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1. Introduction

Recently there has been an increasing interest in the study of two-body Schrödin-
ger operators near the threshold at energy zero (see for example [5] or [8]). Since
a positive commutator in the sense of Mourre does not exist at this energy, the
usual method of the conjugate operator cannot be used in that particular situa-
tion. On the other hand, the method of the weakly conjugate operator gives the
existence of the boundary values of resolvents also at thresholds but applies only
to situations where the operators have no bound states at all. However the authors
of [5] derive a limiting absorption principle at zero energy for a special class of
two-body Schrödinger operators which have bound states below zero. In this con-
text, an improvement of the method of the weakly conjugate operator that will
cover the behaviour at thresholds of operators with bound states would be of
interest. The purpose of this Letter is to describe such an extension and to give
an application to two-body Schrödinger operators.

Let us recall the main idea of methods based on a conjugate operator. One way
to obtain strong results for the spectral analysis of a self-adjoint operator H is to
find an auxiliary self-adjoint operator A such that the commutator [i H, A] is pos-
itive in a suitable sense. In the method of the conjugate operator one looks for
intervals J of R such that
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E(J )[i H, A]E(J ) � aE(J ) (1)

for some strictly positive constant a that depends on J , where E(J ) denotes the
spectral projection of H on the interval J . For the method of the weakly con-
jugate operator one assumes that [i H, A]> 0, i.e. the commutator is positive and
injective. This requirement is closer to the initial Kato–Putnam theory, on which
it improves.

The first approach has reached a very high degree of precision and abstraction
in [1]. There also exists a huge number of applications based on an inequality of
the form (1). The second approach was initiated in [3] and fully developed in [4].
Only a few papers contain applications, see for example [7], [11] or [12]. We also
mention [5] and [6] that contain arguments that are very close to this method. Its
main disadvantage is that if the method can be applied to H , then the spectrum
of H is purely absolutely continuous, which limits drastically its range of applica-
tions. On the other hand, it leads to a limiting absorption principle that is uniform
on R and to global H -smooth operators, that are of special interest. We refer to
[14] and references therein for more information on that subject.

Motivated by some calculations borrowed from [5], we shall prove in this Letter
that the fundamental assumption [i H, A]> 0 of the method of the weakly conju-
gate operator can be weakened. The main idea is that H itself can add some pos-
itivity. Surprisingly, the new requirement is that there exists a constant c�0 such
that

−cH +[i H, A] > 0 .

This inequality together with some technical assumptions lead to a limiting
absorption principle that is either uniform on R if c = 0 or uniform on [0,∞) if
c > 0. The absolute continuity of the spectrum and H -smooth operators are then
standard by-products of that estimate.

In the next section, we introduce the framework and state the abstract result.
Its proof is postponed to Section 4. In between, we give an application to two-
body Schrödinger operators. We prove that under suitable conditions such opera-
tors admit a limiting absorption principle uniform on [0,∞). Since our approach
applies to operators that may have discrete spectrum below zero, our abstract
result is really an improvement of the method developed in [3] and [4].

We close this introduction with some comments on generality. As in the early
papers on the method of the conjugate operator, our condition on the second
commutator

[
i[i H, A], A

]
can certainly be weakened. Also an approach divided

into two stages (first by dealing with bounded operators and then by applying the
result to the resolvent (H −λ0)

−1 for a real λ0 outside the spectrum of H ) would
certainly lead to some improvements. However, since such modifications would
also lengthen and complicate our arguments, we decided not to take them into
account in this Letter.
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2. The Abstract Construction

Let H be a Hilbert space with scalar product 〈·, ·〉 and norm ‖ · ‖. We consider a
self-adjoint operator H in H with its domain denoted by G2 and its form domain
denoted by G1. Endowed with the corresponding graph norms, G2 and G1 are also
Hilbert spaces. Their adjoint spaces (topological anti-duals) are denoted by G−2

and G−1, and by identifying H with its adjoint through the Riesz isomorphism one
has the continuous dense embeddings:

G2 ↪→G1 ↪→H ↪→G−1 ↪→G−2.

Let {Wt }t∈R be a strongly continuous unitary group in H with its self-adjoint
generator denoted by A. We assume that for each t ∈ R, Wt leaves G2 invariant.
It is then a standard fact that {Wt }t∈R induces a C0-group in each space Gs intro-
duced above [1, Section 6.3]. We keep the same notation for these C0-groups.

