

(IV.10) if � < 0 and p2 
= 0, then φ2(C, D, α) = −2π (1 − α).
(IV.11) if � < 0 and p2 = 0, then φ2(C, D, α) = −2πα.
(IV.12) if � > 0 and p2 
= 0, then φ2(C, D, α) = 2πα.
(IV.13) if � > 0 and p2 = 0, then φ2(C, D, α) = 2π (1 − α).
(IV.14) if � = 0, p1 
= 0 and p2 
= 0, then φ2(C, D, α) = −2π (1 − 2α).
(IV.15) if � = 0 and p1 = 0 or if � = 0 and p2 = 0, then φ2(C, D, α) = 0.

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



052102-14 Kellendonk, Pankrashkin, and Richard J. Math. Phys. 52, 052102 (2011)

Let us finally recall some relationship between the constant � and the matrices C and D in the
case (IV). As explained before, we can always assume that C = (1 − U )/2 and D = i(1 + U )/2 for
some U ∈ U (2). Recall that in deriving the equalities (IV.1)–(IV.15) we assumed dim[ker(D)] = 1,
i.e., −1 is an eigenvalue of U of multiplicity 1. Let eiθ , θ ∈ (−π, π ) be the other eigenvalue of U .
Then by the construction explained in Ref. 20, one has

� = π

2 sin(πα)

1 − eiθ

i(1 + eiθ )
= − π

2 sin(πα)

sin
(

θ
2

)
cos

(
θ
2

) .
On the other hand, the eigenvalues of the matrix C D∗ = i(U − U ∗)/4 are λ1 = 0 and

λ2 = i(eiθ − e−iθ )/4 = − 1
2 sin(θ ) = − sin

(
θ
2

)
cos

(
θ
2

)
.

It follows that λ2 and � have the same sign. Therefore, in (IV.1)–(IV.15) one has � < 0 if C D∗ has
one zero eigenvalue and one negative eigenvalue, � = 0 if C D∗ = 0 and � > 0 if C D∗ has one zero
eigenvalue and one positive eigenvalue.

C. Case-by-case results

In this section, we finally collect all previous results and prove the case-by-case version of
Levinson’s theorem. The interest of this analysis is that the contribution of the 0-energy operator
	1(C, D, α, ·) and the contribution of the operator 	3(C, D, α, ·) at +∞-energy are explicit. Here,
Levinson’s theorem corresponds to the equality between the number of bound states of HCD

α and
− 1

2π

∑4
j=1 φ j (C, D, α). This is proved again by comparing column 3 with column 7 (the contribution

of 	4(C, D, α, ·) defined in (8) is always trivial).
For simplicity, we shall write H for H CD

α and φ j for φ j (C, D, α). We also recall that the number
#σp(H ) of eigenvalues of H is equal to the number of negative eigenvalues of the matrix C D∗, see
Lemma 4 of Ref. 20.

We consider first the very special situations.

No. Conditions #σp(H ) φ1 φ2 φ3
∑

j φ j

I D = 0 0 0 0 0 0
III C = 0 0 2π 0 −2π 0

Now, if det(D) 
= 0 and det(C) 
= 0, we set E := D−1C =: (e jk) and obtains

No. Conditions #σp(H ) φ1 φ2 φ3
∑

j φ j

II.1 e11e22 ≥ 0, tr(E) > 0, det(E) > 0 0 0 2π −2π 0
II.2 e11e22 ≥ 0, tr(E) > 0, det(E) < 0 1 0 0 −2π −2π

II.3 e11e22 ≥ 0, tr(E) < 0, det(E) > 0 2 0 −2π −2π −4π

II.4 e11e22 ≥ 0, tr(E) < 0, det(E) < 0 1 0 0 −2π −2π

II.5 e11 = e22 = 0, det(E) < 0 1 0 0 −2π −2π

II.6 e11 e22 < 0 1 0 0 −2π −2π

If det(D) 
= 0, det(C) = 0 and if we still set E := D−1C one has
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No. Conditions #σp(H ) φ1 φ2 φ3
∑

j φ j

II.7.a e11 = 0, tr(E) > 0 0 2πα 2π (1 − α) −2π 0
II.7.b e11 e22 
= 0, tr(E) > 0, α < 1/2 0 2πα 2π (1 − α) −2π 0
II.8.a e11 > 0, tr(E) < 0 1 2πα −2πα −2π −2π
II.8.b e11 e22 
= 0, tr(E) < 0, α < 1/2 1 2πα −2πα −2π −2π
II.9.a e22 = 0, tr(E) > 0 0 2π (1 − α) 2πα −2π 0
II.9.b e11 e22 
= 0, tr(E) > 0, α > 1/2 0 2π (1 − α) 2πα −2π 0
II.10.a e22 = 0, tr(E) < 0 1 2π (1 − α) −2π (1 − α) −2π −2π
II.10.b e11 e22 
= 0, tr(E) < 0, α > 1/2 1 2π (1 − α) −2π (1 − α) −2π −2π
II.11 e11 e22 
= 0, tr(E) > 0, α = 1/2 0 π π −2π 0
II.12 e11 e22 
= 0, tr(E) < 0, α = 1/2 1 π −π −2π −2π

On the other hand, if dim[ker(D)] = 1 and α = 1/2 one has

No. Conditions #σp(H ) φ1 φ2 φ3
∑

j φ j

IV.1 � > 0 0 0 π −π 0
IV.2 � = 0 0 π 0 −π 0
IV.3 � < 0 1 0 −π −π −2π

If dim[ker(D)] = 1, α < 1/2 and if (p1, p2) ∈ ker(D) one obtains

No. Conditions #σp(H ) φ1 φ2 φ3
∑

j φ j

IV.4 � < 0, p1 
= 0 1 0 −2πα −2π (1 − α) −2π
IV.5 � < 0, p1 = 0 1 0 −2π (1 − α) −2πα −2π
IV.6 � > 0, p1 
= 0 0 0 2π (1 − α) −2π (1 − α) 0
IV.7 � > 0, p1 = 0 0 0 2πα −2πα 0
IV.8 � = 0, p1 p2 
= 0 0 2πα 2π (1 − 2α) −2π (1 − α) 0
IV.9.a � = 0, p1 = 0 0 2πα 0 −2πα 0
IV.9.b � = 0, p2 = 0 0 2π (1 − α) 0 −2π (1 − α) 0

Finally, if dim[ker(D)] = 1, α > 1/2, and (p1, p2) ∈ ker(D) one has

No. Conditions #σp(H ) φ1 φ2 φ3
∑

j φ j

IV.10 � < 0, p2 
= 0 1 0 −2π (1 − α) −2πα −2π
IV.11 � < 0, p2 = 0 1 0 −2πα −2π (1 − α) −2π
IV.12 � > 0, p2 
= 0 0 0 2πα −2πα 0
IV.13 � > 0, p2 = 0 0 0 2π (1 − α) −2π (1 − α) 0
IV.14 � = 0, p1 p2 
= 0 0 2π (1 − α) −2π (1 − 2α) −2πα 0
IV.15.a � = 0, p1 = 0 0 2πα 0 −2πα 0
IV.15.b � = 0, p2 = 0 0 2π (1 − α) 0 −2π (1 − α) 0

IV. K -GROUPS, n-TRACES AND THEIR PAIRINGS

In this section, we give a very short account on the K -theory for C∗-algebras and on various
constructions related to it. Our aim is not to present a thorough introduction to these subjects but to
recast the result obtained in Sec. III in the most suitable framework. For the first part, we refer to
Ref. 24 for an enjoyable introduction to the subject.
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A. K-groups and boundary maps

The K0-group of a unital C∗-algebra E is constructed from the homotopy classes of projections
in the set of square matrices with entries in E . Its addition is induced from the addition of two
orthogonal projections: if p and q are orthogonal projections, i.e., pq = 0, then also p + q is a
projection. Thus, the sum of two homotopy classes [p]0 + [q]0 is defined as the class of the sum
of the block matrices [p ⊕ q]0 on the diagonal. This new class does not depend on the choice of
the representatives p and q. K0(E) is defined as the Grothendieck group of this set of homotopy
classes of projections endowed with the mentioned addition. In other words, the elements of the
K0-group are given by formal differences: [p]0 − [q]0 is identified with [p′]0 − [q ′]0 if there exists
a projection r such that [p]0 + [q ′]0 + [r ]0 = [p′]0 + [q]0 + [r ]0. In the general non-unital case the
construction is a little bit more subtle.

The K1-group of a C∗-algebra E is constructed from the homotopy classes of unitaries in
the set of square matrices with entries in the unitisation of E . Its addition is again defined by:
[u]1 + [v]1 = [u ⊕ v]1 as a block matrix on the diagonal. The homotopy class of the added identity
is the neutral element.

Now, let us consider three C∗-algebras J , E, and Q such that J is an ideal of E and Q is
isomorphic to the quotient E/J . Another way of saying this is that J and Q are the left and right
part of an exact sequence of C∗-algebras,

0 → J i→ E q→ Q → 0, (13)

i being an injective morphism and q a surjective morphism satisfying kerq = imi. There might
not be any reasonable algebra morphism between J and Q but algebraic topology provides us with
homomorphisms between their K -groups: ind : K1(Q) → K0(J ) and exp : K0(Q) → K1(J ), the
index map and the exponential map. These maps are also referred to as boundary maps. For the
sequel we shall be concerned only with the index map. It can be computed as follows: If u is a unitary

in Q, then there exists a unitary w ∈ M2(E) such that q(w) =
(

u 0
0 u∗

)
. It turns out that w

(
1 0
0 0

)
w∗

lies in the unitisation of i
(
M2(J )

)
so that

([
w
(

1 0
0 0

)
w∗
]

0
−
[(

1 0
0 0

)]
0

)
defines an element of

K0(J ). Here, ind([u]1) is that element. With a little luck there exists even a partial isometry w ∈ E
such that q(w) = u. Then (1 − w∗w) and (1 − ww∗) are projections in J and we have the simpler
formula,

ind[u]1 = [
1 − w∗w

]
0 − [1 − ww∗]

0. (14)

B. Cyclic cohomology, n-traces and Connes’ pairing

For this part, we refer to Sec. III of Ref. 7, or to the short surveys presented in Sec. 5 of Ref. 18,
or in Secs. 4 and 5 of Ref. 19. For simplicity, we denote by N the set of natural number including 0.

Given a complex algebra B and any n ∈ N, let Cn
λ (B) be the set of (n + 1)-linear functional on

B which are cyclic in the sense that any η ∈ Cn
λ (B) satisfies for each w0, . . . , wn ∈ B,

η(w1, . . . , wn, w0) = (−1)nη(w0, . . . , wn).

Then, let b : Cn
λ (B) → Cn+1

λ (B) be the Hochschild coboundary map defined for w0, . . . , wn+1 ∈ B
by

[bη](w0, . . . , wn+1) :=
n∑

j=0

(−1) jη(w0, . . . , w jw j+1, . . . , wn+1) + (−1)n+1η(wn+1w0, . . . , wn).

An element η ∈ Cn
λ (B) satisfying bη = 0 is called a cyclic n-cocyle, and the cyclic cohomology

HC(B) of B is the cohomology of the complex,

0 → C0
λ(B) → · · · → Cn

λ (B)
b→ Cn+1

λ (B) → . . . .

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



052102-17 Levinson’s theorem and higher degree traces J. Math. Phys. 52, 052102 (2011)

A convenient way of looking at cyclic n-cocycles is in terms of characters of a graded differential
algebra over B. So, let us first recall that a graded differential algebra (A, d) is a graded algebra
A together with a map d : A → A of degree +1. More precisely, A := ⊕∞

j=0A j with each A j an
algebra over C satisfying the property A j Ak ⊂ A j+k , and d is a graded derivation satisfying d2

= 0. In particular, the derivation satisfies d(w1w2) = (dw1)w2 + (−1)deg(w1)w1(dw2), where deg(w1)
denotes the degree of the homogeneous element w1.

A cycle (A, d,
∫

) of dimension n is a graded differential algebra (A, d), with A j = 0 for j > n,
endowed with a linear functional

∫
: A → C satisfying

∫
dw = 0 if w ∈ An−1 and for w j ∈ A j ,

wk ∈ Ak , ∫
w jwk = (−1) jk

∫
wkw j .

Given an algebra B, a cycle of dimension n over B is a cycle (A, d,
∫

) of dimension n together with
a homomorphism ρ : B → A0. In the sequel, we will assume that this map is injective and hence
identify B with a subalgebra of A0 (and do not write ρ anymore). Now, if w0, . . . , wn are n + 1
elements of B, one can define the character η(w0, . . . , wn) ∈ C by the formula,

η(w0, . . . , wn) :=
∫

w0 (dw1) . . . (dwn). (15)

As shown in Proposition 3.1.4 of Ref. 7, the map η : Bn+1 → C is a cyclic (n + 1)-linear functional
on B satisfying bη = 0, i.e., η is a cyclic n-cocycle. Conversely, any cyclic n-cocycle arises as the
character of a cycle of dimension n over B. Let us also mention that a third description of any
cyclic n-cocycle is presented in Sec. III.1.α of Ref. 7, in terms of the universal differential algebra
associated with B.