Now, let us consider an operator S ∈ B(G1,G−1) that satisfies S > 0, i.e.,
〈 f, S f 〉>0 for all f ∈G1 \ {0}. We have written B(G1,G−1) for the set of bounded
linear operators from G1 to G−1 and kept the notation 〈·, ·〉 for the duality
between G1 and G−1. Since S is positive we define the completion S of G1 with
respect to the norm ‖ f ‖S := 〈 f, S f 〉1/2. Its adjoint space S∗ can then be identi-
fied with the completion of SG1 with respect to the norm ‖g‖S∗ := 〈g, S−1g〉1/2.
One observes that S extends to an isometric element of B(S,S∗). S and S∗ are
Hilbert spaces which are generally not comparable with H. But since G1 ↪→S and
S∗ ↪→ G−1 it makes sense to assume that {Wt }t∈R restricts to a C0-group in S∗,
or equivalently that it extends to a C0-group in S. Under this assumption (tac-
itly assumed in the sequel), we still keep the notation {Wt }t∈R for these C0-groups.
Endowed with the graph norm, the domain of the generator of the C0-group in S∗
is denoted by D(A,S∗).

DEFINITION 1. For j ∈{1,2}, let T j be one of the spaces H,Gs,S or S∗ intro-
duced above. An operator T ∈B(T1,T2) belongs to C1(A;T1,T2) if the map

R� t 	→ W−t T Wt ∈B(T1,T2)

is strongly differentiable. Its derivative at t =0 is denoted by [iT, A]∈B(T1,T2).

Before stating the main result of this section, let us recall some known facts.
By duality and interpolation, any symmetric operator T in H with T ∈B(G2,H)

has a unique extension to a symmetric element of B(G1,G−1), still denoted by T .
Then, the assumption T ∈B(S,S∗) has an unambiguous meaning. It is equivalent
to the requirement that T (G1)⊂S∗ and T :G1 →S∗ is continuous when G1 is pro-
vided with the topology induced by S. In that case the unique extension to a con-
tinuous mapping from S to S∗ is still denoted by T . On the other hand, if E is
the Banach space (D(A,S∗),S∗)1/2,1 defined by real interpolation (see for example
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[1, Proposition 2.7.3]), then one has the natural continuous embeddings :

B(G−1,G1)⊂B(S∗,S)⊂B(E,E∗) .

THEOREM 1. Let H be a self-adjoint operator in H that belongs to C1(A;G2,H)

and assume that there exist two constants c1�0 and c2 >0 such that

S :=−c1 H +[i H, A] > 0 and [i H, A] � − c2 . (2)

Assume furthermore that [i H, A] extends to an element of C1(A;S,S∗). Then, there
exists c <∞ such that

|〈 f, (H −λ∓ iµ)−1 f 〉| � c‖ f ‖2
E (3)

for all λ∈R with c1λ�0, all µ>0 and all f ∈E .

We observe that the condition on λ splits into two cases. Either c1 =0 and then
the result holds for all λ∈R, or c1 >0 and then λ has to be restricted to the pos-
itive axis. Since the case c1 =0 was already treated in [3], we shall state two well-
known corollaries only in the case c1 >0.

Corollary 1. Assume that the assumptions of Theorem 1 hold for some c1 >0. Then,

(i) Any element of B
(
(E∗)◦,H

)
is H -smooth on [0,∞), where (E∗)◦ stands for the

closure of S in E∗,
(ii) The spectrum of H on [0,∞) is absolutely continuous.

3. Application to Schrödinger Operators

In this section, we apply the abstract result to some Schrödinger operators in the
Hilbert space H := L2(Rn). Let us first recall that for j ∈ {1, . . . ,n}, Q j is the
operator of multiplication by the variable x j , Pj := −i∇ j is a component of the
momentum operator and −�≡ P2 is Laplace operator on R

n . For each s ∈R, Hs

denotes the usual Sobolev space of order s on R
n .

Let V be a real and bounded C∞(Rn)-function. We shall work under this
smoothness assumption that is not essential but which simplifies our arguments.
The Schrödinger operator

H :=−�+ V

is self-adjoint in H with domain G2 ≡H2. Obviously one has G1 ≡H1, and by dual-
ity, G−2 ≡H−2 and G−1 ≡H−1. It is well known that all these spaces are invariant
under the action of the dilation group {Wt }t∈R whose generator A has the form
A := 1

2 (P · Q + Q · P).
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Let us now assume that the map R
n � x 	→ Ṽ (x) := ∑n

j=1 x j [∂ j V ](x) ∈ R is
bounded. It follows that H ∈C1(A;H2,H) and that [i H, A]=−2�− Ṽ . In this sit-
uation the main positivity requirement of Theorem 1 is that there exists c1�0 such
that

−(2− c1)�− c1V − Ṽ > 0 .

One observes that if there exists c1 ∈ [0,2) such that −c1V − Ṽ �0, then this
inequality is obviously satisfied.

In the next proposition we use this idea and give a very simple and explicit
application of Theorem 1. But let us also note that if n�3, some additional posi-
tivity can be obtained from the inequality −��( n−2

2 )2|Q|−2. For purposes of sim-
plicity we do not take this improvement into account, and refer to [3] for an
extensive use of this inequality in the special case c1 =0.

PROPOSITION 1. Let V be a real and bounded C∞(Rn)-function. Assume further-
more that the following three conditions are satisfied for all x ∈R

n : (i) V (x)�0, (ii)
there exists c ∈[0,2) such that |Ṽ (x)|�− cV (x), (iii) there exists d�0 such that :

∣∣∣
n∑

j,k=1

x j∂ j xk∂k V (x)

∣∣∣ � −dV (x) .

Then for c1 ∈ (c,2) fixed and S :=−(2−c1)�−c1V − Ṽ , the limiting absorption prin-
ciple (3) is satisfied for all λ�0, all µ>0 and all f ∈E . Furthermore, any element of
B

(
(E∗)◦,H

)
is H -smooth on [0,∞) and the spectrum of H on [0,∞) is absolutely

continuous.

Since the spaces E , E∗ and (E∗)◦ are rather intricate, H -smooth operators are
not so easily exhibited. But under one not too restrictive extra assumption on V ,
a large class of H -smooth operators can be constructed. For that purpose, let us
set M(x) :=min

{− V (x), 1
|x |2

}
for any x ∈R

n .

Corollary 2. Assume that V satisfies the assumptions of Proposition 1 with (i)
replaced by V (x)< 0 for all x ∈ R

n . If L : Rn → R is a Borel function that satisfies

|L(x)|�cM(x)
1
4 +δ

( − V (x)
) 1

4 −δ for some δ ∈ (0, 1
4 ), c < ∞ and all x ∈ R

n , then the
operator of multiplication by L is H -smooth on [0,∞).

Remark 1. Assume for a while that V is of the form V (x)=−d|x |−µ for d >0,
µ > 0 and for x large enough. Then condition (ii) of Proposition 1 implies the
upper bound µ< 2. Thus, an implicit consequence of condition (ii) is to prevent
a rapid decrease of V at infinity. Even if this restriction is not satisfactory, condi-
tion (ii) is of central importance in our approach and cannot be weakened. How-
ever, let us note that similar conditions that prevent V to decrease faster than
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|x |−2 already appear in the literature: In [13, Theorem 1.9] or in [5, Corollary 3.5]
a result similar to Corollary 2 is obtained under the requirement V (x)� − d(1 +
x2)−µ/2 for some d >0 and µ∈ (0,2). On the other hand, the resolvent expansion
around zero obtained in [8] holds only for potentials V that decrease faster than
|x |−2, and thus cannot be directly compared with our results.

Remark 2. In [5], an additional multiplication operator W is considered. This
function is non sign-definite, may have local singularities, but has to decrease in a
way controlled by V . By a perturbative argument, the authors succeed in proving
that the limiting absorption principle still holds for H replaced by H + W . Since
we have not been able to perform a similar improvement in the abstract frame-
work developed in Section 2 we do include such a treatment for the particular sit-
uation considered in this section.

Before starting the proofs we want the reader to note that the same letter c or
d may denote different constants from line to line.

Proof of Proposition 1. Let us write D for the set C∞
c (Rn) of smooth functions

on R
n with compact support. Because of our smoothness assumption on V , all

calculations below are well justified on D.
(a) One has already noticed that H is a self-adjoint operator in H with domain

H2, and that H belongs to C1(A;H2,H). Let us now fix c1 ∈ (c,2) and observe
that :

S � − (2− c1)� , S � − (c1 − c)V and S > 0 . (4)

Furthermore the self-adjoint operator [i H, A]=−2�− Ṽ is bounded from below.
Thus, both conditions in (2) are satisfied.