We can now introduce the precise definition of a n-trace over a Banach algebra. For an alge-
bra B that is not necessarily unital, we denote by B̃ := B ⊕ C the algebra obtained by adding a
unit to B.

Definition 7: An n-trace on a Banach algebraB is the character of a cycle (A, d,
∫

) of dimension
n over a dense subalgebra B′ of B such that for all w1, . . . , wn ∈ B′ and any x1, . . . , xn ∈ B̃′ there
exists a constant c = c(w1, . . . , wn) such that∣∣∣∣∫ (x1da1) . . . (xndwn)

∣∣∣∣ ≤ c‖x1‖ . . . ‖xn‖.

Remark 8: Typically, the elements of B′ are suitably smooth elements of B on which the
derivation d is well defined and for which the rhs of (15) is also well defined. However, the action
of the n-trace η can sometimes be extended to more general elements (w0, . . . , wn) ∈ Bn+1 by a
suitable reinterpretation of the lhs of (15).

The importance of n-traces relies on their duality relation with K -groups. Recall first that
Mq (B) ∼= Mq (C) ⊗ B and that tr denotes the standard trace on matrices. Now, let B be a C∗-algebra
and let ηn be a n-trace on B with n ∈ N even. If B′ is the dense subalgebra of B mentioned in
Definition 7 and if p is a projection in Mq (B′), then one sets

〈ηn, p〉 := cn [tr ⊗ηn](p, . . . , p).

Similarly, if B is a unital C∗-algebra and if ηn is a n-trace with n ∈ N odd, then for any unitary u in
Mq (B′) one sets

〈ηn, u〉 := cn [tr ⊗ηn](u∗, u, u∗, . . . , u),

the entries on the rhs alternating between u and u∗. The constants cn are given by

c2k = 1

(2π i)k

1

k!
, c2k+1 = 1

(2π i)k+1

1

22k+1

1

(k + 1
2 )(k − 1

2 ) · · · 1
2

.
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There relations are referred to as Connes’ pairing between K -theory and cyclic cohomology of
B because of the following property, see Theorem 2.7 of Ref. 6, for a precise statement and for its
proof: In the above framework, the values 〈ηn, p〉 and 〈ηn, u〉 depend only of the K0-class [p]0 of p
and of the K1-class [u]1 of u, respectively.

We now illustrate these notions with two basic examples which will be of importance in the
sequel.

Example 9: If B = K(H), the algebra of compact operators on a Hilbert space H, then the linear
functional

∫
on B is given by the usual trace Tr on the set K1 of trace class elements of K(H).

Furthermore, since any projection p ∈ K(H) is trace class, it follows that 〈η0, p〉 ≡ 〈Tr, p〉 is well
defined for any such p and that this expression gives the dimension of the projection p.

For the next example, let us recall that det denotes the usual determinant of elements of Mq (C).

Example 10: If B = C
(
S1, Mq (C)

)
for some q ≥ 1, let us fix B′ := C1

(
S1, Mq (C)

)
. We pa-

rameterize S1 by the real numbers modulo 2π using θ as local coordinate. As usual, for any
w ∈ B′ (which corresponds to an homogeneous element of degree 0), one sets [dw](θ ) := w′(θ )dθ

(which is now an homogeneous element of degree 1). Furthermore, we define the graded trace∫
v dθ := ∫ π

−π
tr[v(θ )]dθ for an arbitrary element v dθ of degree 1. This defines the 1-trace η1. A

unitary element in u ∈ C1
(
S1, Mq (C)

)
(or rather its class) pairs as follows:

〈η1, u〉 = c1[tr ⊗η1](u∗, u) := 1

2π i

∫ π

−π

tr[u(θ )∗ u′(θ )]dθ. (16)

For this example, the extension of this expression for any unitary u ∈ C
(
S1, Mq (C)

)
is quite

straightforward. Indeed, let us first rewrite u =: eiϕ for some ϕ ∈ C1
(
S1, Mq (R)

)
and set β(θ ) :=

det[u(θ )]. By using the equality det[eiϕ] = ei tr[ϕ], one then easily observed that the quantity (16) is
equal to

1

2π i

∫ π

−π

β(θ )∗ β ′(θ )dθ.

But this quantity is known to be equal to the winding number of the map β : S1 → T , a quantity
which is of topological nature and which only requires that the map β is continuous. Altogether, one
has thus obtained that the lhs of (16) is nothing but the winding number of the map det[u] : S1 → T ,
valid for any unitary u ∈ C

(
S1, Mq (C)

)
.

C. Dual boundary maps

We have seen that an n-trace η over B gives rise to a functional on Ki (B) for i = 1 or i = 2, i.e.,
the map 〈η, ·〉 is an element of Hom(Ki (B),C). In that sense n-traces are dual to the elements of
the (complexified) K -groups. An important question is whether this dual relation is functorial in the
sense that morphisms between the K -groups of different algebras yield dual morphisms on higher
traces. Here, we are in particular interested in a map on higher traces which is dual to the index map,
i.e., a map # which assigns to an even trace η an odd trace #η such that

〈η, ind(·)〉 = 〈#η, ·〉. (17)

This situation gives rise to equalities between two numerical topological invariants.
Such an approach for relating two topological invariants has already been used at few occasions.

For example, it has been recently shown that Levinson’s theorem corresponds to a equality of the
form (17) for a 0-trace and a 1-trace.16 In Sec. V C, we shall develop such an equality for a
2-trace and a 3-trace. On the other hand, let us mention that similar equalities have also been
developed for the exponential map in (17) instead of the index map. In this framework, an equality
involving a 0-trace and a 1-trace has been put into evidence in Ref. 13. It gives rise to a relation
between the pressure on the boundary of a quantum system and the integrated density of states.
Similarly, a relation involving 2-trace and a 1-trace was involved in the proof of the equality between
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the bulk-Hall conductivity and the conductivity of the current along the edge of the sample, see
Refs. 18 and 19.

V. NON-COMMUTATIVE TOPOLOGY AND TOPOLOGICAL LEVINSON’S THEOREMS

In this section, we introduce the algebraic framework suitable for the Aharonov-Bohm model.
In fact, the following algebras were already introduced in Ref. 15 for the study of the wave operators
in potential scattering on R. The similar form of the wave operators in the Aharonov-Bohm model
and in the model studied in that reference allows us to reuse part of the construction and the abstract
results. Let us stress that the following construction holds for fixed α and (C, D). These parameters
will vary only at the end of the section.

A. The algebraic framework

For the construction of the C∗-algebras, let us introduce the operator B := 1
2 ln(H0), where

H0 = −� is the usual Laplace operator on R2. The crucial property of the operators A and B is that
they satisfy the canonical commutation relation [A, B] = i so that A generates translations in B and
vice versa,

ei Bt Ae−i Bt = A + t, ei As Be−i As = B − s.

Furthermore, both operators leave the subspaces Hm invariant. More precisely, for any essentially
bounded functions ϕ and η on R, the operator ϕ(A)η(B) leaves each of these subspaces invari-
ant. Since all the interesting features of the Aharonov-Bohm model take place in the subspace
Hint

∼= L2(R+, r dr ) ⊗ C2, we shall subsequently restrict our attention to this subspace and con-
sider functions ϕ, η defined on R and taking values in M2(C).

Now, let E be the closure inB(Hint) of the algebra generated by elements of the form ϕ(A)ψ(H0),
where ϕ is a continuous function on R with values in M2(C) which converges at ±∞, and ψ is
a continuous function R+ with values in M2(C) which converges at 0 and at +∞. Stated dif-
ferently, ϕ ∈ C

(
R, M2(C)

)
with R = [−∞,+∞] and ψ ∈ C

(
R+, M2(C)

)
with R+ = [0,+∞].

Let J be the norm closed algebra generated by ϕ(A)ψ(H0) with functions ϕ and ψ for which
the above limits vanish. Obviously, J is an ideal in E , and the same algebras are obtained if
ψ(H0) is replaced by η(B) with η ∈ C

(
R, M2(C)

)
or η ∈ C0

(
R, M2(C)

)
, respectively. Further-

more, the ideal J is equal to the algebra of compact operators K(Hint), as shown in Sec. 4
of Ref. 15.

Let us already mention the reason of our interest in defining the above algebra E . Since for
m ∈ {0,−1} the functions ϕ−

m and ϕ̃m have limits at ±∞, and since S̃CD
α also has limits at 0 and

+∞, it follows from (3) that the operator 
CD
− |Hint

belongs to E . Since J = K(Hint), the image
of 
CD

− |Hint
by the quotient map q : E → E/J corresponds to the image of 
CD

− |Hint
in the Calkin

algebra. This motivates the following computation of the quotient E/J .
To describe the quotient E/J we consider the square � := R+ × R whose boundary �

is the union of four parts: � = B1 ∪ B2 ∪ B3 ∪ B4, with B1 = {0} × R, B2 = R+ × {+∞}, B3

= {+∞} × R, and B4 = R+ × {−∞}. We can then view Q := C
(
�, M2(C)

)
as the subalgebra of

C
(
R, M2(C)

)⊕ C
(
R+, M2(C)

)⊕ C
(
R, M2(C)

)⊕ C
(
R+, M2(C)

)
,

given by elements (	1, 	2, 	3, 	4) which coincide at the corresponding end points, that is,
	1(+∞) = 	2(0), 	2(+∞) = 	3(+∞), 	3(−∞) = 	4(+∞), 	4(0) = 	1(−∞). The following
lemma corresponds to results obtained in Sec. 3.5 of Ref. 11, rewritten in our framework.

Lemma 11: E/J is isomorphic to Q. Furthermore, for any ϕ ∈ C
(
R, M2(C)

)
and for any

ψ ∈ C
(
R+, M2(C)

)
, the image of ϕ(A)ψ(H0) through the quotient map q : E → Q is given by

	1(·) = ϕ(·)ψ(0), 	2(·) = ϕ(+∞)ψ(·), 	3(·) = ϕ(·)ψ(+∞), and 	4(·) = ϕ(−∞)ψ(·).
Stated differently, the algebras J , E , and Q are part of the short exact sequence of C∗-algebras

(13). And as already mentioned, the operator 
CD
− |Hint

clearly belongs to E . Furthermore, its image
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through the quotient map q can be easily computed and in fact has already been computed. Indeed,
the function 	(C, D, α, ·) introduced in Sec. III is precisely q

(

CD

− |Hint

)
, as we shall see it in the

following subsection.

Remark 12: We still would like to provide an alternative description of the above algebras and
of the corresponding short exact sequence. Since � is isomorphic to T , one first observes that
Q ≡ C

(
�, M2(C)

)
is isomorphic to C

(
T , M2(C)

)
. Furthermore, by Stone-Weierstrass Theorem

one clearly has that C(T ) is the C∗-algebra generated by the continuous bijective function u :
T 
 λ �→ u(λ) := λ ∈ T ⊂ C with winding number 1. Then, up to a natural equivalence there
are not so many C∗-algebras B which fit into an exact sequence of the form 0 → K → B →
C(T ) → 0, with K the algebra of compact operators. In fact, it turns out that they are classified
by the Fredholm-index of a lift û of u in Theorem IX.3.3 of Ref. 9. In the present case, we can
use an exactly solvable model to find out that û can be taken to be an isometry of co-rank 1
and hence this index is −1.15 Our extension is thus what one refers to as the Toeplitz extension.
This means that E is the tensor product of M2(C) with the C∗-algebra generated by an element
û satisfying û∗û = 1 and ûû∗ = 1 − e00 where e00 is a rank 1 projection. The surjection q is
uniquely defined by q(û) = u. Our exact sequence is thus the tensor product with M2(C) of the exact
sequence,

0 → K i→ C∗(û)
q→ C∗(u) → 0. (18)

B. The 0-degree Levinson’s theorem, the topological approach

We can now state the topological version of Levinson’s theorem.

Theorem 13: For each α ∈ (0, 1) and each admissible pair (C, D), one has 
CD
− |Hint

∈ E .
Furthermore, q

(

CD

− |Hint

) = 	(C, D, α, ·) ∈ Q and the following equality holds:

ind[	(C, D, α, ·)]1 = −[PCD
α ]0,

where PCD
α is the orthogonal projection on the space spanned by the bound states of HCD

α .

Remark 14: Recall that by Atkinson’s theorem the image of any Fredholm operator F ∈ B(Hint)
in the Calkin algebra B(Hint)/K(Hint) is invertible. Then, since the wave operators 
CD

− |Hint
is an

isometry and a Fredholm operator, it follows that each function 	 j (C, D, α, ·) takes values in U (2).
In fact, this was already mentioned when the functions 	 j (C, D, α, ·) were introduced.

Proof of Theorem 13: The image of 
CD
− |Hint

through the quotient map q is easily obtained
by taking the formulas recalled in Lemma 11 into account. Then, since 
CD

− |Hint
is a lift for

	(C, D, α, ·), the image of [	(C, D, α, ·)]1 though the index map is obtained by the formula (14),

ind[	(C, D, α, ·)]1 = [
1 − (
CD

− |Hint

)∗

CD

− |Hint

]
0 − [1 − 
CD

− |Hint

(

CD

− |Hint

)∗]
0

= [0]0 − [PCD
α

]
0.