(b) By performing some easy calculations on D and by taking into account
hypotheses (ii) and (iii) and the inequalities (4) one obtains that there exists d >0
such that on D the following inequalities hold :

−dS � [i H, A] � dS , (5)

−dS �
[
i[i H, A], A

]
� dS , (6)

−dS � [i S, A] � dS . (7)

It follows from (5) that |〈 f, [i H, A] f 〉|�d〈 f, S f 〉≡ d‖ f ‖2
S for all f ∈D, and then

from the density of D in S that [i H, A] extends to an element of B(S,S∗). Rela-
tion (6) leads to the same conclusion for the operator

[
i[i H, A], A

]
.

(c) Now we check that {Wt }t∈R extends to a C0-group in S. This easily reduces
to the proof that ‖Wt f ‖S�c(t)‖ f ‖S for all f ∈D and t ∈R. By (7) one has:

‖Wt f ‖2
S = 〈 f, S f 〉+

∫ t

0
〈Wτ f, [i S, A]Wτ f 〉dτ � ‖ f ‖2

S +d
∣∣∣
∫ t

0
‖Wτ f ‖2

S dτ

∣∣∣ .
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The function (0, t)� τ 	→‖Wτ f ‖2
S ∈R is bounded (since G1 ↪→S), and hence by a

simple form of the Gronwall Lemma, we get the inequality ‖Wt f ‖S�e
d
2 |t |‖ f ‖S .

Thus {Wt }t∈R extends to a C0-group in S, and by duality {Wt }t∈R also defines a
C0-group in S∗. This completes the proof that [i H, A] extends to an element of
C1(A;S,S∗). All hypotheses of Theorem 1 have been checked, and the statements
follow from this theorem and from its corollary. ��

Proof of Corollary 2. Let M be the completion of D with respect to the norm
‖ f ‖M := ‖M−1/2 f ‖, and similarly let N be the completion of D with respect to
the norm ‖ f ‖N := ‖(−V )−1/2 f ‖. We first observe that M ⊂ N , M ⊂ D(A,S∗)
and N ⊂ S∗. Indeed, the first continuous embedding follows directly from the
inequality ‖ f ‖N �‖ f ‖M for all f ∈ D. For the second we show that ‖ f ‖2

S∗ +
‖A f ‖2

S∗�c‖ f ‖2
M for c < ∞ and all f ∈ D. From Corollary 1 of [9] and (4) one

gets

‖ f ‖2
S∗ ≡ 〈 f, S−1 f 〉 � 1

c1−c 〈 f, (−V )−1 f 〉 � d‖ f ‖2
N � d‖ f ‖2

M . (8)

Furthermore, it easily follows from (4) that for each j ∈ {1, . . . ,n} Pj extends to
an element of B(H,S∗), and therefore:

‖A f ‖S∗ � c
n∑

j=1

‖Q j f ‖+d‖ f ‖S∗ � c′‖|Q| f ‖+d ′‖ f ‖M � c′′‖ f ‖M .

The third embedding is also obtained from (8). One may then apply [1, Corollary
2.6.3] and obtains the following relations between spaces defined by real interpo-
lation:

(
M,N

)
θ,p ⊂ (

D(A,S∗),S∗)
θ,p ∀ θ ∈ (0,1) and p ∈[1,∞] . (9)

In order to exhibit explicit norms on (M,N )θ,2 let us set � := (−V
M

)1/2 and
observe that ��1. It is easily checked that the couple (M,N ) is quasi-linearizable
in the sense of [1, Section 2.7] (with Vτ := (1 + τ�)−1). By applying then Lemma
2.7.1 of the same reference, one obtains that an admissible norm on (M,N )θ,p

is given by the expression
( ∫ ∞

1

∥
∥r1−θ �

r+�
f
∥
∥p

N
dr
r

)1/p. Furthermore, by the same
argument as in the proof of [1, Proposition 2.8.1] one gets that in the special case
p = 2 this norm is equivalent to the norm given by ‖�1−θ f ‖N . Altogether, one
has obtained that the interpolation space (M,N )θ,2 is equal to the completion of
D with respect to the norm ‖�1−θ (−V )−1/2 f ‖.