�

Theorem 13 covers the K -theoretic part of Levinson’s theorem. In order to get a genuine
Levinson’s theorem, by which we mean an equality between topological numbers, we need to add
the dual description, i.e., identify higher traces on J and Q and a dual boundary map. As a matter
of fact, the algebras considered so far are too simple to allow for non-trivial results in higher degree
and so we must content ourselves here to identify a suitable 0-trace and 1-trace which can be applied
to PCD

α and 	(C, D, α, ·), respectively. Clearly, only the usual trace Tr can be applied on the former
term, cf. Example 9 of Sec. IV. On the other hand, since 	(C, D, α, ·) ∈ C

(
�, U (2)

)
, we can define

the winding number wind
[
	(C, D, α, ·)] of the map,

� 
 ζ �→ det[	(C, D, α, ζ )] ∈ T ,
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with orientation of � chosen clockwise, cf. Example 10 of Sec. IV. Then, the already stated Theorem
3 essentially reformulates the fact that the 0-trace is mapped to the 1-trace by the dual of the index
map. The first equality of Theorem 3 can then be found in Proposition 7 of Ref. 15 and the equality
between the cardinality of σp(H CD

α ) and the number of negative eigenvalues of the matrix C D∗ has
been shown in Lemma 4 of Ref. 20.

C. Higher degree Levinson’s theorem

The previous theorem is a pointwise 0-degree Levinson’s theorem. More precisely, it was
obtained for fixed C, D, and α. However, it clearly calls for making these parameters degrees of
freedom and thus to include them into the description of the algebras. In the context of our physical
model this amounts to considering families of self-adjoint extensions of Hα . For that purpose
we use the one-to-one parametrization of these extensions with elements U ∈ U (2) introduced in
Remark 1. We denote the self-adjoint extension corresponding to U ∈ U (2) by HU

α .
So, let us consider a smooth and compact orientable n-dimensional manifold X without bound-

ary. Subsequently, we will choose for X a two-dimensional submanifold of U (2) × (0, 1). Taking
continuous functions over X we get a new short exact sequence,

0 → C(X,J ) → C(X, E) → C(X,Q) → 0. (19)

Furthermore, recall that J is endowed with a 0-trace and the algebra Q with a 1-trace. There is
a standard construction in cyclic cohomology, the cup product, which provides us with a suitable
n-trace on the algebra C(X,J ) and a corresponding n + 1-trace on the algebra C(X,Q), see
Sec. III.1.α of Ref. 7. We describe it here in terms of cycles.

Recall that any smooth and compact manifold Y of dimension d naturally defines a structure of
a graded differential algebra (AY , dY ), the algebra of its smooth differential k-forms. If we assume
in addition that Y is orientable so that we can choose a global volume form, then the linear form

∫
Y

can be defined by integrating the d-forms over Y . In that case, the algebra C(Y ) is naturally endowed
with the d-trace defined by the character of the cycle (AY , dY ,

∫
Y ) of dimension d over the dense

subalgebra C∞(Y ).
For the algebra C(X,J ), let us recall that J is equal to the algebra K(Hint) and that the 0-trace

on J was simply the usual trace Tr. So, let K1 denote the trace class elements of K(Hint). Then,
the natural graded differential algebra associated with C∞(X,K1) is given by (AX ⊗ K1, dX ). The
resulting n-trace on C(X,J ) is then defined by the character of the cycle (AX ⊗ K1, dX ,

∫
X ⊗Tr)

over the dense subalgebra C∞(X,K1) of C(X,J ). We denote it by ηX .
For the algebra C(X,Q), let us recall that Q = C

(
�, M2(C)

)
with � ∼= S1, and thus

C(X,Q) ∼= C
(
X × S1, M2(C)

) ∼= C(X × S1) ⊗ M2(C). Since X × S1 is a compact orientable
manifold without boundary, the above construction applies also to C

(
X × S1, M2(C)

)
. More pre-

cisely, the exterior derivation on X × S1 is the sum of dX and dS1 (the latter was denoted simply by
d in Example 10). Furthermore, we consider the natural volume form on X × S1. Note because of
the factor M2(C) the graded trace of the cycle involves the usual matrix trace tr. Thus the resulting
n + 1-trace is the character of the cycle (AX×S1 ⊗ M2(C), dX + dS1 ,

∫
X×S1 ⊗ tr). We denote it by

#ηX .
Having these constructions at our disposal we can now state the main result of this sec-

tion. For the statement, we use the one-to-one parametrization of the extensions of Hα intro-
duced in Remark 1 and let α ∈ (0, 1). We consider a family {
−(HU

α , H0)}(U,α)∈X ∈ B(Hint),
parameterized by some compact orientable and boundaryless submanifold X of U (2) × (0, 1).
This family defines a map � : X → E , �(U, α) = 
−(HU

α , H0), a map � : X → Q, �(U, α, ·)
= 	

(
C(U ), D(U ), α, ·) = q(
−(HU

α , H0)), and a map P : X → J , P(U, α) = PU
α the orthogonal

projection of the subspace of Hint spanned by the bound states of HU
α .

Theorem 15: Let X be a smooth, compact, and orientable n-dimensional submanifold of
U (2) × (0, 1) without boundary. Let us assume that the map � : X → E is continuous. Then the
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following equality holds:

ind[�]1 = −[P]0,

where ind is the index map from K1
(
C(X,Q)

)
to K0

(
C(X,J )

)
. Furthermore, the numerical equality,〈

#ηX , [�]1
〉 = −〈ηX , [P]0

〉
, (20)

also holds.

Proof: For the first equality we can simply repeat pointwise the proof of Theorem 13. Since
we required � to be continuous, its kernel projection P is continuous as well. The second equality
follows from of a more general formula stating that the map ηX �→ #ηX is dual to the boundary
maps.10 We also mention that another proof can be obtained by mimicking the calculation given in
the Appendix of Ref. 18. For the convenience of the reader, we sketch it in the Appendix A and refer
to Ref. 18 for details. �

Let us point out that rhs of (20) is the Chern number of the vector bundle given by the
eigenstates of HU

α . The next subsection is devoted to a computation of this number for a special
choice of manifold X .

D. An example of a non-trivial Chern number

We shall now choose a two-dimensional manifold X and show that the above relation between
the corresponding 2-trace and 3-trace is not trivial. More precisely, we shall choose a manifold X
such that the rhs of (20) is not equal to 0.

For that purpose, let us fix two complex numbers λ1, λ2 of modulus 1 with �λ1 < 0 < �λ2 and
consider the set X ⊂ U (2) defined by

X =
{

V

(
λ1 0

0 λ2

)
V ∗ | V ∈ U (2)

}
.

Clearly, X is a two-dimensional smooth and compact manifold without boundary, which can be
parameterized by

X =
{(

ρ2λ1 + (1 − ρ2)λ2 ρ(1 − ρ2)1/2 eiφ(λ1 − λ2)

ρ(1 − ρ2)1/2 e−iφ(λ1 − λ2) (1 − ρ2)λ1 + ρ2λ2

)
| ρ ∈ [0, 1] and φ ∈ [0, 2π )

}
.

(21)

Note that the (θ, φ)-parametrization of X is complete in the sense that it covers all the manifold
injectively away from a subset of codimension 1, but it has coordinate singularities at ρ ∈ {0, 1}.

By Lemma 15 of Ref. 20, for each U ≡ U (ρ, φ) ∈ X the operator HU
α has a single negative

eigenvalue z ≡ z(U ) defined by the equality det
(
(1 + U )M(z) + i(1 − U )

) = 0, and one has

ker(HU
α − z) = γ (z) ker

(
(1 + U )M(z) + i(1 − U )

)
. (22)

Here, M(z) is the Weyl function which is a 2 × 2 diagonal matrix and γ (z) : C2 → H an injective
linear map (see subsection II A). The orthogonal projection onto ker(HU

α − z) is denoted by PU
α and

we shall consider E = {im PU
α | U ∈ X} which is a subbundle of the trivial bundle X × H. Our next

aim is to calculate its Chern number ch(E), first in terms of the Chern number of a simpler bundle.
In view of (22) X × C2 
 (U, ξ ) �→ (U, γ (z(U ))ξ ) ∈ X × H defines a continuous isomorphism
between the subbundle F of the trivial bundle X × C2, defined by

F = {
ker
(
(1 + U )M(z) + i(1 − U )

) | U ∈ X
}
,

and E , and hence ch(E) = ch(F). Now, the assumptions on λ1 and λ2 imply that for any U ∈ X the
matrix (1 + U ) is invertible and one can then consider the self-adjoint operator,

T (U ) = i
1 − U

1 + U
.
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By setting λ j =: eiϕ j with ϕ1 ∈ (−π, 0) and ϕ2 ∈ (0, π ), and then ri = tan ϕi

2 we get

T (U ) =
(

ρ2r1 + (1 − ρ2)r2 ρ(1 − ρ2)1/2eiφ(r1 − r2)

ρ(1 − ρ2)1/2e−iφ(r1 − r2) (1 − ρ2)r1 + ρ2r2

)
,

for some ρ ∈ [0, 1] and φ ∈ [0, 2π ) given by (21). Thus, by using the parametrization of U and z in
terms of (ρ, φ) one obtains that the bundle E is isomorphic to the bundle G defined by

G = {
ker
(
G(ρ, φ)

) | ρ ∈ [0, 1] and φ ∈ [0, 2π )
}

with

G(ρ, φ) :=
(

M11
(
z(ρ, φ)

)+ ρ2r1 + (1 − ρ2)r2 ρ(1 − ρ2)1/2eiφ(r1 − r2)

ρ(1 − ρ2)1/2e−iφ(r1 − r2) M22 (z(ρ, φ)) + (1 − ρ2)r1 + ρ2r2

)
.

Recall that z(ρ, φ) is defined by the condition det
(
G(ρ, φ)

) = 0, i.e.,(
M11

(
z(ρ, φ)

)+ ρ2r1 + (1 − ρ2)r2
) · (M22 (z(ρ, φ)) + (1 − ρ2)r1 + ρ2r2

) = (r1 − r2)2(1 − ρ2)ρ2.

(23)

Finally, since M(z) is self-adjoint for z ∈ R−, the matrix G(ρ, φ) is self-adjoint, and hence
ker G(ρ, φ) = (

im G(ρ, φ)
)⊥

. In particular, if one defines the bundle,

H = {
im G(ρ, φ) | ρ ∈ [0, 1] and φ ∈ [0, 2π )

}
, (24)

one obviously has G + H = X × C2, and then ch(G) = −ch(H ) as the Chern number of the trivial
bundle X × C2 is zero. In summary, ch(E) = −ch(H ), which we are going to calculate after the
following remark.

Remark 16: Let A : X → M2(C) be a continuously differentiable map with A(x) of rank 1 for
all x ∈ X . Let us recall how to calculate the Chern number of the bundle B = {im A(x) | x ∈ X}.
Assume that the first column A1 of A vanishes only on a finite set Y . If Y is empty, the bundle is
trivial and ch(B) = 0. So let us assume that Y is non-empty. Let P(x) be the matrix of the orthogonal
projection onto im A(x) in C2. By definition, one has

ch(B) = 1

2π i

∫
X

tr
(
P dX P ∧ dX P

)
.

Now, for ε > 0 consider an open set Vε ⊂ X with Y ⊂ Vε , having a C1 boundary and such that
volX Vε → 0 as ε → 0. By continuity and compactness, the differential form tr

(
P dX P ∧ dX P

)
is

bounded, and then

ch(B) = 1

2π i
lim
ε→0

∫
X\Vε

tr
(
P dX P ∧ dX P

)
.

For x ∈ X \ Vε one can consider the vector,

ψ(x) = A1(x)

‖A1(x)‖ ,

and by a direct calculation, one obtains tr
(
P dX P ∧ dX P

) = dX ψ̄ ∧ dXψ . Since the differential
form dX ψ̄ ∧ dXψ is exact, then dX ψ̄ ∧ dXψ = dX (ψ̄ dXψ) and by Stokes’ theorem, one obtains

ch(B) = 1

2π i
lim
ε→0

∫
∂Vε

ψ̄ dXψ.

Let us apply the above constructions to the bundle (24). Since (r1 − r2) 
= 0 the first column
G1(ρ, φ) of the matrix G(ρ, φ) can potentially vanish only for ρ = 0 or for ρ = 1. As already
mentioned, these two points are the coordinate singularities of the parametrization. But by a local
change of parametrization, one easily get rid of this pathology. Thus, we first consider ρ = 1 and let
(θ1, θ2) ∈ (−1, 1)2 be a local parametrization of a neighbourhood of the point ρ = 1 which coincides
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with (θ1, θ2) = (0, 0). Let G̃ be the expression of the function G in the coordinates (θ1, θ2) and in a
neighbourhood of the point ρ = 1. For this function one has

G̃1(0, 0) =
(

M11
(
z(0, 0)

)+ r1

0

)
.