For each ε ∈ (0, 1
2 ) let us set θ := 1

2 − ε and Fε := (M,N )θ,2. One has Fε ⊂
(M,N )1/2,1 [1, Proposition 2.4.1], and it follows then by (9) that Fε ⊂ E . Thus
any element of B(F∗

ε ,H) is H -smooth on [0,∞). It is then readily checked that
the operator L belongs to B(F∗

ε ,H) with ε =2δ, which completes the proof. ��

4. Proof of the main theorem

This section is entirely devoted to the proof of the abstract result.
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Proof of Theorem 1. (a) For λ∈R with c1λ�0, µ> 0 and ε > 0, let us consider
the operators

(
H −λ∓ iµ∓ iε[i H, A])∈B(G2,H) . (10)

We first prove that there exists ε0 > 0 such that for ε ∈ (0, ε0) these operators are
isomorphisms from G2 to H. As a consequence of the open mapping theorem, it
is enough to prove that they are bijective. For that purpose, let us note that for
any f ∈G2 \{0} and T ∈B(G2,H), one has 〈 f, T f 〉=0 if and only if Re〈 f, T f 〉=0
and Im〈 f, T f 〉= 0. It follows that if there exist two finite numbers c and d such
that c Re〈 f, T f 〉+d Im〈 f, T f 〉 �=0, then 〈 f, T f 〉 �=0. Now, one observes that

−c1 Re
〈
f,

(
H −λ∓ iµ∓ iε[i H, A]) f

〉∓ 1
ε

Im
〈
f,

(
H −λ∓ iµ∓ iε[i H, A]) f

〉

= 〈
f,

(− c1 H +[i H, A]) f
〉+ (c1λ+ µ

ε
)‖ f ‖2 � 〈 f, S f 〉 > 0 , (11)

which implies that 〈 f, (H − λ ∓ iµ ∓ iε[i H, A]) f 〉 �= 0 for all f ∈ G2 \ {0}. Thus
both operators in (10) are injective. Furthermore, for ε ∈ (0, ε0) with ε0 :=
(‖[i H, A]‖G2→H)−1 one easily deduces that they are closed operators in H and
adjoint to each other. This immediately leads to their surjectivity [10, Section
V.3.1] and thus to their bijectivity.

(b) For ε ∈ (0, ε0), let us set G±
ε := (H − λ ∓ iµ∓ iε[i H, A])−1. These operators

belong to B(H,G2), and by duality and interpolation to B(G−1,G1)⊂B(S∗,S).
It is then easily shown that for all f, g ∈G−1: 〈 f, G±

ε g〉 = 〈G∓
ε f, g〉. By taking into

account these equalities and the continuous extensions of the inequalities (11) valid
for all f ∈G1 \ {0}, one observes that there exists c <∞ such that for all f ∈G−1:

‖G±
ε f ‖2

S = 〈G±
ε f, SG±

ε f 〉
� c1

∣∣Re
〈
G±

ε f,
(
H −λ± iµ± iε[i H, A])G±

ε f
〉∣∣+

+ 1
ε

∣∣ Im
〈
G±

ε f,
(
H −λ± iµ± iε[i H, A])G±

ε f
〉∣∣

� c1|〈 f, G±
ε f 〉|+ 1

ε
|〈 f, G±

ε f 〉| � c
ε
|〈 f, G±

ε f 〉| .

Thus, one has obtained that for all f ∈G−1:

‖G±
ε f ‖S �

√
c
ε

|〈 f, G±
ε f 〉|1/2 , (12)

and by using the inequality |〈 f, g〉|�‖ f ‖S∗‖g‖S valid for all f ∈S∗ and g ∈S, it
follows that:

‖G±
ε ‖S∗→S � c

ε
. (13)

(c) This part of the proof is similar to parts (ii)–(iv) of the proof of [4, Theo-
rem 2.1]. For ε > 0 and f ∈ E ≡ (D(A,S∗),S∗)1/2,1, let us set fε := 1

ε

∫ ε

0 (Wt f )dt .
Then, fε ∈ D(A,S∗), ε 	→ fε ∈S∗ is C1 in norm, fε → f in S∗ as ε →0 and

∫ 1

0

(‖ f ′
ε‖S∗ +‖A fε‖S∗

)
ε−1/2 dε � c‖ f ‖2

E , (14)

where f ′
ε denotes the derivative of the map ε 	→ fε.
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Now, for ε ∈ (0, ε1), with ε1 := min{ε0,1}, let us set F±
ε := 〈 fε, G±

ε fε〉. A formal
calculation leads to:

d
dε

F±
ε ≡ (F±

ε )′ = 〈 f ′
ε ∓ A fε, G±

ε fε〉+〈G∓
ε fε, f ′

ε ± A fε〉−
−ε〈G∓

ε fε,
[
i[i H, A], A

]
G±

ε fε〉 .