Now, note that under our assumptions one has r1 < 0 and r2 > 0. As seen from the explicit expres-
sions for M , the entries of M(z) are negative for z < 0. Then the term M11

(
z(0, 0)

)+ r1 cannot be
equal to 0 and this also holds for the first coefficient of G̃1(0, 0).

For ρ = 0 let (ϑ1, ϑ2) ∈ (−1, 1)2 be a local parametrization of a neighbourhood of the point
ρ = 0 which coincides with (ϑ1, ϑ2) = (0, 0). Let again Ĝ be the expression of the function G in
the coordinates (ϑ1, ϑ2) and in a neighbourhood of the point ρ = 0. Then one has

Ĝ1(0, 0) =
(

M11
(
z(0, 0)

)+ r2

0

)
.

In that case, since M22(z) + r1 is strictly negative for any z ∈ R− one must have M11
(
z(0, 0)

)+ r2

= 0 in order to satisfy Eq. (23). Therefore, the corresponding point ρ = 0 belongs to Y , as introduced
in Remark 16. Therefore, in our case Y consists in a single point y corresponding to ρ = 0.

Now, for ε > 0 consider the set

Vε =
{(

ρ2λ1 + (1 − ρ2)λ2 ρ(1 − ρ2)1/2 eiφ(λ1 − λ2)

ρ(1 − ρ2)1/2 e−iφ(λ1 − λ2) (1 − ρ2)λ1 + ρ2λ2

)
| ρ ∈ [0, ε) and φ ∈ [0, 2π )

}
.

Obviously, this set satisfies the conditions of Remark 16. We can then represent,

G1(ρ, φ) =
(

M11
(
z(ρ, φ)

)+ ρ2r1 + (1 − ρ2)r2

ρ(1 − ρ2)1/2e−iφ(r1 − r2)

)
=:

(
g(ρ, φ)

f (ρ)e−iφ

)
,

with f, g real, and set

ψ(ρ, φ) := G1(ρ, φ)

‖G1(ρ, φ)‖ =

⎛⎜⎜⎝
g(ρ, φ)√

f 2(ρ) + g2(ρ, φ)
f (ρ)e−iφ√

f 2(ρ) + g2(ρ, φ)

⎞⎟⎟⎠.

Then one has∫
∂Vε (y)

ψ̄ dXψ =
∫ 2π

0

[ g√
f 2 + g2

∂φ

( g√
f 2 + g2

)
+ f ei ·√

f 2 + g2
∂φ

( f e−i ·√
f 2 + g2

)]
(ε, φ)dφ

= −i
∫ 2π

0

[ f 2

f 2 + g2

]
(ε, φ)dφ.

Thus, one has obtained that

ch(H ) = − 1

2π
lim
ε→0

∫ 2π

0

f 2(ε)

f 2(ε) + g2(ε, φ)
dφ. (25)

Furthermore, note that Eq. (23) can be rewritten as g(ρ, φ)h(ρ, φ) = f 2(ρ), where h(ρ, φ)
= (

M22 (z(ρ, φ)) + (1 − ρ2)r1 + ρ2r2
)

does not vanish in a sufficiently small neighbourhood of
the point ρ = 0. Then one has g(ρ, φ) = o

(
f (ρ)

)
uniformly in φ as r tends to 0. By substituting

this observation into (25) one obtains

ch(H ) = − 1

2π

∫ 2π

0
lim
ε→0

f 2(ε)

f 2(ε) + g2(ε, φ)
dφ = − 1

2π

∫ 2π

0
dφ = −1.
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As a consequence, by returning to the original bundle E , one has obtained ch(E) = −ch(H ) = 1.
As a corollary, one easily proves

Proposition 17: Let λ1, λ2 be two complex numbers of modulus 1 with �λ1 < 0 < �λ2 and
consider the set X ⊂ U (2) defined by (21). Then the map � : X → E is continuous and the following
equality holds:

1

24π2

∫
X×�

tr
[
�∗ dX×�� ∧ dX×��∗ ∧ dX×��

] = 1.

Proof: Continuity of X 
 U �→ 
−(HU
α , H0) ∈ E is proved in Appendix C. The equation is

an application of Theorem 15 with n = 2 with ηX defined by the first Chern character over X :
〈ηX , [P]0〉 = 1

2π i

∫
X tr
[
P dX P ∧ dX P

] = ch(E). �
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APPENDIX A: PROOF OF THEOREM 15

As already mentioned, we simply sketch the proof of the second equality of Theorem 15
mimicking the approach of the Appendix of Ref. 18. Note that this proof is based on the alternative
description of the C∗-algebras provided in Remark 12.

Proof of the second statement of Theorem 15: (1) Let us first observe that the short exact
sequence (18) illuminates better the K -theory associated with the relevant algebras. Indeed, the
relations for û tell us immediately that 1 − e00 and 1 are Murray-von Neumann equivalent and
hence define the same K0-element in E . It follows that the two maps K0(i) : K0(K) → K0

(
C∗(û)

)
and K1(i) : K1(K) → K1

(
C∗(û)

)
are the zero maps, so that the six-term exact sequence splits

into two short exact sequences, see Chap. 12 of Ref. 24, for more information on the six-term
exact sequence. From this, one may conclude that the inclusion j : C 
 1 �→ 1 ∈ C∗(û) induces
an isomorphism in K -theory. The two exact sequences in K -theory therefore become for i = 0, 1
mod 2,

0 → Ki (C)
Ki (j)−→ Ki (C

∗(u))
δi→ Ki−1(K) → 0,

where δi are the boundary maps, and in particular δ1 = ind.
Let us now consider a smooth and compact orientable n-dimensional manifold X without

boundary and the associated short exact sequence introduced in Sec. V C. The above description has
the following generalisation: C(X, E) ∼= C

(
X, M2(C)

)⊗ C∗(û) and the map j′ : C
(
X, M2(C)

) →
C
(
X, M2(C)

)⊗ C∗(û), f �→ j′( f ) ≡ f ⊗ 1, induces an isomorphism in K -theory. Furthermore,
the short exact sequence (19) is isomorphic to the following one:

0 → C
(
X, M2(C)

)⊗ K
(
L2(R+)

) → C
(
X, M2(C)

)⊗ C∗(û) → C
(
X, M2(C)

)⊗ C∗(u) → 0.

(26)

This exact sequence is the Toeplitz extension of the crossed product of the algebra C
(
X, M2(C)

)
by the trivial action of Z. Note that Pimsner and Voiculescu have considered the general case of an
action of Z on a C∗-algebra.21 Our interest in (26) relies on the study of a more general short exact
sequence performed in the Appendix of Ref. 18 (in that reference, the action of Z is general) and on
the corresponding dual boundary maps.

(2) Once this framework is settled, the next part of the proof consists in constructing a right
inverse for ind. The map j : C

(
X, M2(C)

) → C
(
X, M2(C)

)⊗ K
(
L2(R+)

)
, j( f ) = f ⊗ e00 induces

an isomorphism in K -theory.24 It is hence sufficient to construct a pre-image under ind of an element
of the form [j(P)]0, where P is a projection in C

(
X, M2(C)

)⊗ Mk(C). Here, k is arbitrary and in
principle higher k are needed, but for simplicity of the notation we shall set k = 1, the more general
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case being a simple adaptation. Let U ∈ C
(
X, M2(C)

)⊗ C∗(u) be given by U = 1 ⊗ u, and set
UP := U j(P) + (1 − j(P)

)
. Then one has to show that UP is a unitary in C

(
X, M2(C)

)⊗ C∗(u) and
that ind[UP ]1 = [j(P)]0. However, this calculation is well known and, in particular, is performed in
Proposition A.1 of Ref. 18, to which we refer. Note that since the action of Z is trivial, the expression
of UP introduced here is even simpler than the formula presented in that reference.

(3) The last step consists in checking that the numerical equality,〈
#ηX , [UP ]1

〉 = 〈
ηX , [P]0

〉
,

holds. Again this direct computation has already been performed in Theorem A.10 of Ref. 18, to
which we refer for details. Note that the constants c2k and c2k+1 introduced in Sec. IV B follow
from this computation. Since the above equality has been proved for arbitrary elements of the
corresponding algebras, we can then apply the result to P ∈ C(X,J ) and recall that � ∈ C(X,Q)
is a right inverse to −P for the map ind, i.e., ind[�]1 = −[P]0. �

APPENDIX B: PROOF OF LEMMA 4

Denote for brevity ϕ = ϕa,b. We first observe that

ϕ(x)−1ϕ′(x) = i
(	′(a + i x)

	(a + i x)
+ 	′(a − i x)

	(a − i x)
− 	′(b − i x)

	(b − i x)
− 	′(b + i x)

	(b + i x)

)
.

Since the function 	 is real on the real positive axis, let us choose a continuous determination of the
logarithm, denoted by log, such that log

(
	(y + i x)

)|x=0 ∈ R for any y ∈ R∗
+. Then, one observes

that

ϕ(x)−1ϕ′(x) = d

dx
I (x, a, b).

with

I (x, a, b) := log
(
	(a + i x)

)− log
(
	(a − i x)

)+ log
(
	(b − i x)

)− log
(
	(b + i x)

)
.

It follows that

Var[ϕ] = 1

i

[
lim

x→∞ I (x, a, b) − lim
x→−∞ I (x, a, b)

] = 2

i
lim

x→∞ I (x, a, b).

Now, let us denote by ln the principal determination of the logarithm, i.e., ln(z) = ln(|z|) + iθ (z),
where θ : C∗ → (−π, π ] is the principal argument of z. We recall from Eq. 6.1.37 of Ref. 1, that
for z → ∞ with |θ (z)| < π ,

	(z) ∼= e−z e(z−1/2) ln(z) (2π )1/2
(
1 + O(z−1)

)
.

For z = y + i x , the term e−z e(z−1/2) ln(z) can be rewritten as

e−y e(y−1/2) ln(
√

x2+y2) e−xθ(y+i x) exp
{− i

(
x − x ln

(√
x2 + y2

)− (y − 1/2)θ (y + i x)
)}

.

It follows that for |x | large enough, one has

log
(
	(y + i x)

) ∼= −y + (y − 1/2) ln
(√

x2 + y2
)− xθ (y + i x) + 1

2 ln(2π )

−i
(
x − x ln

(√
x2 + y2

)− (y − 1/2)θ (y + i x)
)
.

By taking this asymptotic development into account, one obtains

I (x, a, b) ∼= −x
[
θ (a + i x) + θ (a − i x) − θ (b − i x) − θ (b + i x)

]
+i x

[
2 ln

(√
a2 + x2

)− 2 ln
(√

b2 + x2
)]

+i(a − 1
2 )
[
θ (a + i x) − θ (a − i x)

]+ i(b − 1
2 )
[
θ (b − i x) − θ (b + i x)

]
.

Clearly, for any x one has

θ (a + i x) + θ (a − i x) − θ (b − i x) − θ (b + i x) = 0.
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Furthermore, some calculations of asymptotic developments show that

lim
|x |→∞

x
[
2 ln

(√
a2 + x2

)− 2 ln
(√

b2 + x2
)] = 0.

It thus follows that

lim
x→∞ I (x, a, b)

= i lim
x→∞

{
(a − 1

2 )
[
θ (a + i x) − θ (a − i x)

]+ (b − 1
2 )
[
θ (b − i x) − θ (b + i x)

]}
= i(a − 1

2 )
[

π
2 − (− π

2

)]+ i(b − 1
2 )
[(− π

2 ) − π
2

]
= iπ (a − b).

APPENDIX C: CONTINUITY OF THE WAVE OPERATOR

In this section, we show that the map X 
 U �→ 
−(HU
α , H0) ∈ E is continuous under the

assumptions of Proposition 17. In view of the representations (3) and (4) for the wave operators it
is sufficient to show the continuity of the map X 
 U �→ SU ∈ B, where B is the space of bounded
continuous matrix-valued functions S : [0,+∞] → M2(C) endowed with the norm,∥∥∥∥∥

(
s11(·) s12(·)
s21(·) s22(·)

)∥∥∥∥∥ = max
1≤ j,k≤2

sup
κ≥0

∣∣s jk(κ)
∣∣.

Note that we use the notation SU for SCD
α with C = C(U ) and D = D(U ) defined in Remark 1. Let

us set

L = L(U ) = π

2 sin(πα)

1 − U

i(1 + U )
=: (l jk)

and use again the representation (10),

SU (κ) = �
B−1 L B−1 + cos(πα)J + i sin(πα)

B−1 L B−1 + cos(πα)J − i sin(πα)
� J,

with

B ≡ B(κ) :=
(

	(1−α)
2α κα 0

0 	(α)
21−α κ (1−α)

)
, � :=

(
e−iπα/2 0

0 e−iπ(1−α)/2

)
, J :=

(
1 0

0 −1

)
.

Then by observing that the map X 
 U �→ L(U ) ∈ M2(C) is continuous in the usual matrix norm,
it follows that the map,

L(X ) × [0,∞] 
 (L , κ) �→ B(κ)−1 L B(κ)−1 + cos(πα)J + i sin(πα)

B(κ)−1 L B(κ)−1 + cos(πα)J − i sin(πα)
∈ M2(C),

is also continuous. This implies the required continuity of the map X 
 U �→ SU ∈ B.
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