A rigorous proof of these equalities can be derived similarly as in the usual Mour-
re theory, see for example [1, Section 7.3] or [2, Lemma 3.4]. By taking (12) into
account, we obtain the fundamental differential inequalities:

1
c |(F±

ε )′| � 1√
ε

(‖ f ′
ε‖S∗ +‖A fε‖S∗

)|F±
ε |1/2 +∥∥[

i[i H, A], A
]∥∥S→S∗ |F±

ε | .

Then, by an application of the Gronwall lemma [1, Lemma 7.A.1] together with
the use of the inequality (14) one concludes that F±

0 = limε→0 F±
ε exist and satisfy

|F±
0 |�c(|F±

ε1
|+‖ f ‖2

E ). Furthermore, one has by (13) that

|F±
ε1

| � ‖G±
ε1

‖S∗→S‖ fε1‖2
S∗ � c

[∫ ε1

0
‖Wt f ‖S∗dt

]2

� d‖ f ‖2
S∗ � d‖ f ‖2

E ,

which leads to the expected inequalities: |F±
0 | � c‖ f ‖2

E .
(d) It only remains to show that F±

0 =〈 f, (H −λ∓ iµ)−1 f 〉, i.e., that the right
objects have been obtained. For that purpose, let us set G±

0 := (H −λ∓ iµ)−1 and
observe that

|〈 fε, G±
ε fε〉−〈 f, G±

0 f 〉|�‖ fε − f ‖S∗ ‖G±
ε ‖S∗→S ‖ fε‖S∗ +

+‖ f ‖S∗ ‖G±
ε − G±

0 ‖S∗→S ‖ fε‖S∗ +
+‖ f ‖S∗ ‖G±

0 ‖S∗→S ‖ fε − f ‖S∗ .

Since ‖ fε − f ‖S∗ →0 as ε→0 and ‖T ‖S∗→S�d‖T ‖G−1→G1 for all T ∈B(G−1,G1),
it is enough to prove that for λ and µ fixed there exist ε2 >0 and c<∞ such that
‖G±

ε ‖G−1→G1�c for all ε∈[0, ε2]. Indeed, by using the second identity of the resol-
vent can then gets the inequalities:

‖G±
ε − G±

0 ‖G−1→G1�‖G±
ε ‖G−1→G1‖ε[i H, A]‖G1→G−1‖G±

0 ‖G−1→G1

�εc2‖[i H, A]‖G1→G−1 .

So, let us set ε2 :=min{ε1,
µ

2c2
} and observe that for ε∈[0, ε2] and all f ∈G2, the

inequality µ
2 ‖ f ‖2 +〈 f, ε[i H, A] f 〉�0 holds. It easily follows that for all f ∈G2:

∥∥(
H −λ∓ i µ

2 ∓ i(µ
2 + ε[i H, A])) f

∥∥ �
∥∥(

H −λ∓ i µ
2

)
f
∥∥ ,

and then that for all g ∈H:

∥∥(H −λ∓ i µ
2 )G±

ε g
∥∥≡∥∥(H −λ∓ i µ

2 )
(
H −λ∓ i µ

2 ∓ i(µ
2 + ε[i H, A]))−1

g
∥∥�‖g‖.
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Therefore, one obtains that for all g ∈H:
∥∥G±

ε g
∥∥G2 = ∥∥(H + i)G±

ε g
∥∥=∥∥(H + i)(H −λ∓ i µ

2 )−1(H −λ∓ i µ
2 )G±

ε g
∥∥

�
∥∥(H + i)(H −λ∓ i µ

2 )−1∥∥‖g‖
�

(
1+ ∣∣λ± i µ

2 + i
∣∣ 2
µ

)‖g‖,
or equivalently that ‖G±

ε ‖H→G2�c with c independent of ε∈[0, ε2]. By duality and
interpolation, one concludes that ‖G±

ε ‖G−1→G1�c for all ε ∈[0, ε2].
